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Abstract 

The aim of this article is to define fuzzy maximal open cover and discuss its few properties. we also defined and study 

fuzzy m-compact space and discussed its properties. Also we obtain few more results on fuzzy minimal c-regular and 

fuzzy minimal c-normal spaces. We have proved that a fuzzy Haussdorff m-compact space is fuzzy minimal c- normal. 
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1 Introduction 

Zadeh[8] established fuzzy set in 1965. Chang[1] introduced fuzzy topology in 1968. Consequent of fuzzy minimal 

(resp.maximal) open sets[2], Swaminathan developed fuzzy mean open sets in [3]. Swaminathan and Sivaraja studied 

various comparision results in fuzzy minimal, maximal and mean open sets in [4], [5] and [7]. The nature of 

fuzzy maximal open sets in fuzzy topology having significance in covering properties. Swaminathan and Sivaraja [?] 

introduced fuzzy s-refinement and extended maximal open covers in fuzzy topology. 

In section 2 of this article we study basic notions in fuzzy topology. In section 3 of this article fuzzy weakly m-

compact, fuzzy weakly m-Lindelof, fuzzy m-Lindelof, fuzzy countably m-compact and fuzzy m-paracompact space 

and few properties discussed. 

 

2 Preliminaries 

Definition 2.1. ( [2]) A proper fuzzy open set µ of X is said to be a fuzzy maximal open set if λ is an fuzzy open set 

such that µ < λ , then λ = µ or λ = 1X 

Definition 2.2. ( [2]) A proper fuzzy open set µ of X is said to be a fuzzy minimal open set if λ is an fuzzy open set 

such that λ < µ , then λ = µ or λ = 0X 

Definition 2.3. [3] In a fts X , α is called a fuzzy mean open(resp. γ fuzzy mean closed) if ∃ λ, µ(≠ α) two distinct 

proper fuzzy open sets (resp. two distinct proper fuzzy closed sets β, δ(≠ γ) ) such that λ < α < µ (resp. β < γ < δ ) 

Definition 2.4. [6]Let C and D be two fuzzy covers of a fts X . C is an fuzzy s - refinement of D if ∀ α ∈ C ∃ β 

∈ D such that α < β . A fuzzy s -refinement C of D is said to be a fuzzy open s -refinement of D if all members of 

C and D are fuzzy open. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 3 (2023) 

_____________________________________________________________________________________ 

 

1933 

 

x 

x x 

n 

Definition 2.5. [6]If every FMAO cover of a fts X has a finite fuzzy open s-refinement then X is said to be fuzzy m-

compact. 

Definition 2.6. [6]A function f : X → Y for any two FTSs X and Y is said to be fuzzy m-continuous,if inverse image 

of each proper fuzzy open set in Y is FMAO in X . 

Definition 2.7. [6]A fts X is called a fuzzy minimal c-regular if for each pα ∈ X and 

each FMIC set γ with pα g γ , there exists disjoint fuzzy open sets λ , µ such that pα ∈ λ 

x x 

and λ < µ . 

Definition 2.8. [6]A fts X is called a fuzzy minimal c -normal if for each pair of distinct FMIC sets η, γ there exists 

disjoint fuzzy open sets λ , µ such that η < λ and γ < µ . 

Definition 2.9. [6]A fuzzy point pα of a fts X is fuzzy m-complete accumulation point of any fuzzy subset M of X 

if |U ∧ M| = |M| for each FMAO set U containing pα . 

 

Lemma 2.1. [6] A fuzzy open cover containing a FMAO set is fuzzy maximal. 

Theorem 2.2. [2] If α  is fuzzy maximal open and  β is fuzzy open in X , then either α ∨ β = 1 or β ≤ α. If β 

is also a fuzzy maximal open set distinct from α , then α ∨ β . 

Theorem 2.3. [2] If λ is fuzzy minimal closed and µ is fuzzy closed in X , then either λ∧µ = 0 or µ ≤ λ. If µ 

is also a fuzzy minimal closed set distinct from λ , then λ∧µ = 0 . 

Theorem 2.4. [6] Every infinite T1 fcts is fuzzy m-compact. 

 

3 Main Results 

Definition 3.1. A fuzzy topological space X is said to be fuzzy weakly m -compact if each fuzzy maximal open 

cover of X has a fuzzy open finite refinement. 

A fuzzy subset Y of X is said to be a fuzzy weakly m -compact subset of X if (Y, τY ) is fuzzy weakly m-compact. 

Theorem 3.1. Let X be a fuzzy m -compact fuzzy topological space and K be fuzzy minimal closed in X . Then K 

is fuzzy weakly m-compact. 

 

Proof: Let U be a fuzzy maximal open cover of the fuzzy minimal closed set K . For each U ∈ U , there is a fuzzy 

open set W in X such that U = K ∩ W . Since by Lemma 1 and 1 − K is a fuzzy maximal open set in X , we write W 

= {W : U ∈ U } ∪ {1 − K} is a fuzzy maximal open cover of X . By fuzzy m -compactness of X , W has a fuzzy finite 

open s -refinement {V1, V2, .........., Vn} . Clearly {V1 ∩ K, V2 ∩ K, .........., Vn ∩ K} is a fuzzy finite open refinement of 

U . 

Definition 3.2. Let xα ∈ X and U ⊆ X . A fuzzy point xα is said to be a fuzzy m - accumulation point of U if for each fuzzy 

maximal open set containing xα contains at least one point of U other than xα . 

Theorem 3.2. Let X be a fuzzy m -accumulation fuzzy topological space. Then every infinite fuzzy subset of X has a 

fuzzy m -accumulation point. 

 

Proof: Assume that U be an infinite fuzzy subset of X . Let U have no fuzzy m - accumulation point. Then for each xα ∈ 

X , there is a fuzzy maximal open set Vxα  in X such that xα ∈ Vxα  and Vxα ∩ U = 0 or Vxα ∩ U = {xα} . Now U = 

{Vxα : xα ∈ X} is a fuzzy maximal cover of X (by Lemma 1). By the fuzzy m -compactness of X , there is a finite 
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fuzzy s -refinement W of U . Let W = {Wxα1 
, Wxα2 

,    , Wxαn } . Then 

U  ⊆ X  =  
i

S

1 
Wxα  .  But for each  i  ∈ {1, 2, ....., n}, U 

T 
Wxαi     

=  0  or  U 
T 

Wxαi     
=  {xαi } . 

It implies that cardinality of U is at most n . Which contradicts the fact that U is fuzzy infinite. 

 

Definition 3.3. A fuzzy topological space X is said to be fuzzy m -Lindelof if every fuzzy maximal open cover of X 

has a fuzzy open countable s -refinement. 

Theorem 3.3. Let X and Y be a fuzzy topological spaces, where X is fuzzy m -Lindelof and f : X → Y be a bijective fuzzy 

m-continuous function. Then Y is also fuzzy m - Lindelof. 

Proof: Let S (Y) be a fuzzy maximal open cover of Y . Since f is a fuzzy bijective m-continuous function, S (X) = { f 

−1(U) : U ∈ S (Y)} is a fuzzy maximal open cover of X (by Definition 2.6 and Lemma 2.1). By fuzzy m -Lindelofness 

of X , S (X) has a fuzzy open countable s -refinement S (X) = {Wβ : β ∈ Γ} , say where the index set Γ is countable. Since f 

is bijective, it implies that S (Y) = { f (Wβ) : β ∈ Γ} covers Y . Let f (Wβ) be a member of S (Y) . Then Wβ ∈ S 

(X) . As S (X) is a fuzzy s -refinement of S (X) , we have Wβ Ç f −1(U) , for some U ∈ S (Y) . Further f is 

bijective gives that f (Wβ) Ç U . Hence S (Y) is a fuzzy open countable s -refinement of S (Y) . 

 

Theorem 3.4. Let X be a fuzzy m -Lindelof topological space and M be a fuzzy subset of X with |M| ≥ p . Then M 

has a fuzzy complete m -accumulation point. 

Proof: Consider for each xα ∈ X , there is a fuzzy maximal open set Uα containing 

xα and satisfying |Uxα ∩ M| < |M| . Then |Uxα ∩ M| ≤ ω0 , for each xα ∈ X . As 

{Uxα : xα ∈ X} is a fuzzy open cover of X consists of fuzzy maximal open sets by Lemma 2.1, {Uxα : xα ∈ X} is a fuzzy 

maximal open cover of X . Then there is a fuzzy open countable s-refinement {Uxαi  
: xαi , i ∈ Ω} , where the index 

set Ω is a countable subset of 

{Uxα : xα ∈ X} Now |M| = 
i
 

which is a contradiction. (Uxαi 
∩ M) ≤ 

ω0 . This gives that |M| ≤ ω0 ≤ p ≤ |M| , 

 

 

Theorem 3.5. Let X be a fuzzy m -Lindelof topological space and M be a uncountable fuzzy subset of X . Then M has 

a fuzzy m -accumulation point. 

 

Proof: If possible, let M have no fuzzy m -accumulation point. Then for each xα ∈ X , there is a fuzzy maximal 

open set Vxα    ∈ X such that xα ∈ Vxα    and (Vxα ∩ M) = 0 

 

Ω 
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or (Vxα ∩ M) = {xα}. Now U   = {Vxα   : xα ∈ X} is a fuzzy maximal open cover of X (by the Lemma 1). 

By the fuzzy m -Lindelofness of X , there is a fuzzy open countable s -refinement W of U . Let us write W = 

{Wxα1 
, Wxα2 

,    , Wxαn } . Then 

M     X =     Wxαi 
. But for each i      1, 2, ....., n , M    Wxαi   

= 0 or M    Wxαi   
= xαi    . It 

= 

gives that cardinality of M is at most ω0 . Which contradicts the fact that M is fuzzy 

uncountable. 

Definition 3.4. A fuzzy topological space X is said to be fuzzy weakly m -Lindelof if each fuzzy maximal open cover 

of X has a fuzzy countable open refinement. 

Let Y ⊆ X . Then Y is said to be a fuzzy weakly m -compact subset of X if (Y, τY ) is 

fuzzy weakly m -compact. 

Theorem 3.6. Let X be a fuzzy m -Lindelof topological space and K be fuzzy minimal closed in X . Then K is fuzzy 

weakly m -Lindelof. 

 

Proof: Proof is similar to the proof of Theorem 3.1. 

Definition 3.5. A fuzzy topological space X is said to be fuzzy countably m -compact if every countable fuzzy maximal 

open cover has a finite fuzzy open s -refinement. 

Obviously, fuzzy m -compact topological space is fuzzy countably m-compact. 

Theorem 3.7. Let X be a fuzzy Lindelof topological space containing a fuzzy minimal closed set K . Then following 

are equivalent: 

(i) X is fuzzy m-compact. 

(ii) X is fuzzy countably m-compact. 

 

Proof: (i) ⇒ (ii) It is obvious. 

(ii) ⇒ (i) Let U be a fuzzy maximal open cover of X . By fuzzy Lindelofness of X , U has a countable fuzzy 

subcollection W , say, that covers X . Then by the Lemma 1, W ∪ {1 − K} is a countable fuzzy maximal open cover 

of X . By the countably fuzzy m -compactness of X , W ∪ {1 − K} has a finite fuzzy open s -refinement of X , i.e., 

X is fuzzy m -compact. 

Theorem 3.8. An infinite fuzzy T1 -connected topological space is countably fuzzy m - compact. 

 

Proof: Proof follows from Theorem 2.4. 

Definition 3.6. A fuzzy topological space X is said to be a fuzzy m -paracompact topological space if each fuzzy maximal 

open cover of X has a fuzzy open locally finite fuzzy s -refinement. 

 

Theorem 3.9.  If X is a fuzzy m -paracompact topological space, then each fuzzy maximal open cover of X has a fuzzy 

open locally finite fuzzy s -refinement. 

 

Proof: Proof is trivial. 

Lemma 3.10. Let U be a fuzzy s -refinement (resp. fuzzy refinement) of W and W  be a refinement(resp., fuzzy s-

refinement) of V . Then U is a fuzzy s -refinement of V 
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Proof: Obvious. 

 

Theorem 3.11. If X is a fuzzy m -paracompact topological space, then each fuzzy maximal open cover of X has a 

locally finite fuzzy s -refinement (not necessarily open). 

 

Proof: Proof follows from the Lemma 3.10.. 

Theorem 3.12. A fuzzy Hausdorff m -paracompact topological space is fuzzy minimal m -regular. 

 

Proof:Let X be a fuzzy Hausdorff m-compact fuzzy topological space. Suppose K ∈ X be a fuzzy minimal closed set 

and xα ∈ X such that xα g K . Then for each zβ ∈ K there exists disjoint fuzzy open sets Uzβ , Vzβ such that xα ∈ 

Uzβ and zβ ∈ Vzβ . Clearly xα g cl(Vzβ ) . Then V = {Vzβ  : zβ ∈ K} ∪ {1 − K} is a fuzzy maximal open cover of X 

, by the Lemma 1. Since X is fuzzy m-paracompact, there is a fuzzy open locally finite s -refinement W say V = {Vzβ 

: zβ ∈ K} ∪ {1 − K} . 

Let V =  {W ∈ W |W ∩ K ≠ 0} . Then V is a fuzzy open set which contains K . Since 

{W ∈ W |W ∩ K ≠ 0} is a subcollection of a fuzzy locally finite family, it is fuzzy locally finite and therefore cl(V) =  

{cl(W) : W ∈ W |W ∩ K ≠ 0} . Now for each W ∈ W , there is a Vzβ ∈ V such that W ⊆ Vzβ  such that W ⊆ Vzβ 

, that is cl(W) ⊆ cl(Vzβ ) . Thus xα g cl(V) i.e., xα ∈ 1 − cl(V) . Thus X is fuzzy minimal c-regular. 

Corollary 3.13. A fuzzy Hausdorff m-paracompact topological space is fuzzy minimal fuzzy c -normal. 

 

Proof:Let G and K distinct fuzzy minimal closed sets in fuzzy Hausdorff m - paracompact topological space. For each 

zβ ∈ G , by Theorem 3.12, there exist disjoint fuzzy open sets Uzβ   and Vzβ   such that zβ ∈ Vzβ    and W ⊆ 

Vzβ .   By Lemma 2.1, U   = {Uzβ    : zβ ∈ G} ∪ {1 − G} is a fuzzy maximal cover of X . Now if we proceed in a 

similar way as the proof of the Theorem, we can get disjoint fuzzy open sets U, V such that G ⊆ U and K ⊆ V . 

 

Definition 3.7. A fuzzy topological space X is said to be a fuzzy weakly m -paracompact if each fuzzy maximal open 

cover of X has a fuzzy open locally finite s -refinement. 

Let Y ⊆ X, Y is said to be a fuzzy weakly m-paracompact subset of X if (Y, τY ) is fuzzy weakly m-paracompact. 

 

Theorem 3.14. Let X be a fuzzy m-paracompact topological space and K be fuzzy minimal closed in X . Then K is 

fuzzy weakly m-paracompact 

 

Proof: Proof is trivial. 

 

Theorem 3.15. Let X be a fuzzy topological space in which all proper open sets are fuzzy mean open. Then X is fuzzy 

m-compact. 

 

Proof: If possible, let X be not fuzzy m-compact. Then there exists a fuzzy maximal open cover A of X which has no 

fuzzy open finite s-refinement. Now by the Definition 2.3,for each A ∈ A we have can a proper fuzzy open set W 

such that A Ç W . Then A is a fuzzy s-refinement of {W : A ∈ A } , which contradicts the fuzzy maximality of A . Thus 

X is fuzzy m-compact. 
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Corollary 3.16. Let X be a fuzzy topological space in which all proper fuzzy open sets are fuzzy mean open. Then X 

is fuzzy m-Lindelof, fuzzy countably m-compact, fuzzy m-paracompact,fuzzy weakly m-compact, fuzzy weakly m-

Lindelof and fuzzy weakly m- paracompact. 

 

Proof: Obvious. 
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