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Abstract

The aim of this article is to define fuzzy maximal open cover and discuss its few properties. we also defined and study
fuzzy m-compact space and discussed its properties.Also we obtain few more results on fuzzy minimal c-regular and
fuzzy minimal c-normalspaces. We have proved that a fuzzy Haussdorff m-compact space is fuzzy minimal c- normal.
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1 Introduction

Zadeh[8] established fuzzy set in 1965. Chang[1] introduced fuzzy topology in 1968. Consequent of fuzzy minimal
(resp.maximal) open sets[2], Swaminathan developed fuzzy mean open sets in [3]. Swaminathan and Sivaraja studied
various comparision resultsin fuzzy minimal, maximal and mean open sets in [4], [5] and [7]. The nature of
fuzzy maximal open sets in fuzzy topology having significance in covering properties. Swaminathan and Sivaraja [?]
introduced fuzzy s-refinement and extended maximal opencovers in fuzzy topology.

In section 2 of this article we study basic notions in fuzzy topology. In section 3 of this article fuzzy weakly m-
compact, fuzzy weakly m-Lindelof, fuzzy m-Lindelof, fuzzycountably m-compact and fuzzy m-paracompact space
and few properties discussed.

2 Preliminaries

Definition 2.1. ( [2]) A proper fuzzy open set u of X is said to be a fuzzy maximal open set if A is an fuzzy open set
suchthat u < A,then A =pu or A = 1x

Definition 2.2. ([2]) A proper fuzzy open set u of X is said to be a fuzzy minimal open set if A is an fuzzy open set
such that A < u,then A =pu or A = 0x

Definition 2.3. [3] In a fts X, « is called a fuzzy mean open(resp. y fuzzy mean closed)if 3 A, u(2 ) two distinct

proper fuzzy open sets (resp. two distinct proper fuzzy closed sets 5, 5(2 y)) such that A < a < u(resp. B <y < 6)
Definition 2.4. [6]Let Cand D be two fuzzy coversof afts X . C isan fuzzy s-refinementof D if V ac C 3

€ D suchthat a <. Afuzzy s-refinement C of D is said to be a fuzzy open s -refinement of D if all members of

C and D are fuzzy open.
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Definition 2.5. [6]If every FMAO cover of a fts X has a finite fuzzy open s-refinement then X is said to be fuzzy m-
compact.

Definition 2.6. [6]A function f : X — Y for any two FTSs X and Y is said to be fuzzy m-continuous,if inverse image
of each proper fuzzy open setin Y is FMAO in X.

Definition 2.7. [6]A fts X is called a fuzzy minimal c-regular if for each p* € X and
each FMIC set y with p“ g y, there exists disjoint fuzzy open sets A, p such that p* € A
X X

and A < pu.

Definition 2.8. [6]A fts X is called a fuzzy minimal ¢ -normal if for each pair of distinctFMIC sets n, y there exists
disjoint fuzzy open sets A,u suchthat n <A and y < u.

Definition 2.9. [6]A fuzzy point p* of afts X is fuzzy m-complete accumulation point of any fuzzy subset M of X
if [U A M| =|M]| for each FMAO set U contafﬁing pe. "

Lemma 2.1. [6] A fuzzy open cover containing a FMAO set is fuzzy maximal.
Theorem 2.2. [2] If « is fuzzy maximal open and f is fuzzy open in X , then eitherav =1 or f<a. If

is also a fuzzy maximal open set distinct from «, then a Vv 8.

Theorem 2.3. [2] If A is fuzzy minimal closed and p is fuzzy closed in X | then either AAu =0 or u < A If p
is also a fuzzy minimal closed set distinct from A, then AAp = 0.

Theorem 2.4. [6] Every infinite Ty fcts is fuzzy m-compact.

3 Main Results
Definition 3.1. A fuzzy topological space X is said to be fuzzy weakly m-compact ifeach fuzzy maximal open
cover of X has a fuzzy open finite refinement.

A fuzzy subset Y of X is said to be a fuzzy weakly m-compact subset of X if (Y, 7v)is fuzzy weakly m-compact.
Theorem 3.1. Let X be a fuzzy m-compact fuzzy topological space and K be fuzzyminimal closed in X . Then K
is fuzzy weakly m-compact.

Proof: Let U be a fuzzy maximal open cover of the fuzzy minimal closed set K . For each U € U , there is a fuzzy
openset W in X suchthat U =K n W. Since by Lemma 1l and 1 — K is a fuzzy maximal open set in X, we write W
={W :U € U} uU {1 — K}isafuzzy maximal open cover of X. By fuzzy m-compactnessof X, W has a fuzzy finite
open s -refinement {Vi, V,, .......... , V. Clearly {Vin K, Von K, .......... , Vn N K} is a fuzzy finite open refinement of
u.

Definition 3.2. Let x, € Xand U < X . A fuzzy point X, is said to be a fuzzy m - accumulation point of U if for each fuzzy

maximal open set containing X, contains at least one point of U other than X, .
Theorem 3.2. Let X be a fuzzy m-accumulation fuzzy topological space. Then everyinfinite fuzzy subset of X has a
fuzzy m-accumulation point.

Proof: Assume that U be an infinite fuzzy subset of X . Let U have no fuzzy m - accumulation point. Then for each X, €
X, there is a fuzzy maximal open set Vy, in Xsuchthat X« € Vyq and Vyg N U =0 or Vyg N U=1{x}.Now U =

{Vxq : X« € X}isafuzzy maximal cover of X (by Lemma 1). By the fuzzy m-compactness of X, thereis a finite

n
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fuzzy s-refinement W of U . Let W = {WXCY]_’WXCYZJ »Wign }- Then
S ) T T
UcX-= _1Wxa . Butforeach i € {1,2,...,nfU Wyy; =00r U Wy ={xj}.
i =
It implies that cardinality of U is at most n. Which contradicts the fact that U is fuzzy infinite.

Definition 3.3. A fuzzy topological space X is said to be fuzzy m -Lindelof if everyfuzzy maximal open cover of X
has a fuzzy open countable s -refinement.

Theorem 3.3. Let X and Y be a fuzzy topological spaces, where X isfuzzy m-Lindelof andf: X — Y be a bijective fuzzy

m-continuous function. Then Y is also fuzzy m - Lindelof.
Proof: Let S ™ be a fuzzy maxirlnal open cover of Y . Since flis a fuzzy bij(fctive m-continuous function, S ® = {f

-Y(U) : U € S M}isafuzzy maximal open cover of X (by Definition 2.6 and Lemma 2.1). By fuzzy m -Lindelofness
of X, S ™ has a fuzzy open countable s -refinement S ® = {W;: g € T}, say where the index set T is countable. Since f
is bijective, it implies that S = {f(Wg) : B € T} covers Y. Letf(Wz) be a member of S™. Then Wy € S
. As S s a fuzzy s-refinement of S®, we have W; ¢ f-'(U), for some U € S™. Further f is

bijective gives that f(Ws) C U . Hence S is a fuzzy open countable s-refinement of S .

Theorem 3.4. Let X be a fuzzy m-Lindelof topological space and M be a fuzzy subsetof X with |M| > p. Then M
has a fuzzy complete m-accumulation point.
Proof: Consider for each x, € X, there is a fuzzy maximal open set U, containing

X and satisfying |Uxg, N M| < [M|. Then [Uy N M| < wq, for each x. € X. As
{Uxq : X« € X} isafuzzy open cover of X consists of fuzzy maximal open sets by Lemma2.1, {Uxq : X« € X} is a fuzzy
maximal open cover of X . Then there is a fuzzy open countable s-refinement {UXO[i I Xqj, 1 € Q}, where the index

set Q is a countable subset of

{Uxg : X« € X} Now [M| = $0. This gives that [M| < wo < p < [M],

I Q
€

which is a contradiction. (Uxg; N M) <

Theorem 3.5. Let X be a fuzzy m-Lindelof topological space and M be a uncountablefuzzy subset of X. Then M has
a fuzzy m-accumulation point.

Proof: If possible, let M have no fuzzy m-accumulation point. Then for each x, € X there is a fuzzy maximal

open set Vg € X suchthat xa € Vyg and (Vxg "' M) =0
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or (Vg N M) = {X.}. Now U = {Vyy : X« € X} is a fuzzy maximal open cover of X (by the Lemma 1).
By the fuzzy m -Lindelofness of X, there is a fuzzy open countable s-refinement W of U . Let us write W =
{Wxal,wxaz, , Wxapy . Then

_ € {

gives that cardinality of M is at most wo. Which contradicts the fact that M {s fuzzy } )

uncountable.

Definition 3.4. A fuzzy topological space X is said to be fuzzy weakly m-Lindelof ifeach fuzzy maximal open cover
of X has a fuzzy countable open refinement.

LetY < X. Then Y is said to be a fuzzy weakly m-compact subset of X if (Y, 7y) is
fuzzy weakly m -compact.

Theorem 3.6. Let X be a fuzzy m-Lindelof topological space and K be fuzzy minimalclosed in X. Then K is fuzzy
weakly m-Lindelof.

Proof: Proof is similar to the proof of Theorem 3.1.

Definition 3.5. A fuzzy topological space X is said to be fuzzy countably m -compact ifevery countable fuzzy maximal
open cover has a finite fuzzy open s -refinement.

Obviously, fuzzy m -compact topological space is fuzzy countably m-compact.

Theorem 3.7. Let X be a fuzzy Lindelof topological space containing a fuzzy minimalclosed set K. Then following
are equivalent:

(i) X is fuzzy m-compact.
(if) X is fuzzy countably m-compact.

Proof: (i) = (ii) It is obvious.
(if) = (i) Let U be a fuzzy maximal open cover of X. By fuzzy Lindelofness of X ,U has a countable fuzzy
subcollection W, say, that covers X . Then by the Lemma 1, W U {1 — K} is a countable fuzzy maximal open cover

of X. By the countably fuzzy m -compactness of X, W U {1 — K} has a finite fuzzy open s -refinement of X, i.e.,

X is fuzzy m-compact.
Theorem 3.8. An infinite fuzzy T; -connected topological space is countably fuzzy m-compact.

Proof: Proof follows from Theorem 2.4.
Definition 3.6. A fuzzy topological space X is said to be a fuzzy m -paracompact topological space if each fuzzy maximal
open cover of X has a fuzzy open locally finite fuzzy s-refinement.

Theorem 3.9. If X is a fuzzy m -paracompact topological space, then each fuzzy maximalopen cover of X has a fuzzy
open locally finite fuzzy s -refinement.

Proof: Proof is trivial.
Lemma 3.10. Let U beafuzzy s-refinement (resp. fuzzy refinement) of W and W bea refinement(resp., fuzzy s-
refinement) of V. Then U is a fuzzy s-refinement of V
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Proof: Obvious.

Theorem 3.11. If X is a fuzzy m -paracompact topological space, then each fuzzymaximal open cover of X has a
locally finite fuzzy s -refinement (not necessarily open).

Proof: Proof follows from the Lemma 3.10..
Theorem 3.12. A fuzzy Hausdorff m-paracompact topological space is fuzzy minimalm-regular.

Proof:Let X be a fuzzy Hausdorff m-compact fuzzy topological space. Suppose K € X be a fuzzy minimal closed set
and X, € X suchthat x.g K. Then for each zg € K there exists disjoint fuzzy open sets U:g, Vo such that x, €
Up and z; € Vig . Clearlyx, gcl(Vsg). Then V ={Vzﬁ 125 € K} U {1 — K} is a fuzzy maximal open cover of X
, by the Lemma 1. Since X is fuzzy m-paracompact, there is a fuzzy open locally finites-refinement Wsay V = {Vzﬁ
13 € KFu{l - K}.

Let V= {W e W|WnNK #0}. Then V isa fuzzy open set which contains K. Since

{W e W |W n K 29} is a subcollection of a fuzzy locally finite family, it is fuzzy locally finite and therefore cl(V) =
fcl(W): W € WIW N K#0}. Now for eéh W € W ,thereisa Vzﬁ €V suchthat W < Vzﬁ suchthat W < Vzﬁ
,thatis cl(W) < cI(VZﬁ) .Thus xo g cl(V) i.e., xe € 1 —cl(V). Thus X is fuzzy minimal c-regular.

Corollary 3.13. A fuzzy Hausdorff m-paracompact topological space is fuzzy minimalfuzzy c-normal.

Proof:Let G and K distinct fuzzy minimal closed sets in fuzzy Hausdorff m - paracompact topological space. For each
zg € G, by Theorem 3.12, there exist disjoint fuzzy open sets U.p and Vi such that zz € Vi and W <

Vyg . By Lemma 2.1,U = {Uzﬁ : 2z € G} U {1 — G} is a fuzzy maximal cover of X . Now if we proceed in a

similar way as the proof of the Theorem, we can get disjoint fuzzy open sets U, Vsuchthat G < U and K < V.

Definition 3.7. A fuzzy topological space X is said to be a fuzzy weakly m -paracompact if each fuzzy maximal open
cover of X has a fuzzy open locally finite s -refinement.
LetY < X, Y s said to be a fuzzy weakly m-paracompact subset of X if (Y, ty) is fuzzy weakly m-paracompact.

Theorem 3.14. Let X be a fuzzy m-paracompact topological space and K be fuzzy minimal closed in X. Then K is
fuzzy weakly m-paracompact

Proof: Proof is trivial.

Theorem 3.15. Let X be a fuzzy topological space in which all proper open sets are fuzzymean open. Then X is fuzzy
m-compact.

Proof: If possible, let X be not fuzzy m-compact. Then there exists a fuzzy maximal open cover A of X which has no
fuzzy open finite s-refinement. Now by the Definition 2.3,for each A € A we have can a proper fuzzy open set W

such that ACW . Then A is a fuzzy s-refinement of {W: A € A}, which contradicts the fuzzy maximality of A . Thus
X is fuzzy m-compact.
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Corollary 3.16. Let X be a fuzzy topological space in which all proper fuzzy open sets are fuzzy mean open. Then X
is fuzzy m-Lindelof, fuzzy countably m-compact, fuzzy m-paracompact,fuzzy weakly m-compact, fuzzy weakly m-
Lindelof and fuzzy weakly m- paracompact.

Proof: Obvious.
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