ISSN: 1001-4055 Vol. 44 No. 3 (2023)

Some Covering Properties Using Fuzzy Maximal Covers

¹M. Sankari, ²C. Murugesan

¹Department of Mathematics Lekshmipuram College of Arts and ScienceNeyyoor, Kanyakumari Tamil Nadu-629 802, India. ²Research Scholar

Pionneer Kumaraswami College of Arts and Science, Nagercoil, Tamil Nadu-629 003, India. (Affiliated to Manonmaniam Sundaranar University, Tirunelvelli)

Abstract

The aim of this article is to define fuzzy maximal open cover and discuss its few properties. we also defined and study fuzzy m-compact space and discussed its properties. Also we obtain few more results on fuzzy minimal c-regular and fuzzy minimal c-normalspaces. We have proved that a fuzzy Haussdorff m-compact space is fuzzy minimal c-normal. **Key words and phrases:** Fuzzy minimal open; fuzzy maximal open cover; fuzzy minimalc-regular (resp.c-normal). 2010 Mathematics Subject Classification: 54A40, 03E72.

1 Introduction

Zadeh[8] established fuzzy set in 1965. Chang[1] introduced fuzzy topology in 1968. Consequent of fuzzy minimal (resp.maximal) open sets[2], Swaminathan developed fuzzy mean open sets in [3]. Swaminathan and Sivaraja studied various comparision resultsin fuzzy minimal, maximal and mean open sets in [4], [5] and [7]. The nature of fuzzy maximal open sets in fuzzy topology having significance in covering properties. Swaminathan and Sivaraja [?] introduced fuzzy s-refinement and extended maximal opencovers in fuzzy topology.

In section 2 of this article we study basic notions in fuzzy topology. In section 3 of this article fuzzy weakly m-compact, fuzzy weakly m-Lindelof, fuzzy m-Lindelof, fuzzycountably m-compact and fuzzy m-paracompact space and few properties discussed.

2 Preliminaries

Definition 2.1. ([2]) A proper fuzzy open set μ of X is said to be a fuzzy maximal open set if λ is an fuzzy open set such that $\mu < \lambda$, then $\lambda = \mu$ or $\lambda = 1_X$

Definition 2.2. ([2]) A proper fuzzy open set μ of X is said to be a fuzzy minimal open set if λ is an fuzzy open set such that $\lambda < \mu$, then $\lambda = \mu$ or $\lambda = 0_X$

Definition 2.3. [3] In a fts X, α is called a fuzzy mean open(resp. γ fuzzy mean closed)if $\exists \lambda, \mu(\neq \alpha)$ two distinct proper fuzzy open sets (resp. two distinct proper fuzzy closed sets $\beta, \delta(\neq \gamma)$) such that $\lambda < \alpha < \mu$ (resp. $\beta < \gamma < \delta$) **Definition 2.4.** [6]Let C and D be two fuzzy covers of a fts X. C is an fuzzy s - refinement of D if $\forall \alpha \in C \exists \beta \in D$ such that $\alpha < \beta$. A fuzzy s -refinement C of D is said to be a fuzzy open s -refinement of D if all members of C and D are fuzzy open.

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

Definition 2.5. [6] If every FMAO cover of a fts X has a finite fuzzy open s-refinement then X is said to be fuzzy m-compact.

Definition 2.6. [6] A function $f: X \to Y$ for any two FTSs X and Y is said to be fuzzy m-continuous, if inverse image of each proper fuzzy open set in Y is FMAO in X.

Definition 2.7. [6]A fts X is called a fuzzy minimal c-regular if for each $p^{\alpha} \in X$ and each FMIC set γ with p^{α} \mathbf{g} γ , there exists disjoint fuzzy open sets λ , μ such that $p^{\alpha} \in \lambda$ x and $\lambda < \mu$.

Definition 2.8. [6]A fts X is called a fuzzy minimal c-normal if for each pair of distinctFMIC sets η , γ there exists disjoint fuzzy open sets λ , μ such that $\eta < \lambda$ and $\gamma < \mu$.

Definition 2.9. [6]A fuzzy point p^{α} of a fts X is fuzzy m-complete accumulation point of any fuzzy subset M of X if $|U \wedge M| = |M|$ for each FMAO set U containing p^{α} .

Lemma 2.1. [6] A fuzzy open cover containing a FMAO set is fuzzy maximal.

Theorem 2.2. [2] If α is fuzzy maximal open and β is fuzzy open in X, then either $\alpha \vee \beta = 1$ or $\beta \leq \alpha$. If β is also a fuzzy maximal open set distinct from α , then $\alpha \vee \beta$.

Theorem 2.3. [2] If λ is fuzzy minimal closed and μ is fuzzy closed in X, then either $\lambda \wedge \mu = 0$ or $\mu \leq \lambda$. If μ is also a fuzzy minimal closed set distinct from λ , then $\lambda \wedge \mu = 0$.

Theorem 2.4. [6] Every infinite T_1 fcts is fuzzy m-compact.

3 Main Results

Definition 3.1. A fuzzy topological space X is said to be fuzzy weakly m-compact if each fuzzy maximal open cover of X has a fuzzy open finite refinement.

A fuzzy subset Y of X is said to be a fuzzy weakly m-compact subset of X if (Y, τ_Y) is fuzzy weakly m-compact. Theorem 3.1. Let X be a fuzzy m-compact fuzzy topological space and K be fuzzyminimal closed in X. Then K is fuzzy weakly m-compact.

Proof: Let U be a fuzzy maximal open cover of the fuzzy minimal closed set K. For each $U \in U$, there is a fuzzy open set W in X such that $U = K \cap W$. Since by Lemma 1 and 1 - K is a fuzzy maximal open set in X, we write $W = \{W : U \in U\} \cup \{1 - K\}$ is a fuzzy maximal open cover of X. By fuzzy M-compactness of X, W has a fuzzy finite open S-refinement $\{V_1, V_2, \ldots, V_n\}$. Clearly $\{V_1 \cap K, V_2 \cap K, \ldots, V_n \cap K\}$ is a fuzzy finite open refinement of U.

Definition 3.2. Let $x_{\alpha} \in X$ and $U \subseteq X$. A fuzzy point x_{α} is said to be a fuzzy m - accumulation point of U if for each fuzzy maximal open set containing x_{α} contains at least one point of U other than x_{α} .

Theorem 3.2. Let X be a fuzzy m-accumulation fuzzy topological space. Then everyinfinite fuzzy subset of X has a fuzzy m-accumulation point.

Proof: Assume that U be an infinite fuzzy subset of X. Let U have no fuzzy m - accumulation point. Then for each $x_{\alpha} \in X$, there is a fuzzy maximal open set $V_{x\alpha}$ in X such that $x_{\alpha} \in V_{x\alpha}$ and $V_{x\alpha} \cap U = 0$ or $V_{x\alpha} \cap U = \{x_{\alpha}\}$. Now $U = \{V_{x\alpha} : x_{\alpha} \in X\}$ is a fuzzy maximal cover of X (by Lemma 1). By the fuzzy m-compactness of X, there is a finite

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

fuzzy s-refinement W of U. Let W = $\{W_{x\alpha_1}, W_{x\alpha_2}, \dots, W_{x\alpha_n}\}$. Then

$$U \subseteq X =$$

$$S = W_{x\alpha}$$
But for each $i \in \{1, 2,, n\}, U^{\mathsf{T}} W_{x\alpha_i} = 0 \text{ or } U^{\mathsf{T}} W_{x\alpha_i} = \{x_{\alpha_i}\}.$

It implies that cardinality of U is at most n. Which contradicts the fact that U is fuzzy infinite.

Definition 3.3. A fuzzy topological space X is said to be fuzzy m-Lindelof if everyfuzzy maximal open cover of X has a fuzzy open countable s-refinement.

Theorem 3.3. Let X and Y be a fuzzy topological spaces, where X is fuzzy m-Lindelof and $f: X \to Y$ be a bijective fuzzy m-continuous function. Then Y is also fuzzy m-Lindelof.

Proof: Let $S^{(Y)}$ be a fuzzy maximal open cover of Y. Since f is a fuzzy bijective m-continuous function, $S^{(X)} = \{f^{-1}(U) : U \in S^{(Y)}\}$ is a fuzzy maximal open cover of X (by Definition 2.6 and Lemma 2.1). By fuzzy m-Lindelofness of X, $S^{(X)}$ has a fuzzy open countable s-refinement $S^{(X)} = \{W_\beta : \beta \in \Gamma\}$, say where the index set Γ is countable. Since f is bijective, it implies that $S^{(Y)} = \{f(W_\beta) : \beta \in \Gamma\}$ covers Y. Let $f(W_\beta)$ be a member of $S^{(Y)}$. Then $W_\beta \in S^{(X)}$. As $S^{(X)}$ is a fuzzy s-refinement of $S^{(X)}$, we have $W_\beta \not\in f^{-1}(U)$, for some $U \in S^{(Y)}$. Further f is bijective gives that $f(W_\beta) \not\in U$. Hence $S^{(Y)}$ is a fuzzy open countable s-refinement of $S^{(Y)}$.

Theorem 3.4. Let X be a fuzzy m-Lindelof topological space and M be a fuzzy subsetof X with $|M| \ge p$. Then M has a fuzzy complete m-accumulation point.

Proof: Consider for each $x_{\alpha} \in X$, there is a fuzzy maximal open set U_{α} containing

 x_{α} and satisfying $|U_{x_{\alpha}} \cap M| < |M|$. Then $|U_{x_{\alpha}} \cap M| \le \omega_0$, for each $x_{\alpha} \in X$. As

 $\{U_{x_{\alpha}}: x_{\alpha} \in X\}$ is a fuzzy open cover of X consists of fuzzy maximal open sets by Lemma 2.1, $\{U_{x_{\alpha}}: x_{\alpha} \in X\}$ is a fuzzy maximal open cover of X. Then there is a fuzzy open countable s-refinement $\{U_{x_{\alpha}}: x_{\alpha}, i \in \Omega\}$, where the index set Ω is a countable subset of

$$\{U_{x_{\alpha}}: x_{\alpha} \in X\}$$
 Now $|M| = \bigcup_{i \in \Omega} S_{0}$. This gives that $|M| \leq \omega_{0} \leq p \leq |M|$, which is a contradiction. $(U_{x_{\alpha i}} \cap M) \leq S_{0}$

Theorem 3.5. Let X be a fuzzy m-Lindelof topological space and M be a uncountable fuzzy subset of X. Then M has a fuzzy m-accumulation point.

Proof: If possible, let M have no fuzzy m-accumulation point. Then for each $x_{\alpha} \in X$, there is a fuzzy maximal open set $V_{x_{\alpha}} \in X$ such that $x_{\alpha} \in V_{x_{\alpha}}$ and $(V_{x_{\alpha}} \cap M) = 0$

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

or $(V_{x\alpha} \cap M) = \{x_{\alpha}\}$. Now $U = \{V_{x\alpha} : x_{\alpha} \in X\}$ is a fuzzy maximal open cover of X (by the Lemma 1). By the fuzzy m-Lindelofness of X, there is a fuzzy open countable s-refinement W of U. Let us write $W = \{W_{x\alpha_1}, W_{x\alpha_2}, \dots, W_{x\alpha_n}\}$. Then

$$M \quad X = S \quad W_{x\alpha_i} \approx \text{But for each } i \quad 1, 2,, n, M \quad W_{x\overline{\alpha_i}} = 0 \text{ or } M \quad W_{x\alpha_i} = x_{\alpha_i} \quad \text{. It}$$

gives that cardinality of M is at most ω_0 . Which contradicts the fact that M is fuzzy uncountable.

Definition 3.4. A fuzzy topological space X is said to be fuzzy weakly m-Lindelof if each fuzzy maximal open cover of X has a fuzzy countable open refinement.

Let $Y \subseteq X$. Then Y is said to be a fuzzy weakly m-compact subset of X if (Y, τ_Y) is fuzzy weakly m-compact.

Theorem 3.6. Let X be a fuzzy m-Lindelof topological space and K be fuzzy minimalclosed in X. Then K is fuzzy weakly m-Lindelof.

Proof: Proof is similar to the proof of Theorem 3.1.

Definition 3.5. A fuzzy topological space X is said to be fuzzy countably m-compact if every countable fuzzy maximal open cover has a finite fuzzy open s-refinement.

Obviously, fuzzy m-compact topological space is fuzzy countably m-compact.

Theorem 3.7. Let X be a fuzzy Lindelof topological space containing a fuzzy minimal losed set K. Then following are equivalent:

- (i) X is fuzzy m-compact.
- (ii) X is fuzzy countably m-compact.

Proof: (i) \Rightarrow (ii) It is obvious.

(ii) \Rightarrow (i) Let U be a fuzzy maximal open cover of X. By fuzzy Lindelofness of X, U has a countable fuzzy subcollection W, say, that covers X. Then by the Lemma 1, $W \cup \{1 - K\}$ is a countable fuzzy maximal open cover of X. By the countably fuzzy m-compactness of X, $W \cup \{1 - K\}$ has a finite fuzzy open s-refinement of X, i.e., X is fuzzy m-compact.

Theorem 3.8. An infinite fuzzy T_1 -connected topological space is countably fuzzy m-compact.

Proof: Proof follows from Theorem 2.4.

Definition 3.6. A fuzzy topological space X is said to be a fuzzy m-paracompact topological space if each fuzzy maximal open cover of X has a fuzzy open locally finite fuzzy s-refinement.

Theorem 3.9. If X is a fuzzy m-paracompact topological space, then each fuzzy maximal open cover of X has a fuzzy open locally finite fuzzy s-refinement.

Proof: Proof is trivial.

Lemma 3.10. Let U be a fuzzy s -refinement (resp. fuzzy refinement) of W and W be a refinement (resp., fuzzy s-refinement) of V. Then U is a fuzzy s-refinement of V

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

Proof: Obvious.

Theorem 3.11. If X is a fuzzy m-paracompact topological space, then each fuzzymaximal open cover of X has a locally finite fuzzy s-refinement (not necessarily open).

Proof: Proof follows from the Lemma 3.10..

Theorem 3.12. A fuzzy Hausdorff m-paracompact topological space is fuzzy minimalm-regular.

Proof: Let X be a fuzzy Hausdorff m-compact fuzzy topological space. Suppose $K \in X$ be a fuzzy minimal closed set and $x_{\alpha} \in X$ such that $x_{\alpha} \in X$ and $x_{\beta} \in X$ such that $x_{\alpha} \in X$ su

Let $V = \{W \in W \mid W \cap K \neq 0\}$. Then V is a fuzzy open set which contains K. Since

 $\{W \in W \mid W \cap K \neq S\}$ is a subcollection of a fuzzy locally finite family, it is fuzzy locally finite and therefore $cl(V) = \{cl(W) : W \in W \mid W \cap K \neq 0\}$. Now for each $W \in W$, there is a $V_z\beta \in V$ such that $W \subseteq V_z\beta$ such that $W \subseteq V_z\beta$, that is $cl(W) \subseteq cl(V_z\beta)$. Thus $X_\alpha \in U$ i.e., $X_\alpha \in U$. Thus $X_\alpha \in U$ is fuzzy minimal c-regular.

Corollary 3.13. A fuzzy Hausdorff m-paracompact topological space is fuzzy minimalfuzzy c-normal.

Proof:Let G and K distinct fuzzy minimal closed sets in fuzzy Hausdorff m - paracompact topological space. For each $z_{\beta} \in G$, by Theorem 3.12, there exist disjoint fuzzy open sets $U_{z\beta}$ and $V_{z\beta}$ such that $z_{\beta} \in V_{z\beta}$ and $W \subseteq V_{z\beta}$. By Lemma 2.1, $U = \{U_{z\beta} : z_{\beta} \in G\} \cup \{1 - G\}$ is a fuzzy maximal cover of X. Now if we proceed in a similar way as the proof of the Theorem, we can get disjoint fuzzy open sets U, V such that $G \subseteq U$ and $K \subseteq V$.

Definition 3.7. A fuzzy topological space X is said to be a fuzzy weakly m-paracompact if each fuzzy maximal open cover of X has a fuzzy open locally finite s-refinement.

Let $Y \subseteq X$, Y is said to be a fuzzy weakly m-paracompact subset of X if (Y, τ_Y) is fuzzy weakly m-paracompact.

Theorem 3.14. Let X be a fuzzy m-paracompact topological space and K be fuzzy minimal closed in X. Then K is fuzzy weakly m-paracompact

Proof: Proof is trivial.

Theorem 3.15. Let X be a fuzzy topological space in which all proper open sets are fuzzymean open. Then X is fuzzy m-compact.

Proof: If possible, let X be not fuzzy m-compact. Then there exists a fuzzy maximal open cover A of X which has no fuzzy open finite s-refinement. Now by the Definition 2.3, for each $A \in A$ we have can a proper fuzzy open set W such that $A \not\subseteq W$. Then A is a fuzzy s-refinement of $\{W: A \in A\}$, which contradicts the fuzzy maximality of A. Thus X is fuzzy m-compact.

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

Corollary 3.16. Let X be a fuzzy topological space in which all proper fuzzy open sets are fuzzy mean open. Then X is fuzzy m-Lindelof, fuzzy countably m-compact, fuzzy m-paracompact, fuzzy weakly m-compact, fuzzy weakly m-paracompact.

Proof: Obvious.

References

- [1] C. L. Chang, Fuzzy topological spaces, J.Math. Anal. Appl., 24(1968),182-190.
- [2] B. M. Ittanagi and R.S. Wali, On fuzzy minimal open and fuzzy maximal open setsinFTSs, International J. of Mathematical Sciences and Application1(2), 2011,1023-1037.
- [3] A. Swaminathan, Fuzzy mean open and fuzzy mean closed sets, J. Appl. Math. andInformatics Vol. 38(2020), No. 5-6, pp. 463-468.
- [4] A. Swaminathan and S.Sivaraja, On fuzzy maximal, minimal open and closed sets, Advances in Mathematics: Scientific Journal, 9 (2020),10, 7741-7747.
- [5] A. Swaminathan and S. Sivaraja, Fuzzy maximal and fuzzy minimal clopen sets, Advances in Mathematics: Scientific Journal, 9(2020),11,9575-9581.
- [6] A. Swaminathan and S. Sivaraja, Fuzzy compactness, fuzzy regularity via fuzzy maximal open and fuzzy minimal closed sets, J. Appl. Math. and Informatics Vol. 40(2022), No. 1-2, pp. 185-190.
- [7] A. Swaminathan and S. Sivaraja, Fuzzy cut-point spaces, Annals of Communications in Mathematics, Vol.4 No.2(2021), 126-130.
- [8] L. A. Zadeh, Fuzzy sets, Information and control,8 (1965), 338-353.