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Abstract:

In this paper, we obtain a new oscillation condition for the first order non-linear delay differential equation of
the form
Z(t) + qOf(z(x()) =0, t=t>0

where q and t are continuous functions on [ to ,©), to > 0, q(t) > 0 and gim T(t) = o and
—00

fe CR ,R), 1(t) <t and zf(z) > 0 for z # 0.Without imposing the nonnegative restriction on the coefficient
functions q(t) a new sufficient oscillation criterion is obtained . An example illustrating the result is also given.
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1. Classification

In the recent times, the study of the asymptotic and oscillatory behaviour of solutions of delay differential
equations is concerned as major area of research. This is due to the development in science and technology and
the challenges that the new classes of such equations provide in these application areas. Equations involving
delay, and those involving advance and a combination of both arise in the models on lossless transmission lines
in high speed computers which are used to interconnect switching circuits. The construction of these models
using delays is complemented by the mathematical investigation of nonlinear equations. Moreover, the delay
differential equations play an important role in many fields such as mathematical biology, economics, physics ,
biology, see [16,19,28,41].Oscillation phenomena appear in various models from real world applications;
see[12,36,39] for models from mathematical biology where oscillation or delay actions may be formulated by
means of cross — diffusion terms ,see [1 — 49].In particular ,the oscillation criteria of first — order differential
equations with deviating arguments have many applications in the study of higher — order functional differential
equations, see [13,37,38].

Recently, there has been a great interest in studying the oscillation of all the solutions of the first order delay
differential equation of the form

Z(t) + qOR(T())) = 0, t > to> 0 (L.1)
where q and t are continuous on [ to , ), to > 0, q(t) > 0 and gim T(t)=wand fe C(R,R),

1(t) <t and zf(z) > 0 for z # 0. By a solution of (1.1) we mean a function which is continuous on [ t, , «] for
some t, > to, where t, = inf {7(t): t > t, } and satisfies (1.1) forall t> ¢, .
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A solution of (1.1) is said to be oscillatory, if it has arbitrarily large zeroes. Otherwise, it is called non
oscillatory.

In most of these works, the delay function is assumed to be nondecreasing ,see [14,16,29,31 -34 , 46,49] and the
references therein. As shown in [8], the oscillation character of (1.1) with nonmonotone delay, is not an easy
extension to the oscillation problem for the nondecreasing delay case. Many authors [1,35 -
11,15,20,25,27,40,47] have developed and generalized the methods used to study the oscillation of equation
(1.1) with monotone delays and to study this property for the nonmonotone case. Only a few works, however,
dealt with the oscillation of equation (1.1) with oscillatory coefficients. In [16, 48] the authors studied the
oscillation of (1.1) where the delay function 1(t) is assumed to be nondecreasing and constant (i.e., 7(t) =t — o, a
> 0), respectively. Also, Kulenovic and Grammatikopoulos [29] studied the oscillation of a first-order nonlinear
functional differential equation that contains (1.1). The authors obtained limit infimum and limit supremum
including oscillation criteria for the case when the coefficient function does not need to be nonnegative.

However, the delay and the coefficient functions are assumed to be nondecreasing and nonnegative on a
sequence of intervals {(rn, Sn)}, n > 0 such that lim (s, — r,) = o, respectively. Our aim in this paper is to
n— oo

obtain oscillation criteria for equation (1.1) where q(t) is a continuous function on [to, ). We relax the
nonnegative restriction on the coefficient functions q(t). To accomplish this goal, using the ideas of [27], we
develop and enhance the work of Kwong [30]. This procedure leads to new sufficient oscillation criteria that
improve and generalize those mentioned in [16, 29, 48].

2. Preliminary Results
In 2017, Ozkan Ocalan [43] proved the following theorem.
Theorem 2.1: (See [43], Theorem 2.1)

Suppose (t) is non — monotone or non — decreasing function. Set h (t) = sup 7 (s),t>0.

S<t

Suppose that f in equation (1.1) satisfies the following condition

. z _
llgr(l)sup%—Q,OSQ <o, (2.1)
Y Q
If tll_r)glo 1nffr(t) q(s)ds >~ holds, (2.2)

then all solutions of (1.1) oscillate.

If there exists a non-oscillatory solution z(t) of (1.1) , then -z(t) is also a solution of (1.1).The discussion is
confined only to the case where the solution is eventually positive.

Thus from (1.1), we have z' (t) + p(t) f (z(z(t)) ) < 0 for all t> t1. It means that z(t) is positive, nonincreasing
and has a limit £ > 0 as t — o. Then, there exists a t; > {o such that z(t) > 0, z (t (t)) > 0 for all t > t1.

Now we claim that £ = 0. Condition (2.10) implies that
J.7p() dt =co.

By [43, Theorem 3.1.5], we obtain tILI?oZ(t) =0.

Then, by virtue of (2.1) we can choose t; > t; so large that

f(z()) = —=7(t) for t> tz.

Since 1(t) < h(t) and z(t) is non increasing , by (1.1) we have

Z(t) +9() (55 260) 0, 215 (23)
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3. Main Result
Let M(t) and M; (t) ,t > 0,i € N be defined as follows:
M(t)=max {u>t:t(u) <t} 3.1)
Mi(t) = M(b),
Mi () =M®) o M i1(t),1=2,3
Also ,we define a function h(t) and a sequence {Q,, (v, 1) }neo , T(v) <u <v, as follows.

Let h(t) =sup t(u) , t> to. (3.2)

ust

And
QO(U' u) = 13
12 0n-1(g@) g
Qn(v,u)=e’n 32 ’ ,neN.
Lemma 3.1:
LetneNo,Np = {0,1,2...},T>T">t, and z(t) be a solution of (1.1) such that z(t) > 0 for all t > T".

Ifq(t)>0o0n [T, Ti], Ti> Mun(T), then
z(u)

z(v) —

>Q,(v,u),t(v)<u<v, forve[MnaT), Ti] (3.3)
Proof:

It follows from (1.1) that z' (t) <0 on [My(T),T4].

Thus z(u) > z(v) as ©(v) <u < v for v € [M(T),T1].

Therefore > 1=Qy(v,u), t(v) <u<y,forve[My(T),T1].

Dividing (2.3) by z(t) and integrating from u to v, ©(v) < u < v and using (2.1), we get

uz’(() v q({) z(@)
d¢<0
fu 2(9) dg+ fu 30 z(9) 6=

or

In 20 5 790 2@ 4o

Z(”) u 30 z(Q
or
v q(9) z(t(9)
W 5 ol sa @ 9 (3.4)
)

As T(0) < Tand z' (t) <0 on [My(T),T1], we have

2 o e _ 74 00 4
) =

=Q,(v,u),t(v) <u<v, for ve [M3(T),T1] and consequently, for u << v, we have

o QT W su sy forv e [My(T),Ti]

Substituting in (3.4), we get

20 S 0@ 4

z(v) —

=Q,(v,u) forv e [My(T), T4].
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Repeating this argument n times, we obtain

20 o S 001 @@ d
z(v) —

= Qn(v' u) forte [Mn+2 (T),Tl]

The proof of the lemma is complete. o

Let {T«}x >0 be a sequence of real numbers such that llim Ty = oo and q(t) > 0 for

te [ Tk ,Mn+4 (T)] for all k € N, for some n € No. (3.5)
Also, we define the sequence {Bn}n>1, Bn>1, forall n € N as follows:

Q. (t,h(t)) > Bn, t € [N(Mns3(Tk), (Mn+3 (Tk)] for all k € No for somen e N . (3.6)

Theorem 3.1:
Suppose (3.5) and (3.6) are satisfied. If

Jrgia 00 4(0) Quaa (R(9), 7(9)) dC 239(%)&“ allneNandkeNo, (3.7)

h(Mpys (Tk)
then every solution of (1.1) is oscillatory.
Proof:

On the contrary , suppose that z(t) is an eventually positive solution of (1.1).Then there exists a sufficiently large
T > 1o, such that z(t) > 0 for all t > T". Suppose that T}, e{T« }i=0

such that T,,, > T".From (3.3), (3.5) and (3.6) ,

Z(h(Mnt4 (Tk,)))
Z(Mn+4 (Tkl))

> Qnit( Myyq (Tx,),

h(My .44 (Ty,)) > Bn+1 > 1. Then there exists t, € (h(Mn+a(Ty, )), Mu+4 (Ty,)) such that

Z(h(Mnt4 (Ty))) _

A = B (3.8)
Integrating (2.3) from t« to t gives

[z ©de+ 28 2(r()) g =<0,

or

2(Mp g (Tiep)) — 2 £) + [+ TV LD 7(7(0)) dg <0, (3.9)

where we have used the monotonicity of z .
Now dividing (2.3) by z(t) and integrating between t({) and h({) gives

h(©) z'({1) h(D) q(Z1) z(z((1) .
PRy —_— <
f‘r({) 2({1) {1 + fr({) 30 2(¢) dCI = 0. That 18,

20Q) . (h@ aly) (@)
+ <
ey TR e agy 90 =0

That is,

h(®) a(€1) z(z({1)
m>eff(€) 30 z({q) ¢z

z(h(9)) —
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Or

(R a61) 2061 40
z(1(Q) > z(h(()) @ 32 z2¢» U

Using (3.10) in (3.9) ,we get

fh(() a¢1) z(x($1)

Z(Myyq (Ty,)) —2(t.) + ftMn+4 k) 49) gy 30 2@ 9 2(h()) dC < 0.

* 30

Since z (t) <0 on [ Mi(T,) , Mua(Ty,) 1, it follows that

h(©® aq({1) z(z(¢1))
Mnya (Tky) 4($)
UMy (Tie)) 2 £.) + 20 My (T ) [ T 480

By (3.1) and G € [ My (Ty,) , (M43 (Tie, )], fOr 1( ) < & < h(©),

h(Myyq (Ty,) < < Mpyq (Ti,), We get

(MO 4G 2EE)) g
FO a8 2@ T dC < 2(t) - 2(Mna (Tie,))-

Mpts (Tiy) 4§
2b( Mysg (Tic) J* 040

So,

Ih(() a(¢1) z(z(¢1))
() 30 z({1)

an+4 (Tkq) 95 e

ddy dc < z(ts) z(Mn+4 (Tky))
* 3N

2(0(Mpta (Tiy)))  2(0(Mpta (Tiep)))'

z2(Mn4 (Tky)

Since —n+e (They)
e 0 (Marea (Trey )

>0, we have

h(®) q(f1) z(z(¢1))

[Hines (i) 46) efﬂo 30 2(py) 05t dc « PMneaThy) 1 (3.12)

. 30 2(h(Mnsa (Tky)))  Brst

Again, dividing (2.3) by z(t) and integrating between h( M,, .4 (Ty,)) and t,, we obtain

ty z'(Q) te a(9) z(z(9)
+ B <
fh( Mnia (Tky)) 2(Q) S h(Mnis (Tky)) 32 z(Q) =<0,

or

In Z(h(Mn+4-(Tk1)))Z ft* a(@) z(z(9)) ¢
z(ty) h(Mn14 (Tky)) 30 2(Q)

M@ 9@ 2@ 4,
>ft* q(Q) z(h(Q)) e T©® 30 zlp) "t

h(Mn4s (Tky)) 30 2(Q) >

where we have used (3.10).

Using (3.3) in the last inequality ,we get

h(®) q(¢1)

Z(h( Mn+ta (Tkl))) > ts q(() Q ot ( C,h((;)) efT(O WQn ({1 ,‘[((1 ))d(I dc

z(t.) — Jh(Mn4s (Tky)) 30

In

or

. a@) MO aGn

z(h(Mn44 (Ty))) @ 30 Qn (§1,7(§1))ddy g

z(t.) Z B h(Mn+ta (Tky)) 30

In

h(®) q({1)
by ) , d
Br+a h(Mp4q (Tky)) 30 ef‘r(() s (G Nds dC <In( Bn41) by (3.8)

That is,

[ 49 I a2 0n (217G dg < CBnr) (3.14)

h(Mni4 (Tky)) 30 Bn+1

(3.10)

W) aa «g % df<0. (3.11)

(3.13)
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Combining (3.12) and (3.14),

an+4 (Tky) 4O ef:(%) q;é;;) Qn (§1,1(¢1))ddy g < In(Bn+y) , 1

h(Mn44 (Tky)) 30 Bn+1 Bn+1

h(®) q(f1)
an+4- (Tky) q(z) ef-r(() 3—I§Qn (¢1,7(¢1))ddy dC <30 [ In(Bpt+1) +1 ]

h(Mp44 (Tky)) Bn+1

fM"“ (k) q(Q) Qne1(R(D),T(0) dE < 3Q [%]Which is a contradiction to (3.7).

h(Mni4 (Tky))

Hence the proof of the theorem is complete.

Theorem 3.2:
Suppose (3.5) holds.

if Ml 1€ o WMy s (T)), T(Q)) dC > 1 forall k € No . (3.15)

h(Mn44(Tk)) 30
Then , every solution of (1.1) is oscillatory.
Proof:
Let z(t) be an eventually positive solution of (1.1).Then there exists a T* > to such that z(t) > 0 for all t > T".
Integrating (2.3) from h(Mp,4(Tk,)) to My 4 (Ty,) and using (3.10), we get
2(Mp 14 (Tk,)) — 2(h(M 1.4 (T )+

MMn+a Tiey) 9€0) 2660 4,

Mnis (Tiy) 4/,
2(h( Mp14 (Ti,)) fh(;;: 4(;;1)3—0 PR 30z °tdg <0.

BMn+a Tiey) q@y) 2660 4,

Mnis (Tky) 4 z
UM (Ti) + 20(Mp(Tic) ) |yt 2 520 € 05 Mg — 1 <0,

Since z(My, 44 (T, )) is positive , we have

[hMn+e Ty q@y) 26€y) 4,
(@ 30 2@y g <.

an+4 (Tky) a©)
h(Mp44(Tky) 30

Then by using (3.3)

h(Mpta (Ti,)
an+4-(Tk1) a©) efr(g) Tt %Qn(flﬂ(ﬁ))d@

h(Mn+4(Tk,) 30

becomes

Mpga(T . .
I (M:i ("T)k)) 29 Qs (h(Myy4 (T)), T()) dG < 1 which contradiets (3.15).

The proof of the theorem is complete. o

Example:

Consider the delay differential equation
Z (t) + q()z(z(t)) In(9 + |z(z(t)D=0, t>1, (3.16)

where q € C([1, ©),R) such that q(t) =m >0 for t € [ 3r, 3rx + % ] for all k € N,

. e 53 .
{rc} k=0 is a sequence of positive integers such that r+ > 1y + 3 andkllm T, = oo, and
— 0

d < 1.Now using the definition of Qu(v,u), the last inequality
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with
t-1, te[30,30+2]
() = t+60+3, te[30+2,30+2.1],CeNo
St—20-, te [30+2.1,30+3]

Here f(z) = z(t(t)) In(9 + |z(z(t))|

In view of (3.1) and (3.2) ,we have

-1, te[30,30 +2]
h(t) = L+, te[30+2,30+2, LeNo
L te [30+2,30+3]
9 3 3 11
and
+1, te[30,30+0.9]
9 6 15
MO =  —t+ S0+, te[30+09,30+42],0eNo

t+1, te [30+2,30+3]

respectively.
Letting Tk = 3rk, k € No , 50 Ms(Tx) = 3r« + % ’

and we have
qt)= n forte[ Tk, Ms(Ty) ] for all k € No

we have

131

h((Ms(Ti) = 3ri + 2

and
t—12<t(t)<h(t)< t-1 forallt>1.
Therefore,

4
Q: (¢, h(t)) = e q()er@ 16D X0y

UE_ya@nacy) ag

> eUia@e )

131 161
forte [3rk+— 3rk+—1.
or t € [3n 30’3k 30]

>e (ne)

Denote B, = e@e™ > 1
Then , Qa(t,h(t)) > B> for t € [ h((Ms(Tk)) , Ms(Tk) ] for all k € No.
Also ,

161

(3.17)

(3.18)

3rk + 161 "D o o s
o iy A (), 7(0) € = [ 38 q(@ehie) 46 7616 3¢

3rk+¥
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Also,

1+ ln(BZ)

3rk+

f3k 131 77 ne(m)d(

161 131

:e(ne(’”) [GBrk + 20) -3k + 2]
> (™) 1 (1)

>0.62 e(062¢?) g n>0.61 and k € Np
>1.95

)<0.679 forall n>0.61 and K € No.

Also from (2.1) ,

llmsup——Q 0<Q <w

z-0

Q=0.11

So3 Q=0.33.

It is obvious that

Jrosono, 40 (A, 1) d{ > 1.95 > (3 Q) (-2

1+ l”“”) )= (0.33) 0.679)= 0.224.

In view of this,(3.17) and (3.18) ,all conditions of Theorem 3.1 with n=1 are satisfied for all 1> 0.61.

Therefore all solutions of (3.16) are oscillatory for > 0.61.
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