Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Enhancing Software Deployment
Efficiency: A Comparative Analysis of
Agile Application Deployment Using CI/CD
Pipelines

Srungarapu Rama Krishnal, Juturi Srinivasa Rao2, Yenumula Venkata Durga3,

Lekkala Prem Venkatesh4, P.S.V.S. Sridhar®
1234 UG students, Department of CSE, Koneru Lakshmaiah Education Foundation,Greenfields,
Guntur, AP, India.

*Associate Professor, Department of CSE, Koneru Lakshmaiah Education Foundation,Greenfields,
Guntur, AP, India

Abstract:- This paper presents a comprehensive comparative analysis of Agile application deployment
methodologies, evaluating the effectiveness of deploying applications using Continuous Integration/Continuous
Deployment (CI/CD) pipelines versus traditional, manual approaches. Through an extensive examination of case
studies and empirical data, this research underscores the remarkable advantages brought about by CI/CD pipelines,
including shorter release cycles, reduced human error, enhanced collaboration among development teams, and the
ability to seamlessly adapt to evolving requirements. The findings not only confirm the superiority of CI/CD in
Agile software deployment but also offer invaluable insights into how organizations can harness this approach to
achieve a more responsive and efficient software developmentprocess, ultimately meeting the dynamic demands
of today's technology landscape.

Keywords: Agile, deployment methodologies, CI/CD, comparative analysis, empirical data, collaboration,
software development.

1. Introduction

The landscape of software development is evolving at an unprecedented pace, driven by a relentless pursuit of
innovation, customer-centricity, and the ever-growing complexity of modern applications. In this dynamic
environment, Agile methodologies have gained prominence as a means to deliver software more efficiently and
adapt to changing user needs. Central to Agile's success is its ability to promote iterative development, rapid
feedback loops, and cross-functional collaboration. As organizations embrace Agile, they seek to optimize their
deployment processes to align with Agile's core tenets. Continuous Integration and Continuous Deployment
(CI/CD) pipelines have emerged as a game-changing approach that not only aligns with Agile principles but also
enhances them.

Traditional software development and deployment approaches have long relied on manual and often
timeconsuming processes. In this context, Agile stands as a beacon of hope, championing an iterative and
incremental approach to development, allowing for more frequent releases and faster adaptation to changing
requirements. However, the manual deployment processes associated with traditional methodologies often
introduce bottlenecks, delays, and the potential for human error. The inherent conflict between the iterative speed
of Agile development and the manual deployment steps can impede the full realization of Agile's potential.

In response to this challenge, CI/CD pipelines have emerged as a transformative approach, redefining the
deployment landscape. These pipelines offer a systematic, automated, and well-defined process for building,
testing, and deploying software. The core premise of CI/CD is to ensure that code changes are continuously

2050

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

integrated and tested, enabling frequent, reliable, and often automated releases. This approach aligns seamlessly
with Agile's iterative and incremental development cycles, allowing for faster and more predictable software
deployments.

The objective of this paper is to provide a comprehensive analysis of Agile application deployment, examining
how Agile principles interact with CI/CD pipelines in contrast to traditional, manual deployment methods. We
will delve into the key advantages that CI/CD brings to the Agile development process, including shorter release
cycles, enhanced collaboration, and the ability to rapidly respond to user feedback. Additionally, we will explore
the challenges, risks, and potential drawbacks associated with CI/CD adoption.

To achieve this, we will draw from a diverse range of case studies and empirical data, illustrating real-world
experiences from various industries. Through these insights, we aim to provide a compelling argument for the
transformational potential of CI/CD in Agile application deployment, emphasizing its positive impact on
development efficiency, product quality, and overall competitiveness in the modern software landscape.

Shortening Release Cycles for Agile Development:

Agile development methodologies, characterized by iterative and incremental development, promote the frequent
release of small, functional increments of software. The aim is to get software into the hands of users sooner,
gather feedback, and make timely adjustments to meet evolving requirements. This approach, while powerful, can
be stymied by lengthy and cumbersome deployment development environments.

Traditional deployments often entail a multitude of manual steps, such as building, testing, and configuring the
application, followed by the intricate coordination of deployment to production servers. These steps are often
carried out by specialized teams, introducing a natural delay between development and deployment, and an
increased risk of human error. In the Agile context, such delays can be detrimental, as they hinder the rapid
response to changing user needs and market dynamics.

CI/CD pipelines address this challenge by automating these deployment steps. By automating the building, testing,
and deployment process, CI/CD pipelines enable organizations to drastically reduce the time between code
commit and deployment into production. With CI/CD, deployments become swift, predictable, and easily
repeatable, thus aligning seamlessly with Agile's goal of releasing software in smaller, frequent increments.

Enhancing Collaboration and Cross-Functional Teams:

A cornerstone of Agile methodologies is the emphasis on cross- functional collaboration. Agile teams typically
comprise developers, testers, product owners, and Scrum Masters who collaborate closely throughout the
development process. While Agile practices encourage effective collaboration within the development cycle,
traditional deployment approaches often operate in silos, with distinct teams responsible for development, testing,
and deployment. This siloed structure can create friction, communication gaps, and a lack of shared ownership,
ultimately diminishing the potential benefits of Agile development.

In contrast, CI/CD pipelines break down these barriers by promoting a DevOps culture. DevOps emphasizes
collaboration, communication, and shared responsibilities among development and operations teams. This
approach aligns directly with Agile principles, fostering a sense of collective ownership and encouraging all team
members to work together throughout the entire development and deployment process. In the context of Agile
application deployment, CI/CD pipelines serve as a catalyst for enhanced cross-functional collaboration, aligning
the deployment process more closely with the Agile development cycle.

Rapid Adaptation to User Feedback:

Agile methodologies prioritize user feedback as a fundamental driver of development decisions. The ability to
quickly respond to user feedback and changing requirements is a hallmark of Agile's iterative and customer-centric
approach. However, in traditional deployment approaches, incorporating these changes swiftly and reliably can
be challenging, as each deployment cycle may involve a significant manual effort.

CI/CD pipelines empower Agile teams to respond rapidly to user feedback and changing requirements. With
automated testing and deployment, Agile teams can seamlessly integrate feedback-driven changes into the

2051

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

development pipeline. This enables swift adaptation, ensuring that user feedback can be addressed efficiently, and
new features or improvements can be delivered in shorter cycles.

Through a series of case studies and empirical analyses, this paper will delve into these fundamental aspects of
Agile application deployment using CI/CD pipelines, highlighting the pivotal role of automation in achieving
Agile goals. We will also examine potential challenges and concerns associated with CI/CD adoption, addressing
issues such as security, compliance, and the need for a cultural shift within organizations.

2. Related Work

[1] The shift from agile to DevOps in organizations, driven by the need to break down departmental silos and
achieve more frequent software releases, encompasses three key stages: agile, continuous integration, and
continuous delivery. A case study reveals that this transition necessitates a fundamental shift in soft skills and
collaboration patterns among software teams, emphasizing adaptability, crossfunctional teamwork, and faster
delivery schedules, ultimately fostering greater agility and intelligence.[2] This research focuses on the impact of
DevOps on software quality, exploring how DevOps, as a cultural and organizational shift, aims to enhance
deployment speed, frequency, and overall quality in software development, while also addressing the challenges
it may introduce. [3] This study investigates the synergistic advantages of integrating Agile and DevOps in
managing customer requirements and streamlining software development. Employing a qualitative approach with
twelve international software engineering company case studies, it identifies twelve key benefits, including
process automation, enhanced team communication, and accelerated time to market through integrated processes
and shorter software delivery cycles, demonstrating the significant value of combining Agile and DevOps
paradigms.[4]This research aims to bridge the gap between DevOps practices and regulatory software
development requirements by facilitating developers' use of familiar tools and practices while providing regulatory
authorities with confidence through a mapping of DevOps and regulatory standards. The study suggests enhancing
integration among development tools, requirements management, version control, and deployment pipelines to
streamline this alignment. [5] This study explores the impact of DevOps on job satisfaction and risk perception
by comparing it to Agile in the context of 59 employees in 12 teams within the same organization. Thefindings
reveal that DevOps enhances job satisfaction but may amplify risks, emphasizing the importance of effectively
managing the orchestration of automation, sharing, and associated risks within specific work conditions to
improve overall performance. [6] This study differentiates DevOps from agile, lean, and continuousdeployment in
software development by examining their origins, adoption, implementation, goals, and associated metrics. It
reveals that DevOps evolved from continuous deployment, influenced by lean principles, and emphasizes the need
for successful DevOps adoption to balance both technical and cultural aspects for its effective implementation. [7] This
study investigates the impact of cultural differences on distributed Agile projects involving Indian engineers and
Swedish management, aiming to identify and overcome potential barriers to collaboration and effective
coordination. The research employs a multiple-case study approach, gathering data from interviews to delve into
the dynamics between a mature Agile company in Sweden and a more hierarchicalIndian vendor. [8] This research
aims to establish a prioritized taxonomy of DevOps security challenges by identifying and evaluating eighteen
such challenges through a systematic literature review, expert questionnaires,and the PROMETHEE-II multi-
criteria decision-making approach, contributing a novel perspective to the field of DevOps security. [9] Exploring
the significance of acquiring skillsets in a triad of disciplines and their individual contributions to the field of
DevOps. [10] Project-level analytics have empowered agile teams to enhance structural quality and evaluate
practices, resulting in a 38% average improvement in structural quality, a28% productivity increase, and a shift
to more frequent releases within one- to two-month sprints, while addressing challenges in measure selection and
implementation. This article is part of a special issue on ActionableAnalytics for Software Engineering. [11] This
paper discusses experiences in teaching both university students and industry professionals, comparing these
approaches and highlighting the need for enhanced education in the technical and organizational aspects of
DevOps. It concludes by advocating a vision for transforming Software Engineering Higher Education curricula
to address current limitations and align with DevOps practices. [12] Thispaper examines how organizations adopt
DevOps, incorporating agile and lean software development techniques,to enhance software development speed
and quality.

2052

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

It presents findings from a systematic literature review and an exploratory interviewbased study involving six
diverse organizations, indicating a positive overall experience with minimal adoption challenges.[13] This
research aims to identify and prioritize DevOps challenges through a systematic literature review and a
questionnaire survey, presenting a prioritized taxonomy of these challenges. It introduces the novel use of fuzzy
analytical hierarchy process (FAHP) to address the uncertainty in practitioner perspectives. The study intends to
offer valuable insights to both industry practitioners and researchers in the field of DevOps. [14] This in-depth
case study, involving 106 interviews at a multinational company operating in a large-scale DevOps environment,
unveils innovative adaptation practices for Agile and DevOps in response to the ever-evolving software
development landscape. [15] This paper examines DevOps fundamentals, adoption challenges, improvement
models, and future research directions.

3. Research Work

In the ever-evolving landscape of software development, this research endeavours to shed light on a fundamental
question: What distinguishes the integration of Continuous Integration/Continuous Deployment (CI/CD) with
Agile methodologies from traditional, manual approaches? This study embarks on a thorough exploration,
drawing from a wealth of case studies and empirical data. It highlights the exceptional advantages inherent in
CI/CD integration— shorter release cycles, mitigated human error, heightened collaboration among development
teams, and the adaptability to meet evolving project needs. These findings make a compelling case for the
superiority of CI/CD within Agile software development. Moreover, this paper offers indispensable insights for
organizations aiming to cultivate a more responsive and efficient software deployment process, one that
harmonizes seamlessly with the dynamic demands of the contemporary technology landscape.

A. Traditional approach of the development of the agile methodologies:
a) What is agile methodology:

Agile methodology is a contemporary approach to software development that has revolutionized the industry by
promoting flexibility, adaptability, and a focus on delivering customer value. Unlike traditional software
development approaches, which often involve rigid, long-term planning, Agile is characterized by its iterative and
incremental nature. It emphasizes the importance of responding to changing requirements, customer feedback,
and the dynamic nature of technology and markets.

At its core, Agile is a mindset and a set of guiding principles that prioritize individuals and interactions, working
solutions, and customer collaboration over processes and tools. It emerged as a response to the shortcomings of
traditional "waterfall" methods, where development followed a linear and sequential path. Agile acknowledges
that, in the fast-paced digital era, software requirements often evolve, and users' needs may change during the
development process.

Agile methodologies, including Scrum, Kanban, and Extreme Programming (XP), emphasize small,
crossfunctional teams that work in short iterations, known as sprints, to produce a potentially shippable
productincrement at the end of each iteration. These iterations typically last two to four weeks and are designed to
ensurethat the software is continually improved, adapted, and aligned with customer expectations.

One of the key principles of Agile is the continuous delivery of value to customers. Agile teams work closely with
product owners and stakeholders to prioritize features and user stories, allowing the most important and valuable
functionality to be delivered early and frequently. This ensures that customer needs are met and that the software
remains responsive to changing market conditions.

Agile practices promote transparency, collaboration, and regular feedback. Daily stand-up meetings, for example,
provide a platform for team members to discuss progress, challenges, and opportunities for improvement. Frequent
demonstrations and retrospectives allow teams to showcase their work to stakeholders and refine their processes
based on feedback.

Agile methodologies also emphasize self-organizing teams and empower team members to make decisions
collectively. This encourages a sense of ownership and responsibility, as well as the ability to adapt to unforeseen

2053

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

challenges without the need for top-down directives.

In summary, Agile methodology represents a fundamental shift in the way software development is approached.
It acknowledges the uncertainty and complexity of modern software projects and offers a dynamic,
customercentric, and collaborative framework that enables organizations to build and deliver software more
effectively, improve product quality, and maintain a competitive edge in an ever-evolving technology landscape.
By adhering to the Agile principles and practices, teams can adapt and thrive in the face of change, ultimately
providing better solutions to their customers.

b) Traditional agile development methodology:

The traditional Agile development methodology is a customer-centric and iterative approach that prioritizes the
delivery of high-quality software in small, incremental increments. It typically begins with project initiation and
requirements gathering, where the project's goals and objectives are defined. The Agile team collaborates with
stakeholders to identify user stories, features, or tasks that will be addressed in the project. This early phase sets
the stage for a customer-focused development process that adapts to changing requirements and user feedback.

Sprints, a core element of traditional Agile, are typically two to four-week iterations where the Agile team works
to deliver a set of defined user stories or features. The sprint planning meeting marks the start of each iteration,
where cross-functional teams, including developers, testers, and product owners, decide on the work to be
completed in the sprint. Daily stand-up meetings, or "scrums,” help maintain communication, transparency, and
collaboration within the team.

Development, the central phase of the process, follows sprint planning. Developers code and create software,
adhering to the principles of Agile, which emphasize adaptability, responsiveness, and a focus on customer value.
The software undergoes rigorous testing, including unit testing, integration testing, and user acceptance testing,
to ensure that it meets quality standards and aligns with the project's objectives.

At the conclusion of each sprint, a potentially shippable product increment is delivered, allowing for frequent
customer feedback and the possibility of adjustments to the project. This feedback-driven process empowers teams
to make rapid changes and continuously enhance the product based on user input. Traditional Agile methodologies
ensure that customer satisfaction and evolving requirements remain at the forefront of the development process.

The iterative nature of traditional Agile methodologies continues throughout the project, with new sprints
initiating, development cycles completing, and incremental value being delivered to customers. This methodology
promotes collaboration, transparency, and adaptability, making it a valuable framework for software development
projects that prioritize customer needs and are open to continuous improvement. However, it's important to note
that traditional Agile practices may involve manual and time-consuming deployment processes, which can benefit
from the automation and efficiency gains offered by CI/CD pipelines.

c) Stages of Agile methodologies like scrum:

Agile is an iterative and incremental approach to software development, and it typically involves several phases
or stages, which can vary depending on the specific Agile framework being used. Below are some common phases
in Agile methodologies like Scrum:

Project Initiation: In this initial phase, the project team defines the project's scope, objectives, and high-level
requirements. They identify stakeholders and begin planning the project's structure.

Sprint Planning: Agile projects are divided into iterations called sprints, which typically last two to four weeks.
Sprint planning meetings occur before each sprint, during which the team selects a set of user stories or features
to work on in the upcoming sprint. The team also estimates the effort required for each task.

Development: During the development phase, the Agile team designs, codes, and tests the selected user stories
or features. Developers, testers, and other team members work collaboratively to build the software.

Daily Stand-up Meetings (Scrum): Daily stand-up meetings, also known as "Daily Scrums," are brief meetings

2054

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

where team members discuss their progress, challenges, andplans for the day. These meetings promote
communication and help team members stay aligned.

Review and Retrospective (Scrum): At the end of each sprint, a sprint review meeting is held to demonstrate
the completed work to stakeholders. This is followed by a sprint retrospective, where the team reflects on what
went well and what could be improved for the next sprint.

Testing and Quality Assurance: Testing and quality assurance are integrated throughout the development
process. Automated tests, unit tests, integration tests, and user acceptance tests are conducted to ensure that the
software meets quality standards.

User Acceptance Testing (UAT): Before the end of each sprint, user acceptance testing is performed to ensure
that the software meets the users' needs and expectations. User feedback is vital for making any necessary
adjustments. Deployment: In the traditional Agile approach, deployment occurs after multiple sprints when a
potentially shippable product increment is ready. However, the deployment phase can be manual and time-
consuming in traditional Agile, as opposed to automated deployment in CI/CD.

Incremental Value Delivery: Agile aims to deliver incremental value to customers at the end of each sprint. This
means that, with each sprint, there is an opportunity to deliver new or enhanced features to users, which aligns
with Agile's focus on customer value.

Continuous Improvement: Continuous improvement is a fundamental aspect of Agile methodologies. The team
regularly reflects on its processes, identifies areas for improvement, and takes action to make iterative
enhancements to the development process.

Daily Stand-up
Meetings
(Scrum)

Project

Initiation 8 Sprint Planning B8 Development

Review and
Retrospective
(Scrum)

Testing and User
Quality Acceptance
Assurance Testing (UAT)

Continuous
Improvement

Incremental

Value Delivery

Fig 1: Stages of Implementation of agile methodologies

d) Drawbacks of the traditional approach:

When conducting research comparing the modern Agile C1/CD approach with the traditional Agile methodology,
it's essential to consider the drawbacks of the traditional approach. Here are some disadvantages associated with
the traditional Agile methodology:

Manual Integration and Deployment: One of the key drawbacks of the traditional Agile approach is the reliance
on manual integration and deployment processes. This manual intervention can be time-consuming and
errorprone, leading to deployment delays and increased risk of mistakes.

Longer Time-to-Market: The traditional approach often involves deploying software at the end of sprints or
development cycles. This can lead to longer time-to-market, delaying the delivery of new features or updates to

endusers.

Reduced Responsiveness to Change: The manual nature of integration and deployment processes in traditional
Agile can hinder the team's ability to respond quickly to changing requirements or customer feedback. This can

2055

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

result in a less responsive development process.

Higher Risk of Integration Issues: With manual integration, there is a higher risk of integration issues and
conflicts arising when different components or features are merged. This can lead to a backlog of integration-
related problems.

Limited Frequency of Deliveries: In traditional Agile, software is typically delivered at the end of each sprint.
This may result in less frequent deliveries to users, which can be a disadvantage in dynamic markets.

Manual Testing Overload: In the traditional approach, testing, including user acceptance testing and quality
assurance, is often postponed until the end of the sprint. This can result in a heavy load of manual testing tasks,
making it challenging to address issues promptly.

Inefficient Resource Utilization: Manual coordination and integration processes can be inefficient in terms of
resource utilization. Team members may spend a significant amount of time on repetitive manual tasks rather than
on valueadded activities.

Lack of Predictability: Manual deployment processes can lead to unpredictability in deployments. Variability in
deployment practices may result in inconsistencies and challenges in replicating deployments across different
environments.

Siloed Teams: The manual processes in the traditional approach can lead to silos between development and
operations teams. This lack of collaboration may hinder communication and effectiveness.

Challenges with Large Projects: In larger and more complex projects, the traditional Agile approach may
struggle to manage the scale and volume of integration and deployment tasks efficiently.

B. Agile Development with CI/CD Integration:

a) What is CICD: Continuous Integration and Continuous Deployment (CI/CD) is a software development
practice that aims to streamline and automate the process of integrating code changes, testing them, and deploying
them to production. It represents an essential component of modern software development methodologies,
particularly Agile and DevOps.

CI/CD involves the following key elements:

Continuous Integration (Cl): CI focuses on the automated integration of code changes into a shared repository
multiple times a day. Developers commit their code changes to a version control system, and automated tools
build and test theapplication to identify integration issues. This ensures that code is continuously integrated with
the main codebase, promoting early detection and resolution of integration problems.

Continuous Deployment (CD): CD extends the CI process by automating the deployment of code changes to
production or staging environments. This enables organizations to release new software versions rapidly and
reliably. CD pipelines are designed to deploy code changes only if they pass predefined quality checks, including
automated testing and validation.

b) Integration of Agile development into CICD piplelines:
The modern approach to Agile development embraces Continuous Integration and Continuous Deployment

(CI/CD) as a transformative paradigm shift in software development. This approach aligns with Agile's principles
of iterative and customer-centric development, but it goes further by introducing automation, efficiency, and rapid,
reliable software deployment. Unlike the traditional approach, the modern Agile CI/CD approach aims to bridge
the gap between development and deployment, streamlining the software delivery process.

2056

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

The integration of CI/CD with Agile involves automation of various aspects of the software development lifecycle.
In this modern paradigm, code changes are frequently integrated and tested, usually daily, and deployment to
production environments occurs automatically when the code passes all the required tests. This approach not only
ensures that software is consistently and rapidly delivered but also significantly reduces manual and time-
consuming deployment processes.

In a typical modern Agile CI/CD timeline, a project follows a series of short development cycles (sprints), often
lasting two to four weeks. Each sprint results in a potentially shippable product increment. At the end of every
sprint, the software is automatically integrated, tested, and deployed to a staging environment, enabling
stakeholders to assess the latest functionality. The automation of these steps compresses the timeline, allowing for
more frequent deliveries and faster responses to changing requirements and user feedback.

By automating the integration and deployment processes, modern Agile CI/CD eliminates many of the manual
steps that are common in traditional Agile methods. As a result, the deployment phase that may have been a
labour-intensive and time-consuming part of the traditional Agile process becomes highly efficient. The
automation of testing and deployment ensures that software is released faster and with reduced errors.
Continuous Integration involves the automatic running of unit tests, integration tests, and other quality checks.
These automated tests identify issues early in the development process, allowing developers to address them
promptly. This contrasts with the traditional Agile approach where significant testing and quality assurance often
occur in the later stages of development, potentially leading to a backlog of issues.

With CI/CD, the sprint review and retrospective activities that follow each sprint play a pivotal role in shaping
the development process. The rapid feedback provided by CI/CD ensures that any necessary adjustments are made
in a shorter time frame. In comparison, the traditional Agile approach may require more time to implement
changes and feedback due to manual integration and testing processes.

The CI/CD integration timeline often results in a more responsive and adaptable software development process.
In a modern Agile CI/CD pipeline, the time from code commit to production deployment is significantly reduced,
typically in a matter of hours or days, compared to traditional Agile approaches that may take weeks or even
months for a full deployment. This agility is critical in a competitive and ever- evolving technology landscape,
enabling organizations to respond rapidly to market changes and deliver value to users in a timely manner.

The modern approach of integrating CI/CD with Agile offers a significant advancement over the traditional Agile
methodology. It streamlines the development process, automates key stages, ensures frequent deliveries, and
ultimately reduces the time from development to deployment. By embracing the efficiencies of CI/CD, Agile
teams can align with Agile principles more effectively and maintain a competitive edge in the dynamic software
development landscape. This paper will further explore and substantiate these advantages through empirical data
and case studies.

c) Stages of Integration of agile development with CICD:
Research and Planning: Begin with a thorough analysis of the existing software development processes,

identifying areas that can benefit from CI/CD integration. Define the objectives and scope of the research, ensuring
alignment with Agile principles.

Team Education and Cultural Transformation: Invest in team training and workshops to familiarize them with
CI/CD concepts and promote a cultural shift towards collaboration, shared responsibility, and embracing DevOps

practices.

Tool Selection and Setup: Select CI/CD tools that suit the organization's needs. Set up the chosen tools for
version control, automated build, testing, and deployment, ensuring they align with Agile values.

CI/CD Pipeline Design: Design a CI/CD pipeline tailored to the organization's specific projects. Define stages
for code integration, automated testing, quality assurance, and deployment. Customize the pipeline as needed.

Version Control Implementation: Implement a version control system and configure repositories to store code
securely. Establish version control strategies, such as branching and merging, to support Agile principles.

2057

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Automation and Comprehensive Testing: Automate the build process and implement comprehensive automated
testing, covering unit tests, integration tests, and user acceptance tests. Ensure that test suites provide actionable
feedback.

Continuous Integration Adoption: Configure the CI pipeline to trigger automated builds and tests upon code
commits. Foster a culture of continuous integration, enabling quick identification and resolution of issues.

Continuous Deployment Implementation: Implement CD stages that automate deployment to staging or
production environments. Utilize strategies like canary deployments and feature flags for gradual feature release.

Monitoring and Feedback Mechanisms: Establish continuous monitoring and feedback loops to track
application performance. Collect and analyse metrics, logs, and user feedback to identify and address issues
proactively.

Continuous Improvement Culture: Promote a culture of continuous improvement, where teams conduct regular
retrospective meetings to identify areas for pipeline enhancement. Encourage collaboration and shared learning.

Scalability and Security Considerations: Plan for pipeline scalability as projects and organizational needs
evolve. Integrate security measures into the pipeline to protect against vulnerabilities.

Documentation and Knowledge Sharing: Document the CI/CD pipeline, workflows, and best practices. Provide
ongoing training and knowledge sharing sessions to support team members in effectively using and contributing
to the CI/CD process.

Compliance and Governance Integration: Address compliance and governance requirements to ensure that
CI/CD practices align with industry regulations and internal policies. Implement processes and measures to
maintain compliance.

Team Education
and Coltural
Transformation

Research and
Planning

Tool Selection
and Setup

C1/CD Pipeline

Design

Conticuous

Deployment

Implementation

Automation and Continuous
M Comprehensive - Integration
Testing Adoption

Version Control
Implementation

Documentation
g and Knowledge
Sharing

Monitoring and Continuous
Feedback - Inpeovement
Mechanisms Culture

Scalabilty and
- Security
Conslderations

Compliance and
Governance
Integration

Fig 2: Stages for CICD Integration for agile methodologies
d) Advantages of the modern approach:
Accelerated Time-to-Market: The modern Agile CI/CD approach significantly reduces the time it takes to move

from code development to production deployment. This results in faster delivery of features, enhancements, and
bug fixes to end-users, which can be a competitive advantage.

Continuous Feedback Loop: Continuous integration, testing, and automated deployment facilitate an ongoing

feedback loop. Teams can respond quickly to user feedback and changing requirements, enhancing customer
satisfaction and product quality.

2058

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Enhanced Collaboration: Modern Agile with CI/CD fosters collaboration between development and operations
teams, promoting a DevOps culture. This collaboration streamlines the deployment process and reduces silos,
leading to more efficient and effective operations.

Reduced Manual Effort: Automation in CI/CD significantly reduces manual effort in integration, testing, and
deployment, reducing the risk of human error and freeing up resources for more strategic tasks.

Predictable and Consistent Deployments: Automated deployment ensures that deployments are predictable and
consistent. This reduces the variability and potential errors associated with manual deployment in the traditional
approach.

Continuous Quality Assurance: Continuous automated testing throughout the sprint ensures that issues are
detected and resolved promptly. This leads to higher software quality and a reduced backlog of defects.

Increased Agile Principles Adherence: Modern Agile CI/CD aligns more closely with Agile principles of
delivering value frequently, responding to change, and prioritizing individuals and interactions. It enhances the
ability to meet Agile objectives effectively.

Improved Adaptability: The agility provided by CI/CD integration enables teams to adapt swiftly to market
changes, competitive pressures, and evolving customer needs, ensuring that the software remains relevant.

Efficient Resource Utilization: Automation of repetitive tasks optimizes resource utilization, reducing the need
for manual coordination and allowing teams to focus on valueadded activities.

Competitive Advantage: The modern Agile CI/CD approach allows organizations to stay competitive by
delivering features and updates faster, meeting user needs more effectively, and maintaining a responsive and
efficient software development process.

e) Challenges and concers associated with CICD:

Challenges in Security: The adoption of Continuous Integration and Continuous Deployment (CI/CD)
undoubtedly brings forth a multitude of advantages, yet it is not without its share of challenges. Among these,
security concerns feature prominently. The increased frequency of code changes and automated deployment
processes can lead to vulnerabilities if not rigorously managed. Security must be integrated into the CI/CD pipeline
from the outset, encompassing practices such as automated security testing, vulnerability scanning, and continuous
monitoring. Striking a balance between rapid deployment and robust security measures remains an ongoing
challenge in CI/CD adoption.

Compliance Challenges: As organizations transition to CI/CD practices, ensuring compliance with industry
regulations, data protection laws, and internal policies is an intricate task. The rapid nature of CI/CD often leads
to questions of how to enforce and audit compliance. Moreover, regulatory requirements may vary across
industries, adding complexity to the compliance landscape. Adherence to compliance standards necessitates the
establishment of strict controls, comprehensive documentation, and clear audit trails. CI/CD pipelines must be
adapted to ensure that every deployment aligns with regulatory standards without compromising the speed and
efficiency benefits of CI/CD.

Cultural Shift and Collaboration: A significant challenge accompanying CI/CD adoption lies in the cultural
shift required within organizations. This shift encompasses a transition from siloed, departmental thinking to a
more collaborative, cross-functional approach. Breaking down traditional barriers between development and
operations teams, fostering shared responsibility, and promoting a DevOps culture are crucial aspects of this

2059

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

cultural shift. Additionally, CI/CD encourages a move from a "blame" culture to a "learning" culture, where
failures are viewed as opportunities for improvement. Nurturing this cultural transformation is often a long-term
endeavor, necessitating leadership support, training, and ongoing communication.

C. Comaprison of timelines between traditional and modern approches:
The modern Agile CI/CD approach stands out for its continuous and automated processes, reducing manual effort

and timelines. Continuous integration, testing, and automated deployment ensure that software changes are
integrated and delivered rapidly throughout the sprint. This contrasts with the traditional Agile methodology,
where integration and deployment are typically manual processes and often deferred until the end of the sprint.
As a result, the modern approach significantly shortens the timeline from code development to deployment, often
resulting in hours or days, while the traditional approach may take weeks or months for a full deployment.

The modern approach's continuous feedback loop and efficient deployment process enable quicker responses to
changing requirements and user feedback. This not only accelerates value delivery but also enhances the overall
agility of Agile teams. In contrast, the traditional approach, with its manual integration and deployment steps, may
experience delays and difficulties in responding to change promptly.

Table 1: Comparing The Timelines Between Modern and Traditional Agile Approach

Aspect Modern Agile CI/CD Approach [Traditional Agile Approach

Sprint Duration 2-4 weeks 2-4 weeks

Continuous Integration Frequent, often daily Typically, at the end

Deployment to staging /At the end of each sprint /At the end of each sprint

Automated Testing Continuous throughout the sprint |Often in distinct phases

Deployment to production Typically, within hours or a few |Can take weeks or even months
days

4. Conclusion

In conclusion, the modern Agile approach integrated with Continuous Integration and Continuous Deployment
(CI/CD) marks a significant evolution in software development, reshaping the way organizations deliver value to
their customers. This research has unequivocally demonstrated that the CI/CD integration within the Agile
framework offers a substantial competitive edge over the traditional Agile methodology. By automating
integration, testing, and deployment, the modern Agile CI/CD approach reduces time- to-market, fosters
collaboration between development and operations teams, and maintains continuous quality assurance.

The traditional Agile methodology, with its manual integration and deployment practices, exhibits limitations,
including longer timelines, diminished adaptability to change, and inefficient resource utilization. The research
findings here advocate for the adoption of the modern Agile CI/CD approach as the linchpin for responsive,
efficient, and value- driven software development. As technology's rapid evolution continues, this research affirms
the modern Agile CI/CD approach as the path forward in the pursuit of adaptive and streamlined software
development processes.

References

[1] A.Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald, “From Agile to DevOps: Smart Skills and Collaborations,”
Information Systems Frontiers, vol. 22, no. 4, pp. 927-945, Mar. 2019, doi: 10.1007/s10796- 019-09905-1.

[2] A. Mishraand Z. Otaiwi, “DevOps and software quality: A systematic mapping,” Computer Science
Review,vol. 38, p. 100308, Nov. 2020, doi: 10.1016/j.cosrev.2020.100308.

[3] F. Almeida, J. Simdes, and S. Lopes, “Exploring the Benefits of Combining DevOps and Agile,” Future
Internet, vol. 14, no. 2, p. 63, Feb. 2022, doi: 10.3390/fi14020063.

[4] T.Laukkarinen, K. Kuusinen, and T. Mikkonen, “Regulated software meets DevOps,” Information and
Software Technology, vol. 97, pp. 176-178, May 2018, doi: 10.1016/j.infsof.2018.01.011.

[5] A.Hemon-Hildgen, F. Rowe, and L. Monnier-Senicourt, “Orchestrating automation and sharing in DevOps

2060

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

teams: a revelatory case of job satisfaction factors, risk and work conditions,” European Journal of
Information Systems, vol. 29, no. 5, pp. 474-499, Jul. 2020, doi: 10.1080/0960085x.2020.1782276.

[6] L.E. Lwakatare, P. Kuvaja, and M. Oivo, “Relationship of DevOps to Agile, Lean and Continuous
Deployment,” Lecture Notes in Computer Science, pp. 399-415, 2016, doi: 10.1007/978-3-31949094-6_27.

[7] D. Smite, N. B. Moe, and J. Gonzalez-Huerta, “Overcoming cultural barriers to being agile in distributed
teams,” Information and Software Technology, vol. 138, p. 106612, Oct. 2021, doi:
10.1016/j.infsof.2021.106612.

[8] S.Rafi, W.Yu, M. A. Akbar, A. Alsanad, and A. Gumaei, “Prioritization Based Taxonomy of DevOps
Security Challenges Using PROMETHEE,” IEEE Access, vol. 8, pp. 105426-105446, 2020, doi:
10.1109/access.2020.2998819.

[9] S. Galup, R. Dattero, and J. Quan, “What do agile, lean, and ITIL mean to DevOps?,” Communications of
theACM, vol. 63, no. 10, pp. 48-53, Sep. 2020, doi: 10.1145/3372114.

[10] B. Snyder and B. Curtis, “Using Analytics to Guide Improvement during an Agile—DevOps Transformation,”
IEEE Software, vol. 35, no. 1, pp. 78-83, Jan. 2018, doi: 10.1109/ms.2017.4541032.

[11] E. Bobrov, A. Bucchiarone, A. Capozucca, N. Guelfi, M. Mazzara, and S. Masyagin, “Teaching DevOps in
Academia and Industry: Reflections and Vision,” Lecture Notes in Computer Science, pp. 1— 14, 2020, doi:
10.1007/978-3-030-39306-9_1.

[12] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study of DevOps usage in practice,” Journal of
Software: Evolution and Process, vol. 29, no. 6, Jun. 2017, doi: 10.1002/smr.1885.

[13] M. A. Akbar et al., “Prioritization Based Taxonomy of DevOps Challenges Using Fuzzy AHP Analysis,”
IEEE Access, vol. 8, pp. 202487-202507, 2020, doi: 10.1109/access.2020.3035880.

[14] A. Hemon, B. Fitzgerald, B. Lyonnet, and F. Rowe, “Innovative Practices for Knowledge Sharing in Large-
Scale DevOps,” IEEE Software, vol. 37, no. 3, pp. 30-37, May 2020, doi: 10.1109/ms.2019.2958900.

[15] M. Gokarna and R. Singh, “DevOps: A Historical Review and Future Works,” 2021 International Conference
on Computing, Communication, and Intelligent Systems (ICCCIS), Feb. 2021, doi:
10.1109/icccis51004.2021.9397235.

2061

