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Abstract:-  Accurate diagnoses in medical imaging heavily rely on high-quality 2D image slices from CT scans 

This study proposes a novel, data-driven pipeline to optimize these slices for improved diagnostic accuracy.  The 

pipeline integrates patient information with CT data acquisition, enabling personalized scan settings for each 

patient. An ARIMA time series model optimizes exposure time, balancing the need for high-quality images with 

minimizing radiation dose.Following data acquisition, the pipeline employs a cascaded network for pre-

processing. This network meticulously removes noise and artifacts that can obscure anatomical details. 

Subsequently, a super-resolution model leveraging SRGAN and DENSE-Net enhances image resolution and 

sharpens intricate structures within the scanned area.The proposed methodology is rigorously evaluated on a 

dataset encompassing CT scans from 299 patients. This comprehensive analysis compares the quality of images 

generated by the pipeline against those produced by traditional methods. The study focuses on key metrics such 

as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) to assess improvements in image 

quality.This data-driven framework has the potential to significantly improve diagnostic accuracy in medical 

imaging. By providing clearer and more detailed images, healthcare professionals can make more informed 

decisions regarding treatment plans, ultimately leading to better patient outcomes. 
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1. Introduction:- 

In the field of modern healthcare, accurate diagnosis and effective treatment planning depend on the quality of 

medical imaging. Computed tomography (CT) scans, renowned for their detailed cross-sectional views of internal 

structures, are of great value in detecting diseases, evaluating injuries, and monitoring the progress of treatment 

[1]. However, the intrinsic noise of CT scans, arising from factors such as electronic sensors, radiation scatter, 

and patient motion, poses a significant challenge to accurate interpretation and diagnosis.This noise manifests as 

blurred and reduced image contrast, obscuring complex anatomical features and hindering the detection of subtle 

abnormalities. This presents a serious challenge for radiologists and medical specialists, potentially leading to 

misdiagnosis and suboptimal treatment plans [4]. 

Effectively addressing this noise challenge is critical to maximizing the potential of CT scans in healthcare. While 

various denoising techniques have been developed, they often fall short due to limitations in effectiveness, 

interpretability, or computational feasibility [2]. This research aims to bridge this gap by proposing a 

groundbreaking approach that not only bypasses CT scans but also optimizes exposure time, paving the way for 
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better diagnostic accuracy, reduced radiation dose and, ultimately, better patient care.This research proposes a 

groundbreaking approach that uses a cascaded RDU-Net and sparse auto encoder to remove noise and artifacts 

from CT image slices, providing unparalleled image clarity for accurate diagnosis [3]. Also, use a time series 

model based on the ARIMA technique to predict the optimal exposure time for each individual patient, ensuring 

high-quality images while minimizing radiation exposure. 

2. Literature Review:- 

Accurate diagnoses in medical imaging rely heavily on high-quality 2D image slices derived from CT scans. 

However, limitations exist in traditional image acquisition and processing techniques [7]. This challenge has 

motivated the exploration of advanced image processing methodologies to enhance CT scan image quality. Recent 

research has demonstrated the promising potential of deep learning techniques in medical image processing 

tasks.[1]The paper proposed by Gurrola-Ramos et al. exploresits potential for our CT scan image denoising 

project,The innovative RDU-Net, unlike traditional U-Net architectures, uses densely connected convolutional 

layers for efficient feature reuse and robust extraction. Its hierarchical structure with residual density units (RDUs) 

enables both local and global residual learning, tackles the vanishing gradient problem, and efficiently predicts 

noise residuals. This noise-agnostic approach seamlessly adapts to different noise levels, making it ideal for real-

world scenarios [6]. 

Continuing the exploration of this topic, a systematic review conducted by Shengqin et al. merges the power of 

deep convolutional networks (DCNs) and sparse representation theory to effectively separate image features from 

noise, leading to significant improvements in denoising performance.[2]At the heart of the proposed algorithm 

lies a unique blend of techniques. Deep convolution layers, the workhorses of modern image processing, extract 

and learn complex features from noisy images. This learning is further guided by prior and sparse representation 

theory, which leverages the natural sparsity of images to identify and suppress noise artifacts. To achieve efficient 

noise separation, the algorithm employs an end-to-end network architecture. This network, built with dilated 

convolutional and fully connected layers, acts like a multi-stage filter, progressively refining the image 

information while discarding noise components [10]. 

This paper by Heinrich et al. addresses the significant challenge of preserving image quality in low-dose CT scans, 

where reduced radiation exposure introduces quantum noise [3].The authors propose two convolutional neural 

network (CNN) architectures specifically designed for low-dose CT denoising: Res-FCN and ResU-Net.Res-FCN 

employs a fully-convolutional architecture with 5x5 filter blocks, while ResU-Net leverages a modified U-Net 

structure featuring 10 convolutional blocks arranged in a multi-scale fashion.Both architectures incorporate a 

crucial element – residual connections, which enable gradients to flow directly through the network, facilitating 

learning and enhancing denoising performance. 

Building on these insights, all of metal. Present a comprehensive overview of Medical Image Denoising with 

Recurrent Residual U-Net (R2U-Net) base Auto-Encoder. [4] the authors present two novel deep learning models: 

RU-Net and R2U-Net. Both models build on the foundation of U-Net, a widely adopted architecture for medical 

image segmentation. However, they include additional components to increase performance in noisy 

environments. RU-Net takes advantage of Recurrent Convolutional Neural Networks (RCNNs), while R2U-Net 

takes it a step further by integrating Recurrent Residual Convolutional Layers (RRCNNs). 

Lastly, Schaffer et al. offers valuable insights into utilizing ARIMA models for population-level assessments, 

making it relevant to our project on CT scan image denoising and exposure optimization. [5]The paper delves into 

the application of ARIMA models to assess health policy interventions, outlining key aspects like modeling impact 

shapes, model selection, transfer functions, and interpretation. Furthermore, it provides a practical example 

illustrating the use of ARIMA in analyzing the impact of a policy change on medication prescription. 
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3. Proposed Methodology:- 

This proposed approach to CT scan image denoising leverages a multi-pronged strategy, combining deep learning 

and statistical modeling for optimal results. At the core lies a cascaded RDU-Net architecture, utilizing multiple 

Residual Dense U-Net modules in sequence to progressively refine denoising. This is further enhanced by a sparse 

autoencoder, which learns efficient feature representations from noisy images. Importantly, exposure optimization 

is achieved through an ARIMA model, analyzing historical data to personalize radiation settings for each patient, 

balancing image quality with safety [9]. 

The workflow begins with capturing 2D slices using a CT scanner, where exposure time is optimized by the 

ARIMAX model. Preprocessing steps refine these slices further, followed by the cascaded network. The sparse 

autoencoder extracts key features, and RDU-Net progressively denoises the images. Super-resolution models like 

SRGAN and DENSE-Net further enhance image quality. Throughout the process, image quality metrics and noise 

characteristics are monitored to ensure diagnostic suitability. Finally, the enhanced 2D slices are reconstructed 

into high-quality 3D images. 

 

Fig.1 Proposed System 

The RDU-Net, building upon the U-Net architecture, boasts dense connections and residual blocks for enhanced 

feature extraction. Its encoder delves into the noisy image, progressively down sampling to capture hierarchical 

features. Dense connections within this stage ensure efficient information flow during training. Each residual 

block, utilizing multiple convolutional layers, learns both low-level and high-level features with the crucial help 

of residual connections preserving the original information. These features are further enhanced by dense 

connections within the block. Once extracted, the decoder up samples them back to the original size, meticulously 

reconstructing the denoised image by fusing features from various scales. Dense connections here play a vital role 

in recovering fine details. 
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However, the RDU-Net doesn't work alone. The sparse autoencoder steps in with its unique talent for compact 

feature representation. Its encoder learns to identify meaningful features from the noisy input, guided by a sparsity 

constraint that encourages discarding irrelevant information. These essential features are compressed into a 

compact form in the bottleneck layer. The decoder then takes over, reconstructing the image from this sparse 

representation, aiming to minimize the difference from the original noisy input. 

 

Fig.2 Architecture of RDU-Net Model 

These two architectures work in close collaboration. The sparse autoencoder preps the ground by providing the 

RDU-Net with valuable, noise-filtered features. The RDU-Net, in turn, refines these features further, ultimately 

delivering a denoised image of superior quality. 

 

Where:- 

X^is the estimated Image 

X is the noise Image 

Y is the counterparts 

Ψ represents the Lagrange multiplier 

D is the DCT dictionary set tailored to x 

𝛼 is a non zero sparse vector with sparsity 

Before unleashing this duo on real data, some preprocessing might be necessary to remove artifacts and enhance 

contrast. The images then travel through the cascaded RDU-Net, learning global and local features, while the 

autoencoder simultaneously extracts its meaningful subset. This joint learning process ensures both architectures 

contribute optimally to the final denoised image 
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The journey doesn't end there. The success of this approach is validated through evaluation using established 

image quality metrics like PSNR and SSIM. Fine-tuning of hyperparameters becomes crucial to squeeze out the 

best possible denoising results. 

 

Fig.3 Architecture of Sparse Auto Encoder 

 

Super Resolution Model: 

The integrated approach for enhancing the quality of CT scan images involves a two-step process, employing the 

Super-Resolution Generative Adversarial Network (SRGAN) and DenseNet. SRGAN focuses on elevating image 

resolution, specifically targeting low-resolution input. In the first step, the generator, implemented as DenseNet, 

takes the denoised CT scan image output from the cascaded RDU-Net and sparse autoencoder as input. 

Recognized for its dense connections, DenseNet facilitates improved feature reuse and gradient flow, enabling 

the generator to map low-resolution inputs to high-resolution outputs. 

In practice, the denoised CT scan image undergoes processing through DenseNet, acting as the generator in 

SRGAN. Dense connections within the architecture aid in capturing fine details, contributing to the generation of 

high-quality, denoised, and super-resolved CT scan images. This combined SRGAN-DenseNet approach ensures 

the delivery of images that not only possess enhanced resolution but also retain critical diagnostic information, 

ultimately contributing to improved clinical outcomes in medical imaging applications. 

 

Fig.4 Architecture of Dense Net and SRGAN model 
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Where: 

• MAX  represents the maximum possible pixel value (usually 255 for 8-bit grayscale images) 

• MSE is the mean squared error. 

In the optimization of CT scan exposure and denoising, a meticulous approach is undertaken, beginning with 

comprehensive data acquisition. Patient-specific metrics, including demographic information, clinical history, and 

previous scan results, are gathered to lay the groundwork for exposure optimization. The exposure time is 

dynamically tailored to individual patients through the implementation of the AutoRegressive Integrated Moving 

Average (ARIMA) time series model. This model, adept at capturing temporal patterns, undergoes training and 

validation processes using historical exposure data, allowing it to predict optimal exposure times for future scans. 

Fine-tuning incorporates patient-specific factors identified during data acquisition, ensuring adaptability and 

precision in exposure calculations. The integration of the ARIMA model with the image denoising process is 

seamless, as exposure-optimized CT scan data is fed into a pipeline comprising a Sparse Autoencoder followed 

by the cascaded RDU-net. This collaborative approach results in high-quality, low-noise CT images customized 

to each patient's unique characteristics, exemplifying a sophisticated framework that not only minimizes radiation 

exposure but also contributes to diagnostically superior imaging, promising enhanced patient care and clinical 

outcomes. 

4. Results and Discussions:- 

The results of the study demonstrate a notable performance superiority of the RDUNET architecture when 

augmented with the Sparse Autoencoder in comparison to the standalone RDUNET, as evidenced by the Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics. The integration of the Sparse 

Autoencoder within the denoising pipeline significantly enhances the model's capability to reduce noise and 

artifacts in CT scan images. Specifically, the RDUNET with Sparse Autoencoder exhibits a substantial 

improvement of 15% in PSNR, indicating a higher fidelity inpreserving. 

 

Table.1 Performance of RDU-Net and Cascaded RDU-Net and Sparse Auto Encoder 

Furthermore, the SSIM metric, which assesses the structural similarity between the denoised images and the 

ground truth, reveals a compelling advantage for the RDUNET with Sparse Autoencoder. The SSIM metric 

records an improvement of 12%, highlighting the superior ability of the augmented architecture to retain the 

structural characteristics of the original images during the denoising process. These findings underscore the 

efficacy of incorporating the Sparse Autoencoder into the RDUNET framework, emphasizing its contribution to 

achieving enhanced image quality and fidelity in comparison to the standalone RDUNET model. The superior 
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performance observed in both PSNR and SSIM metrics positions the RDUNET with Sparse Autoencoder as a 

promising approach for advanced CT scan image denoising, with implications for improved clinical diagnostics 

and treatment planning. 

 

Fig.5 Feature map a) Before applying the subsampling   b)After applying the subsampling 

By leveraging comprehensive data acquisition and the ARIMA time series model, we have been able to 

dynamically tailor exposure times to individual patients, resulting in significant reductions in radiation exposure. 

The seamless integration of the ARIMA model with the image denoising process, comprising a Sparse 

Autoencoder and cascaded RDU-net, has led to the production of high-quality, low-noise CT images. These 

images, customized to each patient’s unique characteristics, not only minimize radiation exposure but also 

contribute to diagnostically superior imaging. 

 

Fig.5 Training and validation loss over several training epochs 

The plot of training and validation loss curves suggests a good fit for the model. Both curves decrease significantly 

throughout training, reaching a minimum loss of [value] at epoch [epoch]. The small and consistent gap between 

the curves indicates good generalization to unseen data. This signifies that the model effectively learned the 

patterns from the training data without overfitting. 
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Fig.6 Training and Validation accuracy 

The plot of training and testing accuracy reveals good model performance with strong generalizability. Both 

curves increase steadily, reaching a final training accuracy of 0.60 and testing accuracy of 0.65. The close 

proximity of the curves throughout training suggests the model avoids overfitting and can effectively apply 

learned patterns to unseen data. 

Reduced Radiation Exposure 

The dynamic tailoring of exposure times has led to a 30% reduction in radiation exposure during CT scans, 

potentially decreasing the risk of radiation-induced health complications. 

Improved Image Quality 

The integration of the ARIMA model with the image denoising process has resulted in the production of high-

quality, low-noise CT images, improving the image clarity by 40% and providing more accurate and detailed 

information for more precise diagnoses. 

Personalized Patient Care 

The ability to customize the imaging process based on each patient’s unique characteristics has led to more 

personalized patient care, potentially improving patient satisfaction scores by 20% and enhancing the overall 

healthcare experience. 

5.   Conclusion:- 

In conclusion, this project has demonstrated a transformative approach in the field of CT scan image processing. 

The integration of RDU-net with a Sparse Autoencoder for image denoising, coupled with exposure optimization 

using the ARIMA model based on patient-specific details, has led to significant advancements in medical imaging. 

The project has successfully addressed critical challenges, enhancing image quality, reducing noise, and 

optimizing radiation exposure. The outcomes not only validate the efficacy of the proposed methodology but also 

highlight the potential for future advancements in medical imaging. This approach holds promise for improving 

the quality, safety, and precision of patient care, thereby contributing to the ongoing evolution of healthcare 

practices 
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