Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Implementation of Object Detection Using
FPGA

Ritik Kumar Verma?, Sahil Tiberawal?, Satish Yadav?, Sarvendra Singh*
Galgotia's College of Engineering and Technology Gr. Noida (U.P.)
Under The Mentorship Of
Prof. Alok Kumar

Abstract: Robotics, autonomous driving, surveillance, and many more fields rely on object detection, a basic job
in computer vision. Due to their low-latency speed and parallel processing capabilities, FPGA systems are
attracting more and more interest in implementing object detection algorithms, which is important because real-
time processing is becoming increasingly vital. This work provides a synopsis of the object detection on FPGA
architecture, optimisation, and real-time implementation. The suggested method is picking an appropriate object
detecting algorithm, like the well-known YOLO (You Only Look Once) or SSD (Single Shot MultiBox
Detector), which are renowned for their speed and accuracy ratio. To achieve real-time speed, the algorithm is
mapped onto an FPGA-based hardware architecture, which takes use of its reconfigurability and parallelism. An
essential part of FPGA-based object detection is the design of the hardware architecture. Optimisation of data
pathways, construction of efficient control logic, and splitting of the algorithm into hardware-friendly
components are all part of this process. To achieve the goal of maximising throughput with minimal resource
use, techniques including parallel processing, loop unrolling, and pipelining are utilised. In addition, optimising
for FPGA requires tweaking the algorithm and hardware design to make the most of the target FPGA device's
capabilities. Reducing latency and increasing throughput requires optimising data transfer, parallelism, and
memory access patterns. Another important part of object detection systems that use FPGAS is their ability to
integrate with various sensors or input streams. Acquiring input data for real-time processing necessitates
integrating with various sensors, such as cameras and LIiDAR devices. Thanks to their adaptability, FPGA
platforms may be easily integrated into a wide range of application situations, thanks to their ability to interface
with different sensors. To ensure the object detection system built on FPGA is accurate, fast, and resilient, it is
validated and tested using common datasets and real-world scenarios. To guarantee the system achieves the
targeted performance metrics, the real-time processing requirements are thoroughly assessed. The FPGA-based
object detection system, once tested, can be placed in the intended setting as either a standalone device or a
component of a bigger embedded system. Fixing bugs, improving performance, and adding new features all
require regular maintenance and upgrades.

Keywords: - FPGA, Object Detection, Computer Vision, Real-Time Processing, Hardware Optimization,
Parallel Processing, Embedded Systems.

Introduction

Autonomous vehicles, surveillance systems, robots, and many more fields rely on object detection, a basic job in
computer vision. Intelligent decision-making in many fields relies on the capacity to precisely detect and
localise things in real-time. Even if they work, traditional object detection methods can't always handle the
intense demands of real-time processing, especially in complicated settings with moving scenes and numerous
items to identify. So, to speed up object detection algorithms and get real-time performance, there has been an
upsurge in the use of specialised hardware platforms like Field-Programmable Gate Arrays (FPGAS).

There are a number of benefits to using FPGAs instead of CPUs or GPUs when developing object detecting
systems. First of all, field-programmable gate arrays (FPGAS) are very amenable to parallelization, which means
that object identification techniques like convolutional neural networks (CNNs) may be implemented efficiently

1548

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

on them. Because of their built-in parallelism, FPGAs may greatly improve processing speed by handling
numerous data streams concurrently. The second advantage of field-programmable gate arrays (FPGAS) is that
they may have their hardware architecture changed to fit the needs of different applications and object detection
algorithms. Thanks to this adaptability, developers can maximise the system's performance by optimising the
FPGA implementation for power efficiency, resource utilisation, and performance. When working with field-
programmable gate arrays (FPGAS), one of the biggest obstacles is coming up with a memory-and CPU-
efficient hardware design that can handle the detection method of choice. Many people like object detection
algorithms like YOLO, SSD, and Faster R-CNN because they strike a good compromise between speed and
accuracy. Convolutions, pooling, and non-linear activations are just a few examples of the complicated
operations used by these algorithms that could be difficult to properly map onto FPGA hardware. In order to
achieve real-time performance, it is essential to develop a hardware architecture that can efficiently execute
various activities simultaneously while minimising resource utilisation.

Optimising the object recognition algorithm for FPGA implementation is just as important as designing the
hardware architecture when it comes to maximising speed and minimising latency. To get the most out of the
FPGA platform's parallelism and reconfigurability, the algorithm must be fine-tuned during this optimisation
phase. To reduce data movement cost and speed up essential computation processes, you can use techniques like
data parallelism, loop unrolling, and pipelining. Improving overall performance is possible through optimising
data storage formats and memory access patterns, which in turn minimise bandwidth requirements and memory
latency. The incorporation of the system with sensors or input streams is another crucial aspect to think about
when using FPGAs for object detection. For accurate object detection and tracking in many real-world
applications, object detection systems must interpret data from a variety of sensors, including cameras, LiDAR
sensors, and radar systems. Because of their adaptability, FPGAs may be easily integrated into a wide variety of
application scenarios, thanks to their ability to communicate with various kinds of sensors. Object detection
systems based on field-programmable gate arrays (FPGAS) can improve autonomous cars and surveillance
systems' decision-making capabilities by processing sensor data quickly in real-time. Object detection systems
that use field-programmable gate arrays (FPGAS) must undergo rigorous testing and validation to guarantee they
achieve the targeted performance metrics in actual use cases. In order to validate the system, we use common
datasets and test scenarios to assess its accuracy, speed, and robustness. To ensure the system can achieve the
specified frame rates and latency, real-time processing needs are also thoroughly evaluated. The target
environment can then host FPGA-based object detection systems, either as individual devices or integrated into
bigger embedded systems, after validation. When it comes to computer vision applications, FPGA-based object
detection is a great way to get real-time performance. Developers can create scalable object detection systems
that match the demanding needs of real-world applications by taking advantage of FPGA platforms' parallel
processing capabilities and reconfigurability. Intelligent decision-making across many domains is anticipated to
be greatly enhanced by FPGA-based object identification, thanks to continuing improvements in FPGA
technology and optimisation methodologies.

Motivation

Recent years have witnessed tremendous progress in computer vision, with object recognition rising to the
forefront as an essential job for allowing intelligent systems across different disciplines. Making educated
decisions and guaranteeing safety and security relies on the ability to detect and localise things in real-time. This
is especially true for autonomous cars navigating complicated surroundings and surveillance systems monitoring
public spaces. In situations where computer resources are limited and latency constraints are severe, standard
object identification algorithms frequently fail to fulfil the rigorous demands of real-time processing. To
overcome this constraint and attain real-time performance with object identification algorithms, there has been
an upsurge in research into alternative hardware platforms like Field-Programmable Gate Arrays (FPGAS). The
inherent parallelism and reconfigurability of FPGAs are two of the main reasons why they are used in object
detection. A field-programmable gate array (FPGA) is a type of integrated circuit that differs from a central
processing unit (CPU) or graphics processing unit (GPU) in that it uses programmable routing resources to
connect a series of adjustable logic blocks. Because of its one-of-a-kind design, developers can create

1549

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

specialised hardware accelerators that meet the needs of any object detection method or application. Fast field-
programmable gate arrays (FPGAS) are able to run computationally complex algorithms in real time because
they take use of hardware-level parallelism and execute numerous operations concurrently, drastically reducing
processing time.

Object identification with FPGAs is attractive for a number of reasons, not the least of which is their
adaptability to changing algorithmic needs and use cases. Researchers are always inventing new object detection
algorithms to increase their accuracy, efficiency, and resilience, and these algorithms undergo fast evolution.
But it's not always easy to implement these algorithms on fixed-function hardware platforms; changing
algorithmic parameters sometimes necessitates expensive hardware redesigns or upgrades. On the other hand,
field-programmable gate arrays (FPGAs) provide an extremely reconfigurable platform that can have its
hardware design changed or updated in real-time to accommodate new algorithmic features or optimisations.
Developers can optimise the hardware implementation repeatedly to match changing application needs, and the
system is future-proofed against algorithmic breakthroughs thanks to this flexibility. In addition, field
programmable gate arrays (FPGAs) offer an affordable way to implement object detection systems in embedded
devices or settings with limited resources. Despite the exceptional performance and power efficiency offered by
custom Application-Specific Integrated Circuits (ASICs), they are typically not feasible for low-volume or
prototype deployments due to the substantial upfront expenditure required for design and fabrication. However,
field-programmable gate arrays (FPGAS) are a great option for creating adaptable and scalable object detection
systems because they strike a balance between performance, adaptability, and affordability. Mobile robotics and
edge computing are two examples of energy-efficient applications that could benefit from FPGAs because of
their lower power consumption as compared to conventional CPU or GPU-based systems. Beyond the obvious
technological benefits, developers now have easier access to FPGA development tools and libraries, which
means that FPGA-based object detection systems are becoming more and more common. Developer suites from
companies like Intel and Xilinx simplify design and implementation with features like runtime libraries, IP
cores, and high-level synthesis tools. Developers are free to concentrate on algorithmic optimisation and system
integration instead of low-level hardware design thanks to these tools that abstract away the difficulties of
FPGA programming. The inherent parallelism, versatility, affordability, and accessibility of FPGAs are the
driving forces behind their use in object detection. Developers can create scalable object detection systems that
can handle real-time processing demands in a variety of applications by taking advantage of FPGAS' unique
features. Intelligent decision-making and improved security in many areas are within reach, thanks to FPGA-
based object identification and the ever-improving programming tools for FPGAs.

Objectives

The main goal is to accomplish object detection on FPGA platforms in real-time. To achieve these demanding
latency requirements, the system's hardware architecture and algorithm implementation must be fine-tuned.
Only then will the input data be processed and objects detected promptly.

Achieving real-time performance while maintaining high detection accuracy is another important goal. The
object detection system that uses FPGAs should be able to reliably locate and identify objects in a wide range of
settings and situations.

For FPGA-based systems, optimising power efficiency and resource utilisation is critical. The goal is to create a
hardware design that minimises resource consumption while maximising performance. This will allow for cost-
effective and energy-efficient deployment in embedded systems or edge devices.

Input resolution, processing needs, and use cases can vary, thus the system must be scalable to meet these
demands. This necessitates the development of a modular and adaptable architecture that can handle fluctuating
computational needs and incorporate future algorithmic updates and improvements.

For practical use, it is essential to make sure it can withstand weather conditions, occlusions, and differences in
how objects look. Maintaining constant performance across multiple operating conditions is crucial for the
FPGA-based object detection system, which must be able to withstand noise, lighting fluctuations, and other
environmental disturbances.

1550

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Previous Studies

The foundation for understanding the challenges, methodologies, and developments in FPGA-based object
identification has been laid by prior research in this area. Here is a synopsis of a few important studies:-
"Real-Time Object Detection on FPGA" [Liu et al., 2018]. In this paper, we provide an FPGA-based system for
real-time object detection. An efficient hardware architecture for the YOLO (You Only Look Once) object
recognition method is presented by the authors, who employ parallelism and pipelining techniques to achieve
high throughput. Thanks to its competitive accuracy and real-time performance, this technology excels in
autonomous driving and surveillance.

The 2019 article "FPGA Implementation of Real-Time Object Detection for Autonomous Vehicles" was written
by Zhang et al. In their presentation, Zhang et al. outline an FPGA-based system for autonomous vehicle object
detection. This work seeks to improve the YOLO algorithm for FPGA implementation by considering the power
efficiency needs and resource restrictions of embedded vehicle platforms. Its real-time performance and
minimal power consumption make it suitable for deployment in resource-constrained places.

For their 2020 study, Wang et al. surveyed "Accelerating Object Detection Algorithms on FPGA." An overview
of field-programmable gate array (FPGA) based object identification algorithm accelerators is presented here.
The authors elucidate optimisation techniques and performance trade-offs by investigating various FPGA
implementations of popular object identification algorithms including YOLO, SSD, and Faster R-CNN. Using
field-programmable gate arrays (FPGASs) for object identification, the survey highlights key challenges and
potential research directions.

Chen et al. published "Efficient FPGA-Based Object Detection for UAV Applications™ in 2021. Chen et al.
present a new FPGA-based object identification system tailored to unmanned aerial vehicle (UAV) uses. While
optimising the SSD technique for FPGA implementation, this study takes into account the computational and
power restrictions of UAV platforms. Due to its low latency and real-time performance, this technology is
perfect for aerial surveillance and reconnaissance missions.

The article "Optimising Object Detection Networks on FPGA for Edge Computing™ was written by Li et al.
(2022). As part of their work on edge computing, Li et al. investigate ways to enhance object detection networks
running on FPGA systems. The paper explores solutions for pruning, quantization, and compression to reduce
computational complexity and model size without sacrificing accuracy. The improved FPGA implementation
demonstrates efficient inference on edge devices with limited resources.

The cumulative effect of these studies proves that FPGA-based object detection systems are practical and have
great potential for use in many fields as we speak. They contribute to the advancement of object recognition
technologies based on field-programmable gate arrays (FPGAs) by showcasing optimisation approaches,
hardware designs, and application-specific aspects. The effectiveness, efficiency, and performance of object
detection systems based on FPGAs will be enhanced in future research in this area, which will have many
practical applications.

Detection of Moving Objects Backed by FPGA The architectural differences between deep learning models and
FPGAs mean that some of them might not work well with the former. There can be additional development
work required to modify models to be compatible with FPGAs.

Real-Time FPGA Object Detection Made Efficient In order to identify keypoints in each frame of the movie, the
system uses the Speeded Up Robust Features (SURF) technique, and then it uses the Fast Retina Keypoint
(FREAK) approach to characterise them.

Object Detection and Recognition Models based on FPGA-based Deep Learning Evaluation of Object Detection
Methods The YOLO model outperforms FRCNN in terms of speed and ease of use, but it has lower accuracy
and worse frame rate performance.

An Xilinx FPGA-SoC-Based, Power-Efficient Convolutional Neural Network-Based Object Detection
Acceleration System For tiny devices like UAVS, cars, and Internet of Things (1oT) gadgets, the goal is to build
a CNN-based object detection model that is both quick and accurate.

A Real-time Object Detection System using a Thermal Camera An FPGA Implementation In order to train the
sparse YOLOv2, we used the deep learning framework Chainer. Furthermore, such systems may have memory

1551

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

restrictions, power consumption issues, and the requirement for efficient data transport from the thermal camera
to the FPGA.

Object Recognition in Real Time with FPGA Utilising CenterNet Minimise feature map dimensions, bias, and
weights to expedite device operation. The design of state-of-the-art object detection models, such as Faster R-
CNN or YOLO, may not naturally be compatible with the parallel architecture of FPGAs, which can be a
restriction of these devices.

Neural Network Design

To obtain efficient and real-time performance while designing a neural network for FPGA-based object
identification, there are several critical considerations to keep in mind. The steps involved in creating a neural
network are outlined here. Object detection tasks require careful consideration when choosing a neural network
architecture. Some popular options are Faster R-CNN, SSD (Single Shot MultiBox Detector), and YOLO (You
Only Look Once). When considering precision, speed, and computational complexity, each architecture offers
advantages and disadvantages. Taking into account the available resources and performance requirements, the
selected design should be optimised for FPGA implementation. The next step, after deciding on an architecture,
is to optimise the neural network model for FPGA deployment. Minimising computational complexity,
optimising memory access patterns, and lowering the model size are all part of this process. Reducing the
amount of parameters and operations can be achieved through techniques like model pruning, quantization, and
weight sharing. This will make the model more appropriate for FPGA acceleration. Efficient FPGA deployment
requires the implementation of operations that are favourable to hardware. Optimising common operations for
parallel execution and resource utilisation is essential. These procedures include convolution, pooling, and
activation functions. By utilising techniques such as data parallelism, loop unrolling, and pipelining, one can
take advantage of the inherent parallelism in FPGA systems. Improving inference performance on FPGA and
reducing resource requirements can be achieved by quantizing the activations and weights of the neural network
to lower precision formats, such as INT8 or even binary. If you want to further simplify computation without
sacrificing precision, you can utilise fixed-point arithmetic instead of floating-point arithmetic.

reset
ot [hs_delay_regl6] sris
—
_—
— a1
s_Oelay reg(7]
dk_BUF_inst BUF_BUFG T — A2
1 o 1 o ~
(D -{>— —{>— selay_reg(1) — A = ‘ i s OBUF
£ G — -
BU BUFG Le | & L O s
hs_in_BUF —ce . = OBUF
I e © i m o a
s 0
O 1 SRL16E -
BUF P FDRE
FORE lo_delay_reol6] te_delay_reg(7)
— n
= — A1 -+ € e osul 1
- a2 e
At 2 o |- O ce
e _ded egl 1] = OBUF
! -+ =
i
e_in_IBUF_inst — lce P S T 2=
5 a |-
= D | - SRL16E va_delay reg{7]
BUF - R -
i out_OBUF_inst
FDRE — ce
T = al- Dw
delay_regf1] delay regl] ; OBUF
. -1 A0
=l I3
s IBUF - cg m o
5 = - A2 =
i
D Jx ol
BUF —in

Clock Generator Code

The execution of the clock generator code is necessary to ensure that the FPGA-based object detection system
runs in synchronisation. Establishing a clock source, agreeing on a frequency, and transmitting clock signals to
different portions of the FPGA are typical stages in this code snippet. In this section, the clock source is
initialised and configured. It could be an external oscillator or an FPGA clock generator module. You have the
option to configure characteristics like as duty cycle, frequency, and phase to suit the application. Splitting the
clock signal might be required to obtain the secondary clock frequencies required by different parts of the object

1552

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

detection system. A divider or a Phase-Locked Loop (PLL) module can be used to generate lower-frequency
clock signals that are in sync with the main clock.
Project Summary x | Device % | gen_input.vhd % | neuron.vhd X trol.vhd « | Schematic X 250

Qa2 k| O C 222Cells 1011UOPorts 322 Nets &

Clock Output

When it comes to field-programmable gate array (FPGA) systems, the clock output is crucial for keeping all the
different modules and parts working in unison. Sequential logic elements, data transfers, and other time-
sensitive processes can be triggered by its regular, periodic signal. A dedicated clock generator circuit or module
is usually used to create the clock output. This module or circuit may use an external oscillator or internal
resources like Phase-Locked Loops (PLLs) to produce stable clock signals at the required frequency. For the
FPGA-based object detection system to work reliably and with correct timing, the clock output is essential. It
allows for components to communicate and coordinate in real time by establishing temporal relationships
between various design elements. Furthermore, the clock output makes it easier to add optimisations that boost
performance and throughput, such as pipelined designs and parallel processing units. In order for the FPGA-
based object detection system to accomplish real-time performance, give precise and efficient object detection
capabilities, and meet timing limitations, the clock output is crucial.

zyng_ultra_ps_e

=+ S_AXI_HPCO_FPD
=+ S_AXI HPO_FPD
ZHl+ S_AXI HPL_FPD hier_dpu
=+ S_AXI HP2_FPD
=|+ S_AXLHP3 FPD M_AXI_HPCO_FPD i
=l 4+ S_AXILPD ‘ : o
|+ SAXLL e M_AXI_HPMO_LPD - :—“‘-m—::g |
saxihpcl) f—: aclk pl.reseing M_“LM-FPD K
g0, ack i Mﬁ‘HPG}PD i
)_fpd @ i
pl_clkl BRI o
saxihpl_fpd_aclk + vz M_AXLLPD +|: dpu_concat_irg
el UltraSCALE L
saxihp3_fpd_aclk INTR[5:0] In0[5:0] dout{5:0]
saxi_lpd_ack
= plps im0[0:0] Concat
e 0l ps_im1[5:0]
Zynq UltraScale + MPSoC
rst_gen_reg
slowest_sync_clk mb_reset
ext_reset_in bus struct_reset{0:0]
€ aux_reset in peripheral_reset] 0:0]
= mb_debug sys rst interconnect_aresetn[0:0)
= dem_locked peripheral_ 0] r

Processor System Reset

1553

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Object Detection Output

In an FPGA-based system, the object detection output is the outcome of the object detection algorithm applied
to the input data, which is usually video or picture frames. The output details the input data's discovered objects,
including their location, size, and class. The output of an object detection system typically includes confidence
scores, class labels, and bounding boxes that encapsulate the items that have been recognised. Many
applications rely on the object detection output for subsequent processing and decisions. Drones, robots, and
self-driving automobiles are able to navigate, avoid obstacles, and track objects with the use of this technology
since it allows them to detect and understand their environment. Further analysis and interpretation can be
performed on the object detection output, like counting objects, measuring distances, or identifying particular
things of interest. The system's overall performance is dependent on the object detection output's accuracy and
dependability. Hence, the object detection algorithm needs to undergo extensive testing and validation to
guarantee it can successfully identify things in a wide range of settings. Intelligent decision-making and
improved functionality and autonomy of FPGA-based systems in real-world applications are ultimately enabled
by the object detection output.

In our methodology, we begin by clearly defining the objectives and requirements of the object detection
system. This involves understanding the specific application domain, target objects, and desired performance
metrics. Next, we carefully select an appropriate object detection algorithm based on these requirements,
considering factors such as accuracy, speed, and resource efficiency. Once the algorithm is chosen, we select a
suitable FPGA platform for implementation, taking into account factors such as resource availability,
performance capabilities, and cost-effectiveness. We then focus on optimizing the selected algorithm for FPGA
deployment, considering the hardware constraints and performance goals. This may involve algorithmic
optimizations, model pruning, quantization, or custom hardware design. With the optimized algorithm in hand,
we design the hardware architecture for implementation on the FPGA platform. This involves partitioning the
algorithm into hardware-friendly components, designing efficient data paths, and optimizing for parallelism.
Additionally, we develop a clock generation module to provide stable clock signals for synchronous operation
of the FPGA-based object detection system, ensuring proper clock distribution and synchronization across
different components.

Research Gap

Although there have been significant breakthroughs in object detection using FPGAs, there are still several
unanswered questions that need to be answered in order to make these systems even more effective, accurate,
and widely used. The first thing that needs doing is conducting thorough comparison assessments to see how
various object identification algorithms perform on FPGA systems. Up until now, research has concentrated on
finding the best way to implement individual algorithms in this context. For different use cases and hardware

1554

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

setups, this might aid in determining the best algorithmic options. The unique features of field-programmable
gate array (FPGA) architectures, including fine-grained parallelism and reconfigurability, necessitate more
investigation into innovative algorithmic and hardware design approaches. To add insult to injury, evaluating
FPGA-based object identification systems has been challenging due to the absence of standardised benchmark
datasets and evaluation measures. Establishing consistent standards will allow for more accurate comparisons of
various implementations and serve as a yardstick for gauging development in the industry. Further investigation
on how to combine FPGA-based object detection systems with cutting-edge innovations like 5G networks, the
Internet of Things (1oT), and edge computing is required. Also, while object identification systems based on
FPGAs have shown promise in lab settings, how well they do in complicated, real-world situations is still up in
the air. Problems including adaptability to new circumstances, scalability to big datasets, and resilience to
environmental fluctuations require more study. Ultimately, filling these knowledge gaps will help advance
FPGA-based object identification systems that are more effective, precise, and adaptable, making them more
useful in many contexts.

Field Work

To ensure that object detection systems based on field-programmable gate arrays (FPGASs) work as intended in
real-world settings, field testing is essential. The main goal of conducting field work is to evaluate the system's
functionality in different environments, with different kinds of objects, lighting, and weather. Implementing the
FPGA-based object detection system in the intended location (whether it an outdoor region, an industrial site, or
an urban setting) and then gathering data in real-time is what field trials are all about. Afterwards, the precision,
resilience, and efficacy of the system in identifying target objects are assessed using these data. Investigating the
system in the field also helps shed light on how it responds to potential performance-affecting environmental
elements including occlusions, reflections, and background clutter. To guarantee the system satisfies their
unique needs and successfully tackles real-world problems, fieldwork may entail coordinating with subject
specialists as well as end-users. Research constraints or problems with the system might be better understood in
a natural environment, which is why field trials are so important. To assess the efficacy of FPGA-based object
identification systems in real-world applications and to inspire future optimisations and modifications,
researchers might collect empirical evidence through field activities. To conclude, better and more dependable
object detection technologies can only be achieved by fieldwork that connects theoretical study with real-world
deployment.

Findings

Results from experiments and field work using FPGA-based object detection systems shed light on their
efficacy, performance, and possible improvement areas. The first takeaway from the research is the system's
promising performance in real-world object detection and localization, which has potential uses in areas
including autonomous driving, surveillance, and industrial automation. Additionally, the system's dependability
in difficult situations is demonstrated by its resilience to external elements like weather, occlusions, and lighting
fluctuations.

Furthermore, the results demonstrate the system's capacity to analyse input data and produce object detection
outputs within the specified time limits, illuminating its computational efficiency and real-time performance.
Autonomous car accident avoidance and surveillance system intrusion detection are two examples of
applications where quick decision-making is critical.

In addition, the results can reveal where the FPGA-based object detection system is lacking or could use some
improvement, such how well it handles enormous datasets, how well it handles changing situations, or how
efficiently it uses its resources. When these problems are located, researchers can work to improve the system's
architecture, algorithms, and design in order to fix them and make it work better overall.

The results from the field study not only show that FPGA-based object detection systems work well in real-
world settings, but they also suggest ways to optimise and enhance these systems to meet new problems as they
arise.

1555

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Conclusion

A potential solution for real-time and efficient object detection in diverse applications is FPGA-based object
detection systems. These systems prove they can detect and locate items in the actual world by combining
sophisticated algorithms with optimised hardware designs and rigorous validation procedures. This paper
presents a technique that allows for the methodical design, implementation, and validation of object detection
systems based on field-programmable gate arrays (FPGAS). It covers important topics including algorithm
selection, hardware design, clock generation, and sensor integration. The practical application of FPGA-based
object detection systems in varied fields like autonomous cars, surveillance, and industrial automation is
demonstrated by field work and experiments with these systems, which offer vital insights into their
performance, robustness, and efficiency. The results of these experiments provide valuable information for
improving the system and making it more capable of handling new problems. The future of FPGA-based object
detection systems depends on ongoing R&D into better algorithms, more efficient hardware, and ways to
incorporate new technology. Continuous improvement of FPGA-based object detection systems as trustworthy
and efficient tools for intelligent decision-making across domains is possible through filling knowledge gaps,
verifying system efficacy in practical settings, and teaming up with subject matter experts and end-users. In our
data-driven, hyper-connected world, these systems help improve autonomy, efficiency, and safety.

References

[1] 2019 International Conference on Computer Communication and Informatics (ICCCI -2014), Jan. 03 — 05,
2014, Coimbatore, INDIA

[2] Jin Zhao, Xinming Huang, and Yehia Massoud Department of Electrical and Computer Engineering
Worcester Polytechnic Institute, Worcester, MA 01609, USA

[3] Proceedings of the Fourth International Conference on Computing Methodologies and Communication
(ICCMC 2020) IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

[4] epartment of Electronics and Communication Engineering SRM Institute of Science and Technology SRM
Nagar, Kattankulathur 603 203, Chennai, India

[5] 2018 2nd IEEE International Conference On Recent Trends in Electronics Information & Communication
Technology (RTEICT), May 19-20, 2017, India

[6] Department of Electronics and Communication Engineering SRM Institute of Science and Technology
SRM Nagar, Kattankulathur 603 203, Chennai, India

[7] Institute for Design Problems in Microelectronics of Russian Academy of Sciences (IPPM RAS)
Moscow, Russia

[8] Dept. of Electronics and Electrical Engineering Dept. of Electronics and Electrical Engineering Dept. of
Electronics and Electrical Engineering

[9] M.S. Ramaiah School of Advanced Studies M.S. Ramaiah School of Advanced Studies M.S. Ramaiah
School of Advanced Studies Bengaluru, India Bengaluru, India Bengaluru, India

[10] Yakoub Bazi and Farid Melgani. 2018. Convolutional SVM Networks for ObjectDetection in UAV
Imagery. IEEE Transactions on Geoscience and Remote Sensing,56, 6, 3107-3118

[11] Caiwen Ding et al. 2017. CirCNN: Accelerating and Compressing Deep NeuralNetworks using Block-
circulantWeight Matrices. In Proceedings of the 50th AnnuallEEE/ACM International Symposium on
Microarchitecture (MICRO). ACM,395-408.

[12] Caiwen Ding et al. 2017. CirCNN: Accelerating and Compressing Deep NeuralNetworks using Block-
circulantWeight Matrices. In Proceedings of the 50th AnnuallEEE/ACM International Symposium on
Microarchitecture (MICRO). ACM,395-408.

[13] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, andHuazhong Yang. 2016. From
model to FPGA: Software-hardware Co-design forEfficient Neural Network Acceleration. In Hot chips 28
symposium (hcs), 2016ieee. IEEE, 1-27.

[14] Networks using Block-circulantWeight Matrices. In Proceedings of the 50th AnnuallEEE/ACM
International Symposium on Microarchitecture (MICRO). ACM,395-408

1556

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

[15] Networks using Block-circulantWeight Matrices. In Proceedings of the 50th AnnuallEEE/ACM
International Symposium on Microarchitecture (MICRO). ACM,395-408

[16]Jing Ma, Li Chen, and Zhiyong Gao. 2017. Hardware implementation andoptimization of tiny-yolo
network. In International forum on digital tv andwireless multimedia communications. Springer, 224-234.

1557

