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Abstract: - Energy efficiency is an essential issue in cloud computing. It has a massive financial and 

environmental effect that needs attention. A good VM-host mapping achieves low energy consumption while 

minimizing the number of migrations and Service Level Agreement Violation (SLAV). Dynamic Virtual 

Machine Consolidation (DVMC) is an excellent solution to reduce Energy Consumption (EC). However, an 

aggressive DVMC may increase the SLAV. So there is a need to balance the trade-off between EC and SLAV. 

Therefore, This work presents a Knapsack-based VM Selection (KVMS) algorithm. It works on the dynamic 0/1 

knapsack approach and selects the VM with the maximum ratio of its CPU utilization and migration time. 

Simulation results prove that proposed KVMS reduces SLAV and Energy-SLAV (ESV) at most 60% and 64%, 

respectively. 
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1. Introduction 

Cloud computing has recently arisen as a reliable and trusted computing technology that enhances the utilization 

of virtualized resources and services for end users [1]. It provides software and hardware as computing 

resources through the internet by the pay-as-you-use concept [2]-[4]. Figure 1 shows a cloud computing 

environment consisting of web resources like servers, applications, storage, and software platforms [5].  

 

 

 

 

 

 

 

 

Figure 1: Cloud computing environment [4] 

From 2010 to 2018, cloud data center computing instances and workload grew by six times which impact the 

operation cost and environmental pollution both [6],[7]. It increases energy consumption. So, there is a need for 

energy-aware resource allocation in cloud data center. This can be done by an efficient mapping of Virtual 

Machine (VM) to Physical Machine (PM).   

The Service Level Agreement (SLA) serves as a legal contract between the Cloud Service Provider (CSP) and 

Cloud User (CU), guaranteeing that the CU will receive uninterrupted service quality. In the event of an SLA 

violation (SLAV), the CSP will face financial penalties [8]-[10]. To prevent such violations, the CSP must 
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minimize EC while maintaining SLAV. However, there exists a a tradeoff between minimizing EC and avoiding 

SLAV. In cloud computing, reducing EC can involve consolidating Virtual Machines (VMs) onto fewer hosts, 

which could potentially degrade performance and increase the risk of SLAV. Therefore, finding a harmonious 

equilibrium between EC and SLAV is crucial. Dynamic Virtual Machine Consolidation (DVMC) is an essential 

step for resource allocation [11]-[13] in datacenter. 

Virtual Machine Consolidation (VMC) is an effective solution that helps to optimize resource utilization. 

DVMC consists of four phases as below [14][15] : 

1. To detect underloaded host: A host underloaded detection algorithm detects whether a host is 

underloaded or not.  

2. Overloaded Host detection. A host underloaded detection algorithm detects whether a host is 

overloaded or not. 

3. Selection of VMs from overloaded Hosts for migration: After detecting the overloaded host, a VM 

selection algorithm selects VMs to be migrated to another host. 

4. Appropriate Placement of selected VM : An appropriate host is selected to placed migrated Vms from 

overloaded/underloaded host. 

This paper focuses on third step of DVMC. The process of VM selection for migration plays a vital role in the 

domain of energy-aware cloud computing. A study report shows that an ideal server consumes approximately 

70% of its peak power utilization [16], and most servers operate only from 10% to 50% of their maximum 

capacity, leading to low server utilization [17]. Many idle or underloaded servers are the major contributor to 

energy wastage. Thus minimization of the active host and load balancing are efficient approaches to reduce EC 

in CDC. Therefore VM migration plays a vital role in DVMC and load balancing [18]. However, too many VM 

migrations also adversely affect the efficiency of the host and data center, as it is a resource-intensive technique 

that continuously demands CPU, memory, and communication bandwidth[19]. 

A lot of work [20],[21] has been proposed to improve DVMC. The efficiency of DVMC can be enhanced by 

improving the host underloaded/overloaded detection algorithm, VM selection policy, and VM placement 

policies. Literature [22] proposed Markov Power aware Best Fit Decreasing (MPBFD) for VM placement. Host 

Utilization Aware (HUA) algorithm is proposed in [23]. In [24], Multi-objective Dynamic VM Consolidation 

(MDVMC) is proposed to improve VMP. Existing work focused on one parameter either EC or SLAV.  Host 

overloaded and VM selection algorithms are proposed in [25],[26]. Literature [27] proposed minimum migration 

time over deviation for VM selection.  Vms are selected for migration based on minimum data transfer rate in 

[28]. Literature [23] selects Vm that have highest unsatisfied resource requirements. VM Migration Overhead 

Algorithm is used in [24] for Vm selection. Literatute [29] selects Vms of maximum CPU or memory 

utilization. This work presents a Knapsack-based VM Selection (KVMS) algorithm. It works on the dynamic 

0/1 knapsack approach and selects the VM with the maximum ratio of its CPU utilization and migration time. 

2. METHOD  

2.1 Proposed Knapsack-based VM Selection (KVMS) algorithm for DVMC 

A VM Selection policy finds the VMs that should be migrated from the overloaded host. Choosing the wrong 

VM may result in an increased number of migrations, leading to higher costs and energy consumption for the 

data center. Therefore, an effective VM selection policy is necessary for DVMC. This section contains a 

knapsack [30] based VM selection algorithm. 

Knapsack is a dynamic computer programming approach and operates on the principle of a thief who possesses 

a bag with a capacity of C (kg) and must choose and fill it with the available items to obtain the highest possible 

profit. The decision is taken based on n items having weights and profit values. There are two types of knapsack 

problems; one is a 0/1 knapsack in which items cannot be broken, and the second one is a fractional knapsack in 

which items can be selected infractions. This work uses the 0/1 knapsack technique because the VMs cannot be 

allocated infractions. Therefore, the proposed algorithm is called the Knapsack-based VM Selection (KVMS) 

algorithm. In KVMS, CPU utilization represents bag capacity; VMs in an overloaded host represents the items; 

CPU utilization of VM represents the item's weight, and VM's migration time represents the profit earned. The 

proposed work selects the VM with the maximum ratio of its CPU utilization and migration time. That means 

that instead of selecting VM with minimum CPU utilization [31], KVMS finds the VM with greater utilization 
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and shorter VM migration time so that a VM that consumes more CPU capacity and can be migrated in less time 

is selected for migration. As a result, the proposed algorithm reduces the number of VM migrations and energy 

consumption. 

A VMx is selected for migration if it satisfies Equation 1: 

(
Utilization

MigrationTime
)
x
> (

Utilization

MigrationTime
)
y
                                                                       (1) 

Here, y  all other VMs in migration List 

The Utilization factor does not depend solely on CPU utilization (UCPU); therefore, Utilized Bandwidth (UBW) 

and Utilized RAM (URAM) are used to evaluate the Utilization of VM on the host. It can be calculated using 

equation 2: 

Utilization = UCPU ∗ UBW ∗ URAM                                                                         (2)    

2.2 Proposed Algorithm                                                                    

Algorithm 1 shows the steps of KVMS algorithm.  KVMS utilizes the concept of knapsack for selecting VMs 

from overloaded hosts. It chooses a Vm for migration with a greater utilization and migration time ratio. Here, 

MigratableVmsList is the list of VMs in overloaded host that participate in migration process. If this list is 

empty, then algorithm returns null in step 3. Steps 6 to 10 are repeated for each VMx. Line 6 checks if VMx is 

already in migration then continue the process for next VM. Step 8 calculates Utilization by using equation 2 

and steps 9 & 10 find VM that has greater (Utilzation MigrationTime⁄ ) than other VMs. Step 12 return that 

selected VM. 

 

Algorithm 1: Knapsack-based VM Selection (KVMS) algorithm 

Input:  host, MigratableVmsList 

Output: selected VM  

1. Start 

2. if  MigratableVmsList is empty then 

3.     return null 

4. Initialize VM⃪ null 

5. for each VMx ( x ∈ MigratableVmsList) 

6.     if isInMigration (VMx) is true then 

7.         Continue Step 5 

8.     Calculate Utilization using equation 2 

9.      if  VMx satisfies condition given in equation 1 then 

10.          Assign VM⃪ VMx 

11.  end for 

12.  return VM 

13. End 

 

3.  Results And Discussion  

3.1 Experimental setup 

 Performance of proposed algorithms is evaluated using CloudSim. Total 800 heterogeneous hosts are taken. 

Here, real dataset Planet Lab that is furnished as a part of the CoMon project is used as workload. It is accessible 

from Beloglazov's GitHub repository (https://github.com/beloglazov/planetlab-workload-traces). The workload 

traces of one day (20110303) are taken to conduct the experiment. Simulation limit is taken 24 hour for 

experiments.  

 

 

https://github.com/beloglazov/planetlab-workload-traces
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3.2 Performance analysis and results  

The performance of proposed work is measured with the help of performance metrics i.e., Energy Consumption 

(EC), SLAV, and Energy and SLA Violation (ESV). The simulation is conducted for all combinations of the 

existing four host overload detection (HOD) algorithms (Iqr, Lr, Mad, Thr), four VM selection (VMS) 

algorithms (Mc, Mmt, Mu, Rs), and one VM placement algorithm (PABFD). For comparison, proposed KVMS 

is combined with the above four HOD and PABFD. These combinations are compared based on performance 

metrics.  

Table 1 shows the result of simulation and maximum improvement from using KVMS. Best results are shown 

as “Bold”. Figures 1 to 3 show graphical representation of performance metrics. Figure 1 shows the comparative 

analysis of energy consumption.  it can be seen that among existing algorithms, LrKVMS gives best results for 

EC. KVMC improves EC atmost 19%, 18%, 20%, and 19% with Iqr, Lr, Mad, and Thr, respectively. Figure 2 

represents the results of SLAV. It can be seen from figure that IqrKVMS gives minimum SLAV. KVMC 

minimizes SLAV atmost 60%, 42%, 53%, and 54% with Iqr, Lr, Mad, and Thr, respectively. . Figure 3 

represents the results of ESV. It can be seen from figure that IqrKVMS gives minimum ESV. KVMC minimizes 

ESV atmost 64%, 45%, 61%, and 58% with Iqr, Lr, Mad, and Thr, respectively.  

Table 1: Comparisons of KVMS with existing VMS algorithms 

P
e
r
fo

r
m

a
n

c
e
 

M
e
tr

ic
s 

   Algorithms 

Iqr Lr Mad Thr 
 

E
C

 

KVMS 163 142 160 167 

Mc 178 150 176 183 

Mmt 188 163 184 191 

Mu 202 174 200 206 

Rs 180 149 191 184 

Maximum Improvement(%) 19 18 20 19 

S
L

A
V

*
1

0
-2

  
(%

) 

KVMS 0.289 0.403 0.348 0.331 

Mc 0.726 0.677 0.739 0.697 

Mmt 0.303 0.463 0.331 0.324 

Mu 0.472 0.592 0.510 0.481 

Rs 0.695 0.694 0.743 0.716 

Maximum Improvement(%) 60 42 53 54 

E
S

V
*
1
0

-2
  

(%
) 

KVMS 47.0 57.3 55.7 55.3 

Mc 129.2 101.6 130.1 127.6 

Mmt 57.0 75.5 60.9 61.9 

Mu 95.3 103.0 102.0 99.1 

Rs 123.7 103.4 141.9 131.7 

Maximum Improvement (%) 64 45 61 58 

 

        HOD 
VMS                    
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Figure 1: Energy Consumption for proposed and existing algorithms 

 

Figure 2: SLAV for proposed and existing algorithms 

 

 

Figure 3: ESV for proposed and existing algorithms 
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4. Conclusion 

This paper presents Knapsack-based VM Selection (KVMS) algorithm for DVMC.  KVMS utilizes the concept 

of knapsack for selecting VMs from overloaded hosts. It chooses a Vm for migration with a greater utilization 

and migration time ratio. Simulation results proved that using KVMS for VMS improves performance metrics, 

i.e., EC, SLAV, and ESV. Simulation results prove that proposed KVMS reduces SLAV and ESV at most 60% 

and 64%, respectively. 
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