
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

1420 

Equitable Colouring of Cartesian Product 

of Semi-Total Point Graph with Certain 

Graphs 

G. Murali1, m.s. Paulraj2 

 1 Assistant Professor, PG and Research Department of Mathematics, 

 Agurchand Manmull Jain College, University of Madras, Chennai, Tamilnadu, India.  
2 Associate Professor, PG and Research Department of Mathematics,  

Agurchand Manmull Jain College, University of Madras, Chennai, Tamilnadu, India.  

 

Abstract: An equitable proper colouring of graph 𝐺 is the number of vertices with any two-colour classes that 

differ by one and is denoted by 𝜒=(𝐺). The semi-total point graphs are graphs that has captivated the 

imagination of the graph theoretic researchers of the modern era. In this paper, the acceptance of equitable 

colouring to the Cartesian product of semi-total point graph with certain specific graphs has been proved. 
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1.   Introduction 

The colouring problem in graphs are one of the most thought inspiring problems in graph theory that has extensive 

applications. An extension to proper colouring, was developed by Meyer in 1973[12]. Hanna Furmanczyk[6] 

proved the being of equitable colouring in product graphs. Following Furmanczyk, Wu-Hsiung Lin and Gerard 

J.Chang[19] proved that the Cartesian product of graphs is equitable. These things provided the impetus to apply 

the concept of equitable colouring and has come up with study Cartesian Product of Semi-Total Point Graph with 

Certain Graphs. 

2.   Basic Definitions 

Definition 2.1 [12]  

Let 𝐺(𝑉, 𝐸) be a graph and let the partition on the vertex set {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} be a proper 𝑘-colouring of 𝐺. An 

equitable k-colouring is defined as||𝑉𝑖| − |𝑉𝑗|| ≤ 1, 𝑖, 𝑗 = 1,2, … , 𝑘. The Equitable colouring of 𝐺 denoted by 

𝜒=(𝐺) is the smallest integer 𝑘 for which 𝐺 is equitably 𝑘-colourable. 

Definition 2.2 [7] 

For graphs 𝐺1 and 𝐺2, the Cartesian products of graphs  𝐺1 and 𝐺2 will be denoted by 𝐺1 ◻ 𝐺2 with vertex set 

𝑉(𝐺1 ◻ 𝐺2) = {(𝑥, 𝑦): 𝑥 ∈ 𝑉(𝐺1), 𝑦 ∈ 𝑉(𝐺2)} and edge set 

𝐸(𝐺1 ◻ 𝐺2) = {(𝑥, 𝑦)(𝑢, 𝑣): 𝑥 = 𝑢 and 𝑦𝑣 ∈ 𝐸(𝐺2) or 𝑦 = 𝑣 and 𝑥𝑢 ∈ 𝐸(𝐺1)}. 

Definition 2.3 [16] 

The semi-total point graph  𝑇2(𝐺) of 𝐺 is the graph whose vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺). For  𝑎, 𝑏 ∈ 𝑉(𝑇2(𝐺)), 

𝑎 and 𝑏 are adjacent if and only if the following conditions hold. 

(i) 𝑎, 𝑏 ∈ 𝑉(𝐺), 𝑎, 𝑏 are adjacent vertices of 𝐺.  
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(ii) 𝑎 ∈ 𝑉(𝐺) and  𝑏 ∈ 𝐸(𝐺) , 𝑏 is incident with  𝑎 in 𝐺. 

3.   Pre-Requisites 

The following results are useful in proving the main results. 

Theorem 3.1 [12] If G is a connected graph, different from 𝐶2𝑛+1 and 𝐾𝑛 ∀ 𝑛 ≥ 1, then 𝜒=(𝐺) ≤ ∆(𝐺). 

Theorem 3.2 [10] The Equitable ∆- Colouring Conjecture (E∆𝐶𝐶), a connected graph 𝐺 is equitable ∆(𝐺) – 

colourable if 𝐺 is different from 𝐶2𝑛+1, 𝐾𝑛 and 𝐾2𝑛+1,2𝑛+1 ∀ 𝑛 ≥ 1.  

Theorem 3.3 [5] Let 𝐺 be a connected graph with ∆(𝐺) ≥
|𝐺|

2
. If 𝐺 is different from 𝐾𝑚 and 𝐾2𝑚+1,2𝑚+1 for all 

𝑚 ≥ 1 then 𝐺 is equitably ∆(𝐺)-colourable.  

Theorem 3.4 [7] 𝜒(𝐺1 ◻ 𝐺2) = max {𝜒(𝐺1), 𝜒(𝐺2).  

Theorem 3.5 [2] If 𝐺1 and 𝐺2 are equitably 𝑘 colourable, then 𝐺1 ◻ 𝐺2 is equitably 𝑘 - colourable. 

Theorem 3.6 [19] 𝜒=(𝐺1 ◻ 𝐺2) ≤ 𝜒(𝐺1)𝜒(𝐺2) for connected graph 𝐺1 and 𝐺2. 

Theorem 3.7 [14] If 𝑛 and 𝑚 are non-negative integers then the equitable chromatic number of  𝑇2(𝑃𝑚) ◻ 𝑃𝑛 is 

3. 

Theorem 3.8 [13] If 𝑚 and 𝑛 are non-negative integers, 𝑚 ≥ 3, 𝑛 ≥ 2  then the equitable chromatic number of  

𝑇2(𝐶𝑚) ◻ 𝑃𝑛 is 3 

Theorem 3.9 [12] For any graph 𝐺, 𝜒=(𝐺) ≤ ∆(𝐺) + 1. 

4.   Equitable Colouring Of Cartesian Product Of Graphs 

In this paper, we first consider 𝐺 as the path and 𝐻 as the cycle, complete and bipartite graph. Secondly, we 

consider 𝐺 as the cycle and 𝐻 as the cycle, complete and bipartite graph. Next, we consider 𝐺 as the complete 

graph and 𝐻 as the path, cycle, complete and bipartite graph. Finally, we consider 𝐺 as the complete bipartite 

graph and 𝐻 as the path, cycle and complete graph. 

The notion 𝑖 ≡ 02 refers to 𝑖 ≡ 0(𝑚𝑜𝑑2). 

Theorem 4.1 Let 𝐺 and 𝐻 be the two graphs, where 𝐺 is a semi-total point graph of path, 𝑇2(𝑃𝑚) on 𝑚 ≥ 2 

vertices, the equitable colouring of the Cartesian product of 𝐺 and 𝐻, for 𝑛 ≥ 3 

(i) 𝜒=(𝐺 ◻ 𝐶𝑛 ) = {
3 ; 𝑛 ≠ 3𝑘 + 1                                  
4 ;  𝑛 = 3𝑘 + 1 and 𝑛 ≠ 12𝑘 + 1

 

(ii) 𝜒=(𝐺 ◻ 𝐾𝑛) = 𝑛 ; 𝑛 = 3𝑘 

(iii) 𝜒=(𝐺 ◻ 𝐾𝑝,𝑞) = 3 ; 𝑚 = 3𝑘 − 1, 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 

    ∀ 𝑘 ≥ 1. 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

The proof of the theorem is divided into three cases, 

The graph 𝐺 is a semi-total point graph of path on 𝑚 ≥ 2. 

Case 1: Let 𝐻 = 𝐶𝑛 for 𝑛 ≥ 3. 

Cleary, the number of vertices in 𝑇2(𝑃𝑚) ◻ 𝐶𝑛 is 𝑛(2𝑚 − 1) vertices and the number of edges is 𝑛(5𝑚 − 4) 

edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝑃𝑚) ◻ 𝐶𝑛 be 
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𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃⋃{𝑒𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗)}

𝑚−2

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣(𝑗+1)𝑚𝑜𝑑 𝑛 )}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃⋃{(𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣(𝑗+1)𝑚𝑜𝑑 𝑛)}

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

Claim (a): We will proof  𝜒=(𝐺 ◻ 𝐶𝑛 ) = 3 for 𝑛 ≥ 3 and 𝑛 ≠ 3𝑘 + 1, 𝑘 ≥ 1. 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = (𝑖 + 𝑗)(𝑚𝑜𝑑 3) 

𝜎(𝑒𝑖𝑣𝑗) = (𝑖 + 𝑗 + 2)(𝑚𝑜𝑑 3) 

Now, the vertex set is partitioned into 𝑉0, 𝑉1 and 𝑉2 as below 

       𝑉0 = {
𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 03

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 03
             𝑉1 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 13

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 13
         𝑉2 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 23

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 23
  

The sets 𝑉0, 𝑉1 and 𝑉2 are independent of 𝐺 ◻ 𝐻, also 

(i) If (a)  𝑛 ≡ 03 and ∀ 𝑚, (b) 𝑛 ≡ 23 & 𝑚 ≡ 23 then |𝑉0| = |𝑉1| = |𝑉2| =  
𝑛(2𝑚−1)

3
. 

(ii) If  𝑛 ≡ 23 then  

(a) For 𝑚 ≡ 03 |𝑉0| = ⌈
𝑛(2𝑚−1)

3
⌉ and |𝑉1| = |𝑉2| = ⌊

𝑛(2𝑚−1)

3
⌋. 

(b) For 𝑚 ≡ 13 |𝑉0| = |𝑉1| = ⌈
𝑛(2𝑚−1)

3
⌉ and |𝑉2| = ⌊

𝑛(2𝑚−1)

3
⌋. 

Obviously, from (i) and (ii) the inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 3 for 𝑛 ≥ 3 and 𝑛 ≠ 3𝑘 + 1, 𝑘 ≥ 1. 

Claim (b): We will proof  𝜒=(𝐺 ◻ 𝐶𝑛 ) = 4 for 𝑛 = 3𝑘 + 1 and 𝑛 ≠ 12𝑘 + 1, 𝑘 ≥ 1. 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = (𝑖 + 𝑗)(𝑚𝑜𝑑 4) 

𝜎(𝑒𝑖𝑣𝑗) = (𝑖 + 𝑗 + 2)(𝑚𝑜𝑑 4) 

Now, the vertex set is partitioned into 𝑉0, 𝑉1 and 𝑉2 as below 

                      𝑉0 = {
𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 04

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 04
               𝑉1 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 14

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 14
 

                      𝑉2 = {
𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 24

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 24
               𝑉3 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 34

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 34
 

The sets 𝑉0, 𝑉1, 𝑉2 and 𝑉3 are independent of 𝐺 ◻ 𝐻, also 

(i) If  𝑛 ≡ 04, ∀ 𝑚 then |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| =  
𝑛(2𝑚−1)

4
. 
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(ii) If  𝑛 ≡ 24 then  

(a) For 𝑚 ≡ 04, |𝑉0| = |𝑉3| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉1| = |𝑉2| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(b) For 𝑚 ≡ 14, |𝑉0| = |𝑉1| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉2| = |𝑉3| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(c) For 𝑚 ≡ 24, |𝑉1| = |𝑉2| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉0| = |𝑉3| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(d) For 𝑚 ≡ 34, |𝑉2| = |𝑉3| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉0| = |𝑉1| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(iii) If  𝑛 ≡ 34 then  

(a) For 𝑚 ≡ 04, |𝑉0| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉1| = |𝑉2| = |𝑉3| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(b) For 𝑚 ≡ 14, |𝑉0| = |𝑉1| = |𝑉2| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉3| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(c) For 𝑚 ≡ 24, |𝑉2| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉0| = |𝑉1| = |𝑉3| = ⌊

𝑛(2𝑚−1)

4
⌋. 

(d) For 𝑚 ≡ 34, |𝑉0| = |𝑉2| = |𝑉3| = ⌈
𝑛(2𝑚−1)

4
⌉ and |𝑉1| = ⌊

𝑛(2𝑚−1)

4
⌋. 

Obviously, from (i), (ii) and (iii) the inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 4 for 𝑛 = 3𝑘 + 1 and 𝑛 ≠ 12𝑘 + 1, 𝑘 ≥ 1. 

Case 2: Let 𝐻 = 𝐾𝑛 for 𝑛 = 3𝑘, 𝑘 ≥ 1   

Cleary, the number of vertices in 𝑇2(𝑃𝑚) ◻ 𝐾𝑛 is 𝑛(2𝑚 − 1) vertices and the number of edges is 
𝑛

2
(2𝑚𝑛 + 4𝑚 −

𝑛 − 5) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝑃𝑚) ◻ 𝐾𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃⋃{𝑒𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗)}

𝑚−2

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣k )}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃⋃⋃{(𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣𝑘)}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑚−2

𝑖=0

) 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = (𝑖 + 𝑗)(𝑚𝑜𝑑 3) + 3 ⌊
𝑗

3
⌋ 

𝜎(𝑒𝑖𝑣𝑗) = (𝑖 + 𝑗 + 2)(𝑚𝑜𝑑 3) + 3 ⌊
𝑗

3
⌋ 

Each colour (0,1,2, … , 𝑛 − 1) appears exactly 2𝑚 − 1 times. Thus, the difference does not exceed one.  

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑛) = 𝑛  for 𝑛 = 3𝑘, 𝑘 ≥ 1. 

Case 3: Let 𝐻 = 𝐾𝑝,𝑞 for 𝑚 = 3𝑘 − 1, 𝑘 ≥ 1, 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝. 

Cleary, the number of vertices in 𝑇2(𝑃𝑚) ◻ 𝐾𝑝,𝑞 is 2𝑝(2𝑚 − 1) vertices and the number of edges is 

3(𝑚 − 1)(𝑝 + 𝑞) + 𝑝𝑞(2𝑚 − 1) edges. 
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Let the vertex set and edge set of the Cartesian product 𝑇2(𝑃𝑚) ◻ 𝐾𝑝,𝑞 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃⋃{𝑒𝑖𝑣𝑗}

𝑝−1

𝑗=0

𝑚−2

𝑖=0

) ∪ (⋃ ⋃{𝑢𝑖𝑣𝑗′}

𝑞−1

𝑗′=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃{𝑒𝑖𝑣𝑗′}

𝑞−1

𝑗′=0

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢𝑖+1𝑣𝑗)}

𝑚−2

𝑖=0

𝑝−1

𝑗=0

)

∪ (⋃ ⋃{(𝑢𝑖𝑣𝑗′)(𝑢𝑖+1𝑣𝑗′); (𝑢𝑖𝑣𝑗′)(𝑒𝑖𝑣𝑗′); (𝑒𝑖𝑣𝑗′)(𝑢𝑖+1𝑣𝑗′)}

𝑚−2

𝑖=0

𝑞−1

𝑗′=0

)

∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑗′ )}

𝑞−1

𝑗′=0

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃⋃⋃{(𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗′ )}

𝑞−1

𝑗′=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

) 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑝 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = 𝑖(𝑚𝑜𝑑 3) 

𝜎(𝑒𝑖𝑣𝑗) = (𝑖 + 2)(𝑚𝑜𝑑 3) 

            ∀ 0 ≤ 𝑗′ ≤ 𝑞 − 1,  

𝜎(𝑢𝑖𝑣𝑗′) = (𝑖 + 2)(𝑚𝑜𝑑 3) 

𝜎(𝑒𝑖𝑣𝑗′) = (𝑖 + 1)(𝑚𝑜𝑑 3) 

Now, the vertex set is partitioned into 𝑉0, 𝑉1, 𝑉2 and 𝑉3 as below 

𝑉0 = {𝑢𝑖≡03𝑣𝑗; 𝑒𝑖≡13𝑣𝑗; 𝑢𝑖≡13𝑣𝑗′ ; 𝑒𝑖≡23𝑣𝑗′} 

𝑉1 = {𝑢𝑖≡13𝑣𝑗; 𝑒𝑖≡23𝑣𝑗; 𝑢𝑖≡23𝑣𝑗′ ; 𝑒𝑖≡03𝑣𝑗′} 

𝑉2 = {𝑢𝑖≡23𝑣𝑗; 𝑒𝑖≡03𝑣𝑗; 𝑢𝑖≡03𝑣𝑗′ ; 𝑒𝑖≡13𝑣𝑗′} 

The sets 𝑉0, 𝑉1 and 𝑉2 are independent of 𝐺 ◻ 𝐻, also |𝑉0| = |𝑉1| = |𝑉2| =  
(2𝑚−1)(𝑝+𝑞)

3
. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑝,𝑞) = 3 for 𝑚 =

3𝑘 − 1, 𝑘 ≥ 1, 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝. 

Corollary 4.1.1 For 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1, 𝜒=(𝑇2(𝑃2) ◻ 𝐾𝑛) = 𝑛. 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

For 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1, The colouring of vertices as follows from theorem 4.1 case 2. 

Each colour (0,1,2, … , 𝑛 − 4) appears exactly 3 times and each colour (𝑛 − 3, 𝑛 − 2, 𝑛 − 1) appears exactly 2 

times. Thus, the difference does not exceed one. 

By theorem 3.4, we get, 𝜒=(𝑇2(𝑃2) ◻ 𝐾𝑛 ) = 𝑛 for 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1. 

Theorem 4.2 If 𝑚 and 𝑛 are non-negative integers, 𝑚 ≥ 3, 𝑛 ≥ 3  then the equitable colouring of  

𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 )

= {
3 ;𝑚 = 3𝑘 and 𝑛 ≠ 3𝑘 + 1                                                                                                     
4 ; 𝑚 = 2(3𝑘 − 1), 2(3𝑘 − 2), 𝑛 ≠ 4𝑘 + 1 and 𝑚 = 6𝑘, 𝑛 = 3𝑘 + 1, 𝑛 ≠ 12𝑘 + 1
5 ;𝑚 = 2𝑘 − 1,𝑚 ≠ 3𝑘, 5𝑘 − 1, 5𝑘 + 1 and  𝑛 ≠ 5𝑘 + 1                                              
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    ∀ 𝑘 ≥ 1. 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

For 𝑚 ≥ 3 and 𝑛 ≥ 3, 

Cleary, the number of vertices in 𝑇2(𝐶𝑚) ◻ 𝐶𝑛 is 2𝑚𝑛 vertices and the number of edges is 5𝑚𝑛 edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐶𝑚) ◻ 𝐶𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  ⋃⋃{𝑢𝑖𝑣𝑗; 𝑒𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗)}

𝑚−1

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛)); (𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) 

Case 1: We will proof  𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 3 for 𝑚 = 3𝑘 and  𝑛 ≠ 3𝑘 + 1, 𝑘 ≥ 1. 

The colouring of vertices as follows from theorem 4.1 case 1 claim (a), 

The sets 𝑉0, 𝑉1 and 𝑉2 are independent of 𝐺 ◻ 𝐻, also |𝑉0| = |𝑉1| = |𝑉2| =  
2𝑚𝑛

3
. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 3 for 𝑚 = 3𝑘 and 𝑛 ≠ 3𝑘 + 1, 𝑘 ≥ 1. 

Case 2: We will proof  𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 4 for 𝑚 = 2(3𝑘 − 1), 2(3𝑘 − 2), 𝑛 ≠ 4𝑘 + 1 and  𝑚 = 6𝑘, 𝑛 =

3𝑘 + 1, 𝑛 ≠ 12𝑘 + 1, 𝑘 ≥ 1. 

The colouring of vertices as follows from theorem 4.1 case 1 claim (b), 

The sets 𝑉0, 𝑉1 and 𝑉2 are independent of 𝐺 ◻ 𝐻, also |𝑉0| = |𝑉1| = |𝑉2| =  
𝑚𝑛

2
. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 4 for 𝑚 = 2(3𝑘 − 1), 2(3𝑘 − 2), 𝑛 ≠ 4𝑘 + 1 and 𝑚 = 6𝑘, 𝑛 =

3𝑘 + 1, 𝑛 ≠ 12𝑘 + 1, 𝑘 ≥ 1. 

Case 3: We will proof  𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 5 for 𝑚 = 2𝑘 − 1,𝑚 ≠ 3𝑘, 5𝑘 − 1, 5𝑘 + 1 and 𝑛 ≠ 5𝑘 + 1. 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = (𝑖 + 𝑗)(𝑚𝑜𝑑 5) 

𝜎(𝑒𝑖𝑣𝑗) = (𝑖 + 𝑗 + 2)(𝑚𝑜𝑑 5) 

Now, the vertex set is partitioned into 𝑉0, 𝑉1, 𝑉2 and 𝑉3 as below 

               𝑉0 = {
𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 05

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 05
        𝑉1 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 15

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 15
          𝑉2 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 25

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 25
 

                                      𝑉3 = {
𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 35

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 35
                𝑉4 = {

𝑢𝑖𝑣𝑗  ;        𝑖 + 𝑗 ≡ 45

𝑒𝑖𝑣𝑗  ; 𝑖 + 𝑗 + 2 ≡ 45
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The sets 𝑉0, 𝑉1, 𝑉2, 𝑉3 and 𝑉4 are independent of 𝐺 ◻ 𝐻, also 

(i) If  𝑚 ≡ 15 and 𝑛 ≡ 15 then |𝑉0| = |𝑉2| = ⌈
2𝑛𝑚

5
⌉ and |𝑉1| = |𝑉3| = |𝑉4| = ⌊

2𝑛𝑚

5
⌋. 

(ii)  If  𝑚 ≡ 25 and 𝑛 ≡ 25 then |𝑉0| = |𝑉4| = ⌊
2𝑛𝑚

5
⌋ and |𝑉1| = |𝑉2| = |𝑉3| = ⌈

2𝑛𝑚

5
⌉. 

(iii)  If  𝑚 ≡ 35 and 𝑛 ≡ 35 then |𝑉0| = |𝑉1| = ⌊
2𝑛𝑚

5
⌋ and |𝑉2| = |𝑉3| = |𝑉4| = ⌈

2𝑛𝑚

5
⌉. 

(iv)  If  𝑚 ≡ 45 and 𝑛 ≡ 45 then |𝑉0| = |𝑉3| = ⌈
2𝑛𝑚

5
⌉ and |𝑉1| = |𝑉2| = |𝑉4| = ⌊

2𝑛𝑚

5
⌋. 

(v) If (a) 𝑚 ≡ 05 ∀ 𝑛, (b) 𝑛 ≡ 05 and 𝑚 ≡ 𝑟5, 1 ≤ 𝑟 ≤ 4  then |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| =  
2𝑛𝑚

5
. 

(vi)   If (a)  𝑚 ≡ 15 and 𝑛 ≡ 25, (b)  𝑚 ≡ 25 and 𝑛 ≡ 15  then |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = ⌈
2𝑛𝑚

5
⌉ and |𝑉4| =

⌊
2𝑛𝑚

5
⌋. 

(vii) If (a)  𝑚 ≡ 15 and 𝑛 ≡ 35, (b)  𝑚 ≡ 35 and 𝑛 ≡ 15  then |𝑉0| = |𝑉1| = |𝑉3| = |𝑉4| = ⌊
2𝑛𝑚

5
⌋ and |𝑉2| =

⌈
2𝑛𝑚

5
⌉  

(viii) If (a)  𝑚 ≡ 15 and 𝑛 ≡ 45, (b)  𝑚 ≡ 45 and 𝑛 ≡ 15  then |𝑉0| = |𝑉2| = |𝑉3| = ⌈
2𝑛𝑚

5
⌉ and 

|𝑉1| = |𝑉4| = ⌊
2𝑛𝑚

5
⌋. 

(ix)  If (a)  𝑚 ≡ 25 and 𝑛 ≡ 35, (b)  𝑚 ≡ 35 and 𝑛 ≡ 25  then |𝑉0| = |𝑉1| = |𝑉4| = ⌊
2𝑛𝑚

5
⌋ and |𝑉2| = |𝑉3| =

⌈
2𝑛𝑚

5
⌉. 

(x) If (a)  𝑚 ≡ 25 and 𝑛 ≡ 45, (b)  𝑚 ≡ 45 and 𝑛 ≡ 25  then |𝑉3| = ⌈
2𝑛𝑚

5
⌉ and |𝑉0| = |𝑉1| = |𝑉2| = |𝑉4| =

⌊
2𝑛𝑚

5
⌋. 

(xi)  If (a)  𝑚 ≡ 35 and 𝑛 ≡ 45, (b)  𝑚 ≡ 45 and 𝑛 ≡ 35  then |𝑉0| = |𝑉2| = |𝑉3| = |𝑉4| = ⌈
2𝑛𝑚

5
⌉ and |𝑉1| =

⌊
2𝑛𝑚

5
⌋. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝑇2(𝐶𝑚) ◻ 𝐶𝑛 ) = 5 for 𝑚 = 2𝑘 − 1,𝑚 ≠ 3𝑘, 5𝑘 − 1, 5𝑘 + 1 and 𝑛 ≠ 5𝑘 + 1. 

Theorem 4.3 Let 𝐺 and 𝐻 be the two graphs, where 𝐺 is a semi-total point graph of cycle, 𝑇2(𝐶𝑚) on 𝑚 ≥ 3 

vertices, the equitable colouring of the Cartesian product of 𝐺 and 𝐻, for 𝑛 ≥ 3 

(i) 𝜒=(𝐺 ◻ 𝐾𝑛) = 𝑛 ; 𝑚, 𝑛 = 3𝑘 

(ii) 𝜒=(𝐺 ◻ 𝐾𝑝,𝑞) = 3 ; 𝑚 = 3𝑘, 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 

    ∀ 𝑘 ≥ 1. 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

The proof of the theorem is divided into two cases, 

The graph 𝐺 is a semi-total point graph of cycle on 𝑚 ≥ 3. 

Case 1: Let 𝐻 = 𝐾𝑛 for 𝑚, 𝑛 = 3𝑘, 𝑘 ≥ 1. 

Cleary, the number of vertices in 𝑇2(𝐶𝑚) ◻ 𝐾𝑛 is 2𝑚n vertices and the number of edges is 𝑚𝑛(𝑛 + 2) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐶𝑚) ◻ 𝐾𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  ⋃⋃{𝑢𝑖𝑣𝑗; 𝑒𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0
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𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗)}

𝑚−1

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣k ); (𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣𝑘)}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑚−1

𝑖=0

) 

The colouring of vertices as follows from theorem 4.1 case 2. 

Each colour (0,1,2, … , 𝑛 − 1) appears exactly 2𝑚 times. Thus, the difference does not exceed one. 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑛 ) = 𝑛 for 𝑚 = 3𝑘 and 𝑛 = 3𝑘, 𝑘 ≥ 1. 

Case 2: Let 𝐻 = 𝐾𝑝,𝑞 for 𝑚 = 3𝑘, 𝑘 ≥ 1 and 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 

Cleary, the number of vertices in 𝑇2(𝐶𝑚) ◻ 𝐾𝑝,𝑞  is 2𝑚(𝑝 + 𝑞) vertices and the number of edges is 𝑚(3𝑝 + 3𝑞 +

𝑝𝑞) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐶𝑚) ◻ 𝐾𝑝,𝑞 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗; 𝑒𝑖𝑣𝑗}

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃{𝑢𝑖𝑣𝑗′ ; 𝑒𝑖𝑣𝑗′}

𝑞−1

𝑗′=0

𝑚−1

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗); (𝑒𝑖𝑣𝑗)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗)}

𝑚−1

𝑖=0

𝑝−1

𝑗=0

)

∪ (⋃ ⋃{(𝑢𝑖𝑣𝑗′)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗′); (𝑢𝑖𝑣𝑗′)(𝑒𝑖𝑣𝑗′); (𝑒𝑖𝑣𝑗′)(𝑢(𝑖+1)(𝑚𝑜𝑑 𝑚)𝑣𝑗′)}

𝑚−1

𝑖=0

𝑞−1

𝑗′=0

)

∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑗′ ); (𝑒𝑖𝑣𝑗)(𝑒𝑖𝑣𝑗′ )}

𝑞−1

𝑗′=0

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) 

The colouring of vertices as follows from theorem 4.1 case 3. 

The sets 𝑉0, 𝑉1 and 𝑉2 are independent of 𝐺 ◻ 𝐻, also |𝑉0| = |𝑉1| = |𝑉2| =  
2𝑚(𝑝+𝑞)

3
. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑝,𝑞) = 3 for 𝑚 =

3𝑘, 𝑘 ≥ 1 and 𝑝 ≥ 2, 𝑞 ≥ 1 and 𝑝 − 1 ≤ 𝑞 ≤ 𝑝. 

 

Theorem 4.4 Let 𝐺 and 𝐻 be the two graphs, where 𝐺 is a semi-total point graph of complete, 𝑇2(𝐾𝑚) on 𝑚 ≥ 4 

vertices, the equitable colouring of the Cartesian product of 𝐺 and 𝐻, 

(i) 𝜒=(𝐺 ◻ 𝑃𝑛) = 𝑚 ; 𝑛 ≥ 2 

(ii) 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 𝑚 ;  𝑛 ≠ 𝑚𝑘 + 1 

(iii) 𝜒=(𝐺 ◻ 𝐾𝑛) = 𝑚 ; 𝑚 ≥ 𝑛 

(iv) 𝜒=(𝐺 ◻ 𝐾𝑝,𝑞) = 𝑚 ;𝑚 = 2𝑘, 𝑝 ≥ 2, 𝑞 ≥ 1 & 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 + 1 and also 𝑚 = 2𝑘 + 3 & 𝑝 =

2 

     ∀ 𝑘 ≥ 1. 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

The proof of the theorem is divided into four cases, 
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The graph 𝐺 is a semi-total point graph of complete on 𝑚 ≥ 4. 

Case 1: Let 𝐻 = 𝑃𝑛 for 𝑛 ≥ 2. 

Cleary, the number of vertices in 𝑇2(𝐾𝑚) ◻ 𝑃𝑛 is 
𝑛𝑚(𝑚+1)

2
 vertices and the number of edges is 

𝑚

2
(4𝑚𝑛 − 2𝑛 −

𝑚 − 1) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐾𝑚) ◻ 𝑃𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃{𝑒𝑖𝑘𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃ ⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑘𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗); (𝑒𝑖𝑘𝑣𝑗)(𝑢𝑘𝑣𝑗)}

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑗+1)}

𝑛−2

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃ ⋃⋃{(𝑒𝑖𝑘𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗+1)}

𝑛−2

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑒𝑖𝑘𝑣𝑗) =

{
 
 

 
 
(𝑘 + 𝑗 + 1)(𝑚𝑜𝑑 𝑚) ;               𝑖 = 0 and 1 ≤ 𝑘 ≤ (𝑚 − 3)

(𝑗 + 2)(𝑚𝑜𝑑 𝑚) ;                 𝑖 = 0 and  𝑘 = (𝑚 − 2)

(𝑗 + 1)(𝑚𝑜𝑑 𝑚) ;                 𝑖 = 0 and  𝑘 = (𝑚 − 1)

(𝑖 + 𝑗 + 2)(𝑚𝑜𝑑 𝑚) ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 = 𝑖 + 1

(𝑖 + 𝑘 + 𝑗)(𝑚𝑜𝑑 𝑚) ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 ≠ 𝑖 + 1

 

   ∀  𝑘 = 1,2,3, … , (𝑚 − 1) & ∀ 𝑚 

For 𝑚 = 4  

                                                         

𝜎(𝑢𝑖𝑣𝑗) = {

(𝑖 + 𝑗)(𝑚𝑜𝑑 4) ;  𝑖 = 0 and 𝑖 = 3

(𝑗 + 2)(𝑚𝑜𝑑 4) ;                     𝑖 = 1

(𝑗 + 1)(𝑚𝑜𝑑 4) ;                    𝑖 = 2

                                               

For 𝑚 > 4  

                                                         

𝜎(𝑢𝑖𝑣𝑗) = (𝑖 + 𝑗)(𝑚𝑜𝑑 𝑚) 

When 𝑚 is even and 𝑛 is odd then each odd colour appears exactly ⌈
𝑛(𝑚+1)

2
⌉ times and even colour appears exactly 

⌊
𝑛(𝑚+1)

2
⌋. Otherwise, each colour appears exactly 

𝑛(𝑚+1)

2
. Thus, the difference does not exceed one. 

The inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 holds for every pair (𝑖, 𝑗). 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝑃𝑛) = 𝑚 ; 𝑛 ≥ 2. 

Case 2: Let 𝐻 = 𝐶𝑛 for 𝑛 ≥ 2. 

Cleary, the number of vertices in 𝑇2(𝐾𝑚) ◻ 𝐶𝑛 is 
𝑛𝑚(𝑚+1)

2
 vertices and the number of edges is 

𝑚𝑛

2
(4𝑚 − 3) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐾𝑚) ◻ 𝐶𝑛 be 
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𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃{𝑒𝑖𝑘𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃ ⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑘𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗); (𝑒𝑖𝑘𝑣𝑗)(𝑢𝑘𝑣𝑗)}

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃{(𝑒𝑖𝑘𝑣𝑗)(𝑒𝑖𝑘𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

The colouring of vertices and results as follows from theorem 4.4 case 1. 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 𝑚 ;  𝑛 ≠ 𝑚𝑘 + 1, 𝑘 ≥ 1. 

Case 3: Let 𝐻 = 𝐾𝑛 for 𝑚 ≥ 𝑛. 

Cleary, the number of vertices in 𝑇2(𝐾𝑚) ◻ 𝐾𝑛 is 
𝑛𝑚(𝑚+1)

2
 vertices and the number of edges is 

𝑚𝑛

4
(𝑚𝑛 + 𝑛 +

5𝑚 − 7) edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐾𝑚) ◻ 𝐾𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃{𝑒𝑖𝑘𝑣𝑗}

𝑛−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃ ⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑘𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗); (𝑒𝑖𝑘𝑣𝑗)(𝑢𝑘𝑣𝑗)}

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑘′ )}

𝑛−1

𝑘′>𝑗

𝑛−2

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃ ⋃⋃⋃{(𝑒𝑖𝑘𝑣𝑗)(𝑒𝑖𝑘𝑣𝑘′)}

𝑛−1

𝑘′>𝑗

𝑛−2

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

The colouring of vertices and results as follows from theorem 4.4 case 1. 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑛 ) = 𝑚 ;  𝑚 ≥ 𝑛. 

Case 4: Let 𝐻 = 𝐾𝑝,𝑞 for 𝑝 ≥ 2, 𝑞 ≥ 1. 

Cleary, the number of vertices in 𝑇2(𝐾𝑚) ◻ 𝐾𝑝,𝑞 is 
𝑚(𝑚+1)(𝑝+𝑞)

2
 vertices and the number of edges is 

𝑚

2
{3(𝑚 − 1)(𝑝 + 𝑞) + 𝑝𝑞(𝑚 + 1)} edges. 

Let the vertex set and edge set of the Cartesian product 𝑇2(𝐾𝑚) ◻ 𝐾𝑝,𝑞 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃{𝑒𝑖𝑘𝑣𝑗}

𝑝−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) ∪ (⋃ ⋃{𝑢𝑖𝑣𝑗′}

𝑞−1

𝑗′=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ ⋃{𝑒𝑖𝑘𝑣𝑗′}

𝑞−1

𝑗′=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

1430 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃ ⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑘𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗); (𝑒𝑖𝑘𝑣𝑗)(𝑢𝑘𝑣𝑗)}

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

𝑝−1

𝑗=0

)

∪ (⋃ ⋃ ⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑘𝑣𝑗); (𝑢𝑖𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗); (𝑒𝑖𝑘𝑣𝑗)(𝑢𝑘𝑣𝑗)}

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

𝑞−1

𝑗′=0

)

∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑗′ )}

𝑞−1

𝑗′=0

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃⋃⋃{(𝑒𝑖𝑘𝑣𝑗)(𝑒𝑖𝑘𝑣𝑗′)}

𝑞−1

𝑗′=0

𝑝−1

𝑗=0

𝑚−1

𝑘>𝑖

𝑚−2

𝑖=0

) 

The colouring of vertices, 

   ∀  0 ≤ 𝑖 ≤ 𝑚 − 1, 0 ≤ 𝑗 ≤ 𝑝 − 1 and 0 ≤ 𝑗′ ≤ 𝑞 − 1 

𝜎(𝑒𝑖𝑘𝑣𝑗) =

{
 
 

 
 
(𝑘 + 1)(𝑚𝑜𝑑 𝑚);               𝑖 = 0 and 1 ≤ 𝑘 ≤ (𝑚 − 3)  

                     2 ;                 𝑖 = 0 and  𝑘 = (𝑚 − 2)

                     1 ;                 𝑖 = 0 and  𝑘 = (𝑚 − 1)

(𝑖 + 2)(𝑚𝑜𝑑 𝑚) ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 = 𝑖 + 1
(𝑖 + 𝑘)(𝑚𝑜𝑑 𝑚) ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 ≠ 𝑖 + 1

 

𝜎(𝑒𝑖𝑘𝑣𝑗′) =

{
 
 

 
 
(𝑘 + 2)(𝑚𝑜𝑑 𝑚)      ;               𝑖 = 0 and 1 ≤ 𝑘 ≤ (𝑚 − 3)

                     3         ;                 𝑖 = 0 and  𝑘 = (𝑚 − 2)

                    2          ;                 𝑖 = 0 and  𝑘 = (𝑚 − 1)

(𝑖 + 3)(𝑚𝑜𝑑 𝑚)         ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 = 𝑖 + 1
(𝑖 + 𝑘 + 1)(𝑚𝑜𝑑 𝑚) ; 1 ≤ 𝑖 < 𝑘 ≤ (𝑚 − 1) and 𝑘 ≠ 𝑖 + 1

 

   ∀  𝑘 = 1,2,3, … , (𝑚 − 1)  

For 𝑚 = 4  

𝜎(𝑢𝑖𝑣𝑗) = {
𝑖 ;  𝑖 = 0 and 𝑖 = 3
2 ;                    𝑖 = 1 
1 ;                   𝑖 = 2  

 

𝜎(𝑢𝑖𝑣𝑗′) = {
(𝑖 + 1)(𝑚𝑜𝑑 4) ;  𝑖 = 0 and 𝑖 = 3

3                     ;          𝑖 = 1    
2                     ;          𝑖 = 2    

 

For 𝑚 > 4  

                                                            𝜎(𝑢𝑖𝑣𝑗) = 𝑖 

𝜎(𝑢𝑖𝑣𝑗′) = (𝑖 + 1)(𝑚𝑜𝑑 𝑚) 

Claim (i): When 𝑚 = 2𝑘, 𝑘 ≥ 1, 𝑝 ≥ 2, 𝑞 ≥ 1 & 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 + 1. 

(a) If 𝑞 = 𝑝, then each colour (0,1,2, … ,𝑚 − 1) appears exactly 
(𝑚+1)(𝑝+𝑞)

2
. 

(b) If 𝑞 = 𝑝 − 1, then each odd colour appears exactly ⌈
(𝑚+1)(𝑝+𝑞)

2
⌉ and each even colour appears exactly 

⌊
(𝑚+1)(𝑝+𝑞)

2
⌋. 

(c) If 𝑞 = 𝑝 + 1, then each even colour appears exactly ⌈
(𝑚+1)(𝑝+𝑞)

2
⌉ and each odd colour appears exactly 

⌊
(𝑚+1)(𝑝+𝑞)

2
⌋. 

Claim (ii): When 𝑚 = 2𝑘 + 3, 𝑘 ≥ 1 & 𝑝 = 2, 𝑞 ≥ 1, each colour (0,1,2, … ,𝑚 − 1) appears exactly 
(𝑚+1)(𝑝+𝑞)

2
 

times. 

Thus, the difference does not exceed one. By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 𝑚 for 𝑚 = 2𝑘, 𝑘 ≥ 1, 𝑝 ≥

2, 𝑞 ≥ 1 & 𝑝 − 1 ≤ 𝑞 ≤ 𝑝 + 1 and also 𝑚 = 2𝑘 + 3 & 𝑝 = 2. 
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Theorem 4.5 Let 𝐺 and 𝐻 be the two graphs, where 𝐺 is a semi-total point graph of complete bipartite, 𝑇2(𝐾𝑝,𝑝) 

on 𝑝 ≥ 1 vertices, the equitable colouring of the Cartesian product of 𝐺 and 𝐻, for 𝑛 = 3𝑘, 𝑘 ≥ 1 

(i) 𝜒=(𝐺 ◻ 𝑃𝑛) = 𝜒=(𝐺 ◻ 𝐶𝑛) = 3 

(ii) 𝜒=(𝐺 ◻ 𝐾𝑛) = 𝑛 

Proof. Define the map 𝜎 ∶  𝑉(𝐺 ◻ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑊 

The proof of the theorem is divided into three cases, 

Let the graph 𝐺 is a semi-total point graph of bipartite on 𝑝, 𝑞 ≥ 1. 

Case 1a: Let 𝐻 = 𝑃𝑛 for 𝑛 = 3𝑘, 𝑘 ≥ 1   

Cleary, the number of vertices in 𝑇2(𝐾𝑝,𝑞) ◻ 𝑃𝑛 is 𝑛𝑝(𝑞 + 1) vertices and the number of edges is 4𝑛𝑝𝑞 − 𝑝𝑞 +

𝑛𝑝 − 2𝑛𝑞 − 𝑝 edges. 

Let the vertex set and edge set of the Cartesian 𝑇2(𝐾𝑝,𝑞) ◻ 𝑃𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃{𝑢𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑒𝑖𝑖′𝑣𝑗); (𝑒𝑖𝑖′𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑗+1 )}

𝑛−2

𝑗=0

𝑝−1

𝑖=0

) ∪ (⋃⋃{(𝑢𝑖′𝑣𝑗)(𝑢𝑖′𝑣𝑗+1 )}

𝑛−2

𝑗=0

𝑞−1

𝑖=0

)

∪ (⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗)(𝑒𝑖𝑖′𝑣𝑗+1)}

𝑛−2

𝑗=0

𝑞−1

𝑖=0

𝑝−2

𝑖=0

) 

The colouring of vertices 

   ∀  0 ≤ 𝑖 ≤ 𝑝 − 1, 0 ≤ 𝑖′ ≤ 𝑞 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1, 

𝜎(𝑢𝑖𝑣𝑗) = 𝑗(𝑚𝑜𝑑 3) 

𝜎(𝑢𝑖′𝑣𝑗) = (𝑗 + 1)(𝑚𝑜𝑑 3) 

𝜎(𝑒𝑖𝑖′𝑣𝑗) = (𝑗 + 2)(𝑚𝑜𝑑 3) 

If 𝑝 = 𝑞, then 𝐺 is a semi-total point graph of complete bipartite, 𝑇2(𝐾𝑝,𝑝).  

Each colour (0,1,2) appears exactly 
𝑛𝑝(𝑝+2)

3
 times. Thus, the difference does not exceed one. 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝑃𝑛 ) = 3 for 𝑛 = 3𝑘, 𝑘 ≥ 1. 

Case 1b: Let 𝐻 = 𝐶𝑛 for 𝑛 = 3𝑘, 𝑘 ≥ 1   

Cleary, the number of vertices in 𝑇2(𝐾𝑝,𝑞) ◻ 𝐶𝑛 is 𝑛𝑝(𝑞 + 1) vertices and the number of edges is 𝑛(4𝑝𝑞 − 2𝑞 +

𝑝) edges. 

Let the vertex set and edge set of the Cartesian 𝑇2(𝐾𝑝,𝑞) ◻ 𝐶𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃{𝑢𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

) 
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𝐸( 𝐺 ◻ 𝐻) = (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑒𝑖𝑖′𝑣𝑗); (𝑒𝑖𝑖′𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑝−1

𝑖=0

) ∪ (⋃⋃{(𝑢𝑖′𝑣𝑗)(𝑢𝑖′𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑞−1

𝑖=0

)

∪ (⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗)(𝑒𝑖𝑖′𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑗=0

𝑞−1

𝑖=0

𝑝−2

𝑖=0

) 

The colouring of vertices and the result as follows from theorem 4.5 case 1a. 

By theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐶𝑛 ) = 3 for 𝑛 = 3𝑘, 𝑘 ≥ 1. 

Case 2: Let 𝐻 = 𝐾𝑛 for 𝑛 = 3𝑘, 𝑘 ≥ 1   

Cleary, the number of vertices in 𝑇2(𝐾𝑝,𝑞) ◻ 𝐾𝑛  is 𝑛𝑝(𝑞 + 1) vertices and the number of edges is 
𝑛

2
(𝑛𝑝𝑞 − 5𝑝𝑞 +

𝑛𝑝 − 4𝑞 − 𝑝) edges. 

Let the vertex set and edge set of the Cartesian 𝑇2(𝐾𝑝,𝑞) ◻ 𝐾𝑛 be 

𝑉( 𝐺 ◻ 𝐻) =  (⋃⋃{𝑢𝑖𝑣𝑗}

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃{𝑢𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

) 

𝐸( 𝐺 ◻ 𝐻) = (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−1

𝑖=0

𝑛−1

𝑗=0

) ∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑒𝑖𝑖′𝑣𝑗); (𝑒𝑖𝑖′𝑣𝑗)(𝑢𝑖′𝑣𝑗)}

𝑞−1

𝑖′=0

𝑝−2

𝑖=0

𝑛−1

𝑗=0

)

∪ (⋃⋃⋃{(𝑢𝑖𝑣𝑗)(𝑢𝑖𝑣𝑘)}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑝−1

𝑖=0

) ∪ (⋃⋃⋃{(𝑢𝑖′𝑣𝑗)(𝑢𝑖′𝑣𝑘)}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑞−1

𝑖=0

)

∪ (⋃⋃⋃⋃{𝑒𝑖𝑖′𝑣𝑗)(𝑒𝑖𝑖′𝑣(𝑗+1)(𝑚𝑜𝑑 𝑛))}

𝑛−1

𝑘>𝑗

𝑛−2

𝑗=0

𝑞−1

𝑖=0

𝑝−2

𝑖=0

) 

The colouring of vertices as follows from theorem 4.5 case 1a. 

If 𝑝 = 𝑞, then 𝐺 is a semi-total point graph of complete bipartite, 𝑇2(𝐾𝑝,𝑝).  

Each colour (0,1,2, … , 𝑛 − 1) appears exactly 𝑝(𝑝 + 2) times. Thus, the difference does not exceed one. By 

theorem 3.4, we get, 𝜒=(𝐺 ◻ 𝐾𝑛 ) = 𝑛 for 𝑛 = 3𝑘, 𝑘 ≥ 1. 

5.   Conclusion 

In this research article, the Cartesian product is considered for a variety of graphs of semi-total point graph such 

as path, cycle, complete and complete bipartite with path, cycle, complete, bipartite and complete bipartite. The 

admittance of equitable colouring to these graphs has been established by defining suitable colouring function. 

The same concept can be applied to different types of product graphs and thereof. 
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