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1. Introduction

An approach that delivers just one outcome for every input parameter is called a function. The input to the function
is the independent variable also referred to as the argument of the function. The output of the function is the
dependent variable. Continuity is a basic concept in computational mathematics and calculus. In mathematics, a
continuous function is one in which there are no sudden shifts in value and a continuous variation of the function's
value due to ongoing changes in the input. If a function's graph is continuous throughout the entire interval the
function qualifies as continuous in that range. In real analysis, continuous functions are basic ideas that serve as
a basis for learning about limit points, partial integrals, higher order derivatives and other topics.

Continuity was introduced by Augustin Louis Cauchy in 1821 in his famous textbook Cours d'Analyse. In 1965
and 1986 respectively, Zadeh [17] and Atanassov [2] proposed the ideas of Fuzzy sets and Intuitionistic Fuzzy
sets. Gau and Buehrer [16] initially suggested the study of Vague sets as a continuation of fuzzy sets. There are
different kind of continuous functions. Point wise continuity, Pair wise continuity, Uniform continuity, Lipschitz
continuity are some of among them. Not all functions are continuous. There are various types of discontinuous
functions such as Removable discontinuity, Jump discontinuity, Essential discontinuity and Infinite discontinuity.

Semi continuous functions are versatile tools in various fields allowing for more flexible and realistic modelling
phenomena that may not be adequately captured by strictly continuous functions. Levine. N [4] introduced the
semi open and semi continuity in 1963. Their ability to handle discontinuities and abrupt changes in data or
systems makes them valuable in a wide range of applications. Generalized continuous functions are mathematical
objects that generalizes the concept of functions. They often used in distribution theory and are not always
traditional functions in the sense of having specific values at each point in their domain. Instead, they are defined
through their action on test functions.

Micro topology is an enlargement of nano topology which has been established by Chandrasekar S [12]. By
combining Micro topological space and Vague topological space, Vargees Vahini T and Trinita Pricilla M [15]
have introduced the new topological space called Micro VVague Topological Space. Mashour. A. S [6] introduced
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pre continuous mappings and weakly pre continuous mappings in 1982. R. Devi and H. Maki and K. Balachandran
[3] have introduced the generalized semi continuous and generalized semi homomorphism in 1995.

Generalized semi continuous sets are the combined idea of semi continuous and generalized continuous functions.
It is often used in more abstract mathematical settings and it encompasses functions that may not be directly
associated with real numbers. It is a broader concept that can apply to the functions defined on more general
topological spaces. The notion of upper and lower semi continuity is adapted to these more general spaces.
Generalized Semi continuous function is not necessarily be continuous but exhibits some degree continuity when
defined on topological spaces.

In this article, many types of continuous functions and generalized continuous functions in Micro Vague
Topological Spaces are introduced. Particularly, Micro Vague Generalized Semi Continuous function is
introduced and the relationship between Micro Vague Generalized Semi Continuous mappings and the existing
Micro Vague Continuous functions are presented and investigated with the suitable examples.

2. Preliminaries
Definition 2.1[15]

Let (U, 7x(A4)) be a Nano Vague Topological Space. Letnz(A) = {SU (S' N n):S,S’ € Tx(A) and n & Tx(A)}.
Then nz(4) is called the Micro Vague Topology ( shortly MVT ) of t5(A) by n on U with respect to A. The
triplet (U, Tz (4),nz(A)) is called the Micro VVague Topological Space (shortly MVTS). The elements of nz(4)
are called Micro Vague open sets ( shortly MV0OS) and the complement of MVOS is called Micro Vague
Closed set ( shortly MVCS).

Definition 2.2[15]

Let U be the Universe and X < U. Let G and H be two MV sets in the MVTS (U, tx(X),ng(X)) of the form &
= {(x, [ug(0), 5 ])/x € X} and H = {(x, [us (x), ¥ (x)])/x € X}  respectively. Then the following
conditions holds:

) GESHIff ug() <y (1), v5(x) < y3(x) Vx €U
(ii) G=Hiff G SHandH S G

(i) 6 ={x1-y5(0), 1~ pg(x))/vx € U}

(iv) GUH = {(x, (.Ug(x) Vg (x), vg(x) VY}[(X)))/VX € U}

(v) GNH = {{x, (ug () Apge (%), v5(x) Aysc(x)))/Vx € U}
(vi) 0pepy = (x,(0,0)) and 1,,, = (x, (1,1)) Vx € U.

3. Various types of Micro Vague Continuous Mappings

Definition 3.1

We define the image and preimage of MV Sets. Let F= {{x,[ur(x),yz(x)])/x €X} and ¢ =

{(x, [ug (), v5(x)])/x € X} be two MV Sets in (U, Ix(S),nx(S)) and (V, ux(S),{=(S)) respectively. Let

A (U, 9%(85),12(8)) — (V, un(8), {»(S8)) be a function, then the following statements hold:

(i) The pre-image of G under £ denoted by A71(G) is the MV set in (U, 9%(S),n<(S)) defined by A~1(G) =
{6, [A™ () (), A2 () (0] /x € X},

(if) The image of F under f denoted by A(F) is the MV set in (V,ux(S),{%(S)) defined by £(F) =
{(x, [A(ur) ), A(ve) (0)]/x € X)}.

Corollary 3.2

Let Cary, Cipy (i €7) be MV sets in (U, 9%(5),nr(S)) and Dy, Dy, EJ) be MV sets in
V, un(8),7%(S8)). Let us define a function £A: (U, 9%(5),nx(8)) — (V,ux(8),{%(8)). Then the following
properties holds
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a)
b)
c)
d)
e)
f)
9)
h)
i)
)
k)
1)
m)
n)
0)
p)
q)

If Cy,,, € Cyyppr then A(C1,) € A(Cyp):
1§Dy, € Dy, then A(Dy,.,) € A(Ds,,,).
Crv € A7 (A(Cor))-

Caey = A H(A(Crpy)) if A s injective.
AR (D)) € Doy

A(AY(Dary)) = Doy if 4 s surjective.
h_l(u Dim) =U h_l(Din)'

h_l(n Dim) =N h_l(Din)'

ﬁ(U Ci]vm}) =U ﬁ(cim)'

h(ﬂ Ci]vm}) cn ﬁ(cim)'

If 4 is injective, then A£(N C;,,.,,) = NA(C;
A7 (Laew) = 1pey

A7 (05) = Oy

A(Lyy) = 1y, iF A is surjective.

A (O0pv) = Oy

A(Cpry) € A(Cyry), If A s surjective.

A (Darv) = A1 (D).

pev)-

Proof: Proof is obvious.

Definition 3.3

10.

Let (U,9¢(5),nx(8)) and (V,uz(8),%(8)) be any two MVTS . A map 4: (U, Ix(S),nr(S)) —
WV, uxr(8),{x(S8)) is said to be

MVO mapping (shortly MVOM) iff the image of each MVO sets in (U, Ix(S),nx(8)) is MVO in
V, uz(8), ¢z ().

MV Continuous mapping (shortly MVCM), if the inverse image A 1(F) of every MVC set F in

MVS Continuous mapping (shortly MVSCM), if A~1(F) of every MVCS F in (V, ux(S), (x(S)) is
MVSCS in (U, 9%(S), nr(S)).

MVP Continuous mapping (shortly MVPCM), if A~1(F) of every MVECS F in (V, uz(S), {x(S)) is
MVPCS in (U, 9%(5),n%(S)).

MVSP Continuous mapping (shortly MVSPCM), if A~1(F) of every MVECS F in (V, ux(S), {z(S))
IS MVSPCS in (U, 9%(S5),nz(S)).

MVa Continuous mapping (shortly MVaCM), if A~1(F) of every MVES F in (V, ux(S), {x(S)) is
MVaCS in (U, 9%(S), nr(S)).

MVR Continuous mapping (shortly MVRCM), if A1(F) of every MVCS F in (V, uzx(S), {z(S)) is
MVRES in (U, 9x(S), 12 (S)).

MVG Continuous mapping (shortly MVGCM), if A~1(F) of every MVCS F in (V, ux(8),x(S)) is
MVGES in (U, Iz (S), nz(S)).

MVGP Continuous mapping (shortly MVGPCM), if A~1(F) of every MVES F in (V, uz(8),{z(S))
is MVGPECS in (U, 95(S), nz(S)).

MVGSP Continuous mapping (shortly MVGSPCM), if A Y(F) of every MVES F in
V, 1z (8),4z(S)) is MVGSPCS in (U, 9(S), Nz ().

1413



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

11. MVaG Continuous mapping (shortly MVaGCM), if A~1(F) of every MVCS F in (V, ux(8), {x(S))
IS MVaGCsS in (U, 9%(S), nr(S)).

12. MVGa Continuous mapping (shortly MVGaCM), if A~1(F) of every MVCS F in (V, uz(8), {x(S))
is MVGaCS in (U, 92(S), nz(S)).

Definition 3.4

Let £:(U,I9%(5),nx(S)) — (V,uxr(S8),{x(8)) is both one-to-one and onto mapping where
(U, 92(8),nx(S)) and (V, ux(S), (x(S)) are two MVTSs. Then 4 is said to be MV-Homeomorphism if £
and A~ are MVCM.

4. Characterizations and Properties of Micro Vague Generalized Semi Continuous Mappings
Definition 4.1

Let (U, 9x(8),mx(8)) and (V,ux(S5),lx(S)) be any two MVTS. A map 4:(U,I9x(5),nx(S)) —
WV, uz(8), % (S8)) is said to be MVGS Continuous mapping (shortly MVGSCM), if A~1(F) of every
MVES Fin (V, ux(8), {x(S)) is MVGSCS in (U, 9x(S), 1z (S)).

Example 4.2: Let U = {a, B, v} be the Universe of discourse. U /R = {{a3}, {B, y}} be the equivalence relation on
U.LetS ={< @, (0.2,0.5) >,< B,(0.2,0.7) >,<,(0.2,0.4) >} beasubsetof U. Then, 9x(S) = {Ony, Inv, {<
a,(0.2,0.5) >,< B,(0.2,0.4) >, < v,(0.2,0.4) >},{< «,(0.2,0.5) >, < B,(0.2,0.7) >,<v,(0.2,0.7) >}} is a
NVT on U. Let n ={<q,(0.3,0.8) >, < B,(0.50.8) > <v,(0.3,0.8) >}. Then nzx(S) = {Onv, Inv, {<
a, (0.2,0.5) >, < B,(0.2,04) >,< v,(0.2,04) >},{< «,(0.2,0.5) >,< B,(0.2,0.7) >,<v,(0.2,0.7) >},{<
a,(0.3,0.8) >,< B,(0.5,0.8) >,<v,(0.3,0.8) >} }isa MVT and (U, 9x(S),Nx(S)) is MVTS.

Let V = {§, o, T} be another universe of discourse. V /R = {{8, t}{o}} be the equivalence relationon V. Let § =
{<§,(0.1,0.7) >,< 6,(0.3,0.6) >,<1,(0.2,03) >} be a subset of V. Then, uzx(S) = {Onv, Inv, {<
8,(0.1,0.3) >,< 0,(0.3,0.6) >, < T1,(0.1,0.3) >},{< §,(0.2,0.7) >,< 5,(0.3,0.6) >,< 7,(0.2,0.7) >}} is a
NVT on U. Let T ={<§,(0.4,0.5) > < 0,(0.1,0.4) > < 1,(0.2,0.3) >}. Then x(S) = {Ony, Iny, (<
§,(0.1,0.3) >,< 6,(0.3,0.6) >,< 1,(0.1,0.3) >},{< §,(0.2,0.7) >,< 0,(0.3,0.6) >, < 1,(0.2,0.7) >}, {<
8,(0.4,0.5) >,< 0,(0.1,0.4) >, < 1,(0.2,0.3) >}} isa MVT and (V, uz(S), (x(S)) is MVTS.

Define a mapping 4: (U, 9%(8), Nz (S)) — (V, 1z (S8), (x(S)) by A(a) = 8, A(B) = o and A(y) = T. Then £
is MVGS Continuous.

Theorem 4.3
Every MVECM is MVGCM .
Every MVCM is MVaCM .
Every MVCM is MVPCM .
Every MVaCM is MVPCM .

1.

2.

3

4

5. Every MVRCM is MVCM .
6 Every MVaCM is MVSCM .
7 Every MVSCM is MVSPCM .
8 Every MVCM is MVGSCM .

9 Every MVGCM is MVGSCM .

10. Every MVSCM is MVGSCM .
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11. Every MVaCM is MVGSCM .

12. Every MVRCM is MVGSCM .

13. Every MVaGCM is MVGSCM .

14. Every MVGSCM is MVSPCM.

15. Every MVGSCM is MVGSPCM .

16. MVPCM and MVGSCM are independent to each other.
17. MVGPCM and MVGSCM are independent to each other.
Proof:

1. Let A: (U, 92(S), 12(S)) — (V, uz(S), iz (S)) be a MVEM . Let F be a MVCS in (V, ux(S), {x(S)). Then
ATL(F) is MVCS in (U,9%(5),nx(S)). Since every MVCS is MVGES, A (F) is MVGES in
(U, 9% (8),n%(S)). Hence A is MVGCM .

2. Let A: (U, 92(S), 1 (S)) = (V, uz(S), {r(S)) be a MVCM. Let F be a MVES in (V, ux(S), {x(S)). Then
ATH(F) is MVES in (U,94(5),nx(S)). Since every MVCS is MVaCS, A 1(F) is MVaCS in
(U, 9% (8),n%(S)). Hence 4 is MVaCM .

3. Let£A: (U, 9%(85),nr(8)) — (V,ux(8),x(S)) be a MVCM. Let F be a MVCS in (V, ux(8), {x(8)). Then
ATL(F) is MVES in (U,9%(S),n%(S)). Since every MVCS is MVPCS, A Y(F) is MVPCS in
(U, 9% (S5),n%r(S)). Hence £ is MVPCM .

Proof of (4) — (17) is same as (1) — (3).
Remark 4.4: The invert of the preceding theorem may not be true as seen in the succeeding examples.

Example 45: Let U={p, 1,60}, U/R={{p,0},{1}}. Let S={<p,b(0.1,0.4)><4(03,05)><
6,(0.2,0.7) >} be asubset of U. Then, 9% (S) = {Ony, 1yv, {< p, (0.1,0.4) >, < 4,(0.3,0.5) >, < 6,(0.1,0.4) >
L{< p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.2,0.7) >}} is a NVT on U. Let n ={<p,(0.2,0.3) > <
4,(0.2,0.5) >, < 6,(0.3,0.4) >}. Then, Nr(A4) = {0y, Ly, {< p (0.2,0.3) >,< A, (0.2,0.5) >, <
0,(0.3,04) >}, {<p, (0.1,0.4) >, <, (0.3,0.5) >,<6,(0.1,04) >}, {p,(0.2,0.7) >, < 1,(0.3,0.5) >, <
0,(0.2,0.7) >}, {<p,(0.1,0.3) >, <A, (0.2,0.5) >, < 6,(0.1,0.4) >}, {<p,(0.2,0.3) >,<},(0.2,0.5) >, <
0,(0.2,0.4) >}, {<p,(0.2,04)><1,(0.3,0.5) ><6,(0.3,04) >}, {<p,(0.2,04)><2,(03,05)><
0,(0.2,0.4) >}, {< p,(0.2,0.7) >,< ,(0.3,0.5) >,< 6, (0.3,0.7) >}} isa MVT on U and (U, 7z(S),nx(S)) is
called as the MVTS.

LetV ={6,0,7},V /R = {{6H{o,7}}. Let S = {< §,(0.2,0.4) >, < 7,(0.3,0.5) >,< 7,(0.3,0.5) >} be a subset
of V. Then, uxr(S) = {Ony, 1yv,{< §,(0.2,0.4) >, < 0,(0.3,0.5) >,< 7,(0.3,0.5) >}} is a Nano Vague
Topology on U. Let { ={< §,(0.2,0.3) >,< 7,(0.3,0.5) >, < 7,(0.3,0.5) >}. Then {x(S) = {0y, 1y, {<
5,(0.2,0.4) >, < 0,(0.3,0.5) >,< 1,(0.3,0.5) >},{< §,(0.2,0.3) >,< 7,(0.3,0.5) >,< 7,(0.3,05) >}} is a
MVT and (V, ux(S), {z(S)) is MVTS.

Here, 4: (U,9%2(8),n2(8)) — (V,uzr(8),ix(8)) by £A(p) =6, A(A)) =0 and A(0) =1 IS MVaCM,
MVSCM and MVPCM but not MVCM since, F = {< §,(0.6,0.8) >,< 7,(0.5,0.7) >, < 1,(0.5,0.7) >} is
MVCE setin (V, uz(8), iz (8)) but A71(F) is not MVEC set in (U, 9¢(S),n%(S)).

Example 4.6: Let U={a,B,y}, U/R={{a},{B.v}} Let §={< a,(0.2,05)><p(0207)><

y,(0.2,0.4) >}. Then, 92(S) = {Ony, Lyy, {< ,(0.2,0.5) >,< B3,(0.2,0.4) >, < v,(0.2,04) >}, {<
@,(0.2,0.5) >,< ,(0.2,0.7) >,<v,(0.2,0.7) >} }. Let n ={< «,(0.3,0.8) >, < B3,(0.5,0.8) >, <
y,(0.3,0.8) >}. Then N2 (8) = {0py, 1yv, {<€ ,(0.2,0.5) >, < B,(0.2,0.4) >, < y,(0.2,04) >},{<

2,(0.2,0.5) >,< $,(0.2,0.7) >,<y,(0.2,0.7) >},{< «,(0.3,0.8) >, < ,(0.5,0.8) >,<y,(0.3,0.8) >}} is a
MVT and (U, 9%(S),nz(S8)) is MVTS.
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Let V={5,0,t}, V /R ={{5,t}H{o}}. Let § ={<4,(0.1,0.7) >, < 7,(0.3,0.6) >, < 7,(0.2,0.3) >}. Then,
Uz(8) = {0py, 1yv, {< 6,(0.1,0.3) >, < 7,(0.3,0.6) >, < 1,(0.1,0.3) >},{< §,(0.2,0.7) >, < 7,(0.3,0.6) >
,<1,(0.2,0.7) >} }. Let ¢ ={< 6,(0.1,0.3) >,< 7,(0.2,0.5) >,< 7,(0.1,0.3) >}. Then {x(S) = {Opy, 1yv, (<
5,(0.1,0.3) >,< 0,(0.3,0.6) >,< 7,(0.1,0.3) >},{< §,(0.2,0.7) >,< 0,(0.3,0.6) >,< 7,(0.2,0.7) >}, {<
5,(0.1,0.3) >,< 7, (0.2,0.5) >,< 7,(0.1,0.3) >}} is MVT and (V, ux(S), {z(S)) is MVTS.

Here, £: (U, 92(8), 1z (8)) — (V, ux(8), {z(8)) by A(a) = 6, A(B) = o and A(y) = T is MVGSCM but not
MVEM, MVSCM, MVGEM, MVaCM, MVRCM, MVaGCM since, F ={<6,(0.7,0.9) > <
0,(0.5,0.8) >,< 1,(0.7,0.9) >} is MVC set in (V, uzx(S), {x(S)) but A~1(F) is not MVC, MVSC, MVGC,
MVaC, MVRC, MVagC setin (U, 9x(S), nz(S)).

Example 4.7: Let U={p, 1,60}, U/R={{p,0},{1}}. Let §={<p,b(0.1,0.4)><2(03,05)><
6,(0.2,0.7) >}. Then, 92(S) = {Opy, Ly, {< p,(0.1,0.4) >,< 1,(0.3,0.5) >,< 6,(0.1,0.4) >},{<
p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.2,0.7) >}}. Let n ={< p,(0.2,0.3) >, < 1,(0.2,0.5) >, <
6,(0.3,04) >}.  Then, 1z(4A) = {0, 1rev, {< p (0.2,0.3) >, < A, (0.2,0.5) >,< 6,(0.3,04) >}, {<
p,(0.1,0.4) >,< 1, (0.3,0.5) >,< 6,(0.1,04) >}, {p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.2,0.7) >}, {<
p,(0.1,0.3) >,< A, (0.2,0.5) >,< 6,(0.1,04) >}, {<p,(0.2,0.3) >,<1,(0.2,0.5) >,<6,(0.2,0.4) >}, {<
p,(0.2,0.4) >,< 1,(0.3,0.5) >,< 6,(0.3,04) >}, {<p,(0.2,0.4) > < 2,(0.3,0.5) >,<6,(0.2,04) >}, {<
p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.3,0.7) >}} isa MVT on U and (U, 9x(S),nz(S)) is MVTS.

Let V ={6,0,7}, V /R ={{8,tHo}}. Let § ={<5,(0.1,0.4) >,< 7,(0.3,0.5) >,< 7,(0.2,0.4) >}. Then,
Ur(8) = {0ny, 1yy, {< 6,(0.1,0.4) >,< 0,(0.3,0.5) >, < 1,(0.1,0.4) >},{< §,(0.2,04) >, < 7,(0.3,0.5) >
,< 1,(0.2,0.4) >} }. Let { ={< §,(0.1,0.3) >,< 0,(0.3,0.5) >,< 7,(0.1,0.3) >}. Then {x(S) = {0y, 1y, (<
6,(0.1,04) >,< 0,(0.3,0.5) >, < 1,(0.1,04) >},{< §,(0.2,04) >,< 7,(0.3,0.5) >,< 7,(0.2,04) >}, {<
5,(0.1,0.3) >,< 7, (0.3,0.5) >,< 7,(0.1,0.3) >}} isa MVT and (V, ux(S), {x(S)) is MVTS.

Here, £:(U,9%(85),nr(8)) = (V,ux(8),r(8)) by A(p) =6, A(A) =0 and A(O) =1 IS MVPCM,
MVSPCM, MVGPCM, MVGSPCM but not MVaCM and MVGSCM since, F = {< §,(0.7,09) >, <
,(0.5,0.7) >,< 1,(0.7,0.9) >} is MVC setin (V, uzx(S), {z(8)) but A~1(F) is not MVaC and MVGSC set in

({u'ﬁfk(‘s)'nfk(‘s))
Example 4.8: Let U={a By}, U/R={{ap}{r}}. Let §={<q (050.7)><p(0.205)><

y,(0.3,0.4) >}. Then, 92 (8) = {O0nv, Lay, {< @,(0.2,0.5) >, < B3,(0.2,0.5) >,< v,(0.3,04) >},{<
a,(0.5,0.7) >, < B,(0.5,0.7) >,<y,(0.3,0.4) >} }. Let n ={< a,(0.6,0.7) >,< B3,(0.6,0.7) >, <
,(0.4,0.8) >}. Then Ne(8) = {0y, 1yv, {< @, (0.2,0.5) >, < B,(0.2,0.5) >, < y,(0.3,04) >}, {<

2,(0.5,0.7) >,< B,(0.5,0.7) >,<y,(0.3,0.4) >},{< «,(0.6,0.7) >,< 3,(0.6,0.7) >,<y,(0.4,0.8) >}} is a
MVT and (U, 9(S),nx(S)) is MVTS.

Let V={8,0,7}, V /R ={{6}Ho,1}}. Let § ={<6,(0.4,0.6) > < 07,(0.4,0.4) >, < 7,(0.2,0.4) >}. Then,
Ur(8) = {Opy, 1y, {< 6,(0.4,0.6) >, < 0,(0.2,0.4) >, < 1,(0.2,0.4) >},{< 6,(0.4,0.6) >, < a,(0.4,0.4) >
,<1,(04,04) >} } Let { ={< 6,(0.3,0.4) >, < 7,(0.2,0.4) >,< 7,(0.1,0.3) >}. Then {x(S) = {Opy, 1y, {<
§,(0.4,0.6) >,< 0,(0.2,0.4) >,< 1,(0.2,04) >},{< 6,(0.4,0.6) >,< 7,(0.4,04) >, < 1,(04,04) >}, {<
8,(0.3,0.4) >,< 0,(0.2,0.4) >,< 1,(0.1,0.3) >}} isa MVT and (V, ux(S), {z(S)) is MVTS.

Here, £: (U, 9%(5),nr(8)) — (V, ux(8),x(8)) by A(a) = &, A(B) = o and A(y) = T is MVGCM but not
MVEM since, F = {< 6,(0.4,0.6) >,< 7,(0.6,0.8) >, < 1,(0.6,0.8) >} is MVC setin (V, uz(8),{x(8)) but
ATL(F) is not MVEC set in (U, 9% (S), 1z (S)).

Result 4.9: The relationship between various types of M'VCMs is given in the following figure.
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Theorem 4.10: A mapping £: (U, 9z (5),1r(S)) — (V, uz(8), x(8)) is MVGscM if and only if the inverse
image of each MVOS in (V, ux(8), {x(S8)) is MVGSOS in (U, 9% (S5), nz(S)).

Proof: Necessity: Let P be a MVOS in (V, uz(S), {z(S)). This implies that P¢ is MVECS in (V, ux(S), {z(S)).
Since A is MVGSCM, A~1(PC) is MVGSCS in (U, 9%(S),nx(8)). Since A~L(PC) = (AL(P)E, A7L(P) is
MVGSOS in (U, 9%(S), nz(S)).

Sufficiency: The proof is obvious from the definition of MVGSCM .

Theorem  4.11: A  mapping A: (U, 9%(8),nx(8)) = (V,ux(8),i»(8)) is Mvgscm if
MVcl(MVint(MVcl(A~1(P)))) € A~L(MVcl(P)) for every MV set P in (V, uz(S), {»(S)).

Proof: Let P be MVOS in (V,ux(S),{x(S)), then PC is MVES in (V,uzx(S),x(S)). By hypothesis,
MVcl(MVint(MVcl(A1(P)))) € AL (MVcl(PC)) = A~ 1(PC), since P is MVECS. Now
(MVint(MVcl(MVint(A1(P)))))¢ = MVcl(MVint(MVcl(A1H(PC)))) € A 1(PC) = A~L(P)C.  This
implies that A~1(P) € MVint(MVcl(MVint(A1(P)))). Hence A~1(P) is MVaOS and hence it is
MVGSOS. Therefore A is MVGSCM continuous mapping.

Theorem 4.12: Let A: (U, 9x(S),nr(8)) — (V, ux(8),l»(S)) be MVGSECM and i: (V, ux($),{x(S)) —
(W, pr(85),&x2(S)) be continuous mapping, then 4o A: (U, 9%x(8),Nx(8)) = (W, 0x(S),&x(8)) is
MVGSCM.

Proof: Let P be MVCS in (W, 9z(S), Ex(S)). Theni~1(P) is MVECS in (V, ux(8), iz (S)) by hypothesis. Since
A is MVGSCM, A~1(i71(P)) is MVGSCS in (U, 9% (S), nxr(S)). Hence 4 o A is MVGSCM .

Remark 4.13: Composition of two MVGSCM need not to be a MVGSCM and it is shown in the following
example.

Example 4.14: Let U={p, 2,60}, U/R={{p,6},{1}}. Let §={<p,b(0.1,04)><4(03,05)><
6,(0.2,0.7) >}. Then, 92(8) = {Ony, Lyv, {< p,(0.1,0.4) >,< A,(0.3,0.5) >, < 6,(0.1,0.4) >}, {<
p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.2,0.7) >}}. Let 7 ={< p,(0.2,0.3) >, < 1,(0.2,0.5) >, <
6,(0.3,04) >}.  Then, ng(A) = {Opm, 1y, {< p (0.2,0.3) >, < A, (0.2,0.5) >,<6,(0.3,04) >}, (<
p, (0.1,0.4) >,< A, (0.3,0.5) >,< 6,(0.1,04) >}, {p,(0.2,0.7) >,< 1,(0.3,0.5) >,< 6,(0.2,0.7) >}, {<
p,(0.1,0.3) >, < 1,(0.2,0.5) >,< 6,(0.1,0.4) >}, {<p,(0.2,0.3) >, < 1,(0.2,05) ><6,(0.2,04) >}, {<
p,(0.2,0.4) >,< 2,(0.3,0.5) >,< 6,(0.3,04) >}, {<p,(0.2,04)>< A, (0.3,0.5) ><6,(0.2,04) >}, {<
p, (0.2,0.7) >,< 2, (0.3,0.5) >,< 6,(0.3,0.7) >}}isaMVT onU and (U, Tz (S), nz(S)) is called as the MVT'S.
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Let V={5,0,t}, V /R ={{6}Ho,1}}. Let § ={<4,(0.2,04) > < 7,(0.3,0.5) >, < 7,(0.3,0.5) >}. Then,
Uz(8) = {Opy, 1yv, {< 6,(0.2,04) >,< 0,(0.3,0.5) >, < 7,(03,05) >}}. Let ¢ ={<6,(00.20.3)><
,(0.3,0.5) >, < 7,(0.3,0.5) >}. Then 2 (S) = {0y, 1y, {< 6,(0.2,0.4) >,< 7,(0.3,0.5) >, <
7,(0.3,0.5) >},{< §,(0.2,0.3) >,< 7,(0.3,0.5) >,< 1,(0.3,0.5) >}} is a MVT and (V,ux(S),l»(S)) is
MVTS.

Let W = {a,8,v}, W /R = {{a, yHB}}. Let § = {< «,(0.3,04) >,< S,(0.3,0.5) >,<,(0.3,0.6) >}. Then,
Pz(S) = {Opy, 1yy, {< ,(0.3,04) >,< 3,(0.3,0.5) >,< y,(0.3,0.4) >},{< «,(0.3,0.6) >, < ,(0.3,0.5) >
,< 7,(03,06)>}}. Let & ={<a,(0.508)><p(0508)><y,(0408) >} Then &(S)=
{0y, 1y, {< @, (0.3,0.4) >, < f3,(0.3,0.5) >,< 7,(0.3,0.4) >},{< ,(0.3,0.6) >,< f3,(0.3,0.5) >, <
¥,(0.3,0.6) >},{< ,(0.5,0.8) >,< B, (0.5,0.8) >,< y,(0.4,0.8) >}} is a MVT and (W, px(S),&x(S)) is
MVTS.

Define mappings £: (U, 9%(S5),nr(S)) — (V,uxr(8),x(8)) by #A(p) =8, A(A) =0, #A(0) =1 and
2V, uzr(8), (r(8)) = (W, 0x(8),¢x(S)) by (6) = a, A(a) = B, A(t) =y where £ and 4 are MVGSCM .
Then the composite mapping 4 o £: (U, 9%(8), N2 (8)) — (W, p2(S), ¢z (8)) is not MVGSCM since F = {<
@, (0.2,0.5) >,< f3,(0.2,0.5) >,< ¥,(0.2,0.6) >} is MVC setin (W, px(S), éx(S)) but A71(F) is not MVGSC
setin (U, 9z (S),nzr(S)).

Definition 4.15

Let A be a MV set of the MVTS (U,I9%(S),nr(S)). The Micro Vague Generalized Semi interior of A
(shortly MV — gs — int(A)) and Micro Vague Generalized Semi closure of A (shortly MV — gs — cl(4))
are defined as:

1. MV —gs—int(A) = U{H/His a MVGSOS inU and H < A}.

2. MV —gs—cl(A) =N{T/T isaMVGSCS inU and A € T}.

If A is MVGSCS, then MV gscl(A) = A.

Theorem 4.16

Let 2: (U, 9% (5),nx(8)) — (V, uz(8),i%(8)) be a MVGSCM . Then the following conditions hold:
i), AMVgscl(P)) € MVcl(#(P)), for every MV set P in (U, 9x(S),nx(S)).

ii). MVgscl(£# 1(Q)) € A~Y(MVcl(Q)), for every MV set Q in (V, uzr(8), {x(S)).

Proof: i). Since MVcl(A(P)) is MVCS in (V, uzx(S), {z(S)) and £ is MVGSCM, then A~L(MVcl(A(P))) is
MVGSCS in (U, 9%(S),nx(S)). That is MVgscl(P) € A~ (MVcl(A(P))). Therefore, A(MVgscl(P)) S
MVcl(A(P)), for every MV set P in (U, 9x(S), nx(S)).

ii). Replacing P by £71(Q) in (i), we get A(MVgscl(£71(Q))) € MVcl(A(A™1(Q))) € MVcl(Q). Hence,
MVgscl(A~1(Q)) € A~Y(MVcl(Q)), for every MV set Q in (V, ux (), z(S)).
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5. Conclusion

Several types of continuous mappings in Micro Vague Topological spaces are introduced and the theorems based
on Micro Vague Continuous mappings are presented. Micro Vague Generalized Semi interior and closer are
introduced. The inter-relation between Micro Vague Generalized Semi Continuous mappings and the other
existing mappings are discussed and proved with the help of solid numerical.
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