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Generalized Semi Continuous mapping is the ultimate purpose of this article. Many different types of Micro 
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Keywords: Micro Vague Continuous Mappings, Micro Vague Semi Continuous Mappings, Micro Vague 

Generalized Semi Continuous Mappings. 

 

1. Introduction 

An approach that delivers just one outcome for every input parameter is called a function.  The input to the function 

is the independent variable also referred to as the argument of the function. The output of the function is the 

dependent variable. Continuity is a basic concept in computational mathematics and calculus. In mathematics, a 

continuous function is one in which there are no sudden shifts in value and a continuous variation of the function's 

value due to ongoing changes in the input. If a function's graph is continuous throughout the entire interval the 

function qualifies as continuous in that range. In real analysis, continuous functions are basic ideas that serve as 

a basis for learning about limit points, partial integrals, higher order derivatives and other topics. 

Continuity was introduced by Augustin Louis Cauchy in 1821 in his famous textbook Cours d'Analyse. In 1965 

and 1986 respectively, Zadeh [17] and Atanassov [2] proposed the ideas of Fuzzy sets and Intuitionistic Fuzzy 

sets. Gau and Buehrer [16] initially suggested the study of Vague sets as a continuation of fuzzy sets. There are 

different kind of continuous functions. Point wise continuity, Pair wise continuity, Uniform continuity, Lipschitz 

continuity are some of among them. Not all functions are continuous. There are various types of discontinuous 

functions such as Removable discontinuity, Jump discontinuity, Essential discontinuity and Infinite discontinuity.   

Semi continuous functions are versatile tools in various fields allowing for more flexible and realistic modelling 

phenomena that may not be adequately captured by strictly continuous functions. Levine. N  [4] introduced the 

semi open and semi continuity in 1963. Their ability to handle discontinuities and abrupt changes in data or 

systems makes them valuable in a wide range of applications. Generalized continuous functions are mathematical 

objects that generalizes the concept of functions. They often used in distribution theory and are not always 

traditional functions in the sense of having specific values at each point in their domain. Instead, they are defined 

through their action on test functions. 

Micro topology is an enlargement of nano topology which has been established by Chandrasekar S [12]. By 

combining Micro topological space and Vague topological space, Vargees Vahini T and Trinita Pricilla M  [15] 

have introduced the new topological space called Micro Vague Topological Space. Mashour. A. S [6] introduced 
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pre continuous mappings and weakly pre continuous mappings in 1982. R. Devi and H. Maki and K. Balachandran 

[3] have introduced the generalized semi continuous and generalized semi homomorphism in 1995.  

Generalized semi continuous sets are the combined idea of semi continuous and generalized continuous functions. 

It is often used in more abstract mathematical settings and it encompasses functions that may not be directly 

associated with real numbers. It is a broader concept that can apply to the functions defined on more general 

topological spaces. The notion of upper and lower semi continuity is adapted to these more general spaces. 

Generalized Semi continuous function is not necessarily be continuous but exhibits some degree continuity when 

defined on topological spaces.  

In this article, many types of continuous functions and generalized continuous functions in Micro Vague 

Topological Spaces are introduced. Particularly, Micro Vague Generalized Semi Continuous function is 

introduced and the relationship between Micro Vague Generalized Semi Continuous mappings and the existing 

Micro Vague Continuous functions are presented and investigated with the suitable examples. 

2. Preliminaries 

Definition 2.1[15] 

Let (𝑈, 𝜏𝑅(𝐴)) be a Nano Vague Topological Space. Let 𝜂𝑅(𝐴) = {𝑆 ∪ (𝑆′ ∩ 𝜂): 𝑆, 𝑆′ ∈ 𝜏𝑅(𝐴) 𝑎𝑛𝑑 𝜂 ∉  𝜏𝑅(𝐴)}. 

Then 𝜂𝑅(𝐴) is called the Micro Vague Topology ( 𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒯 ) of 𝜏𝑅(𝐴) by 𝜂 on 𝑈 with respect to A. The 

triplet (𝑈, 𝜏𝑅(𝐴), 𝜂𝑅(𝐴)) is called the Micro Vague Topological Space (shortly ℳ𝒱𝒯𝒮). The elements of 𝜂𝑅(𝐴) 

are called Micro Vague open sets ( 𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒪𝒮) and the complement of ℳ𝒱𝒪𝒮 is called Micro Vague 

Closed set ( 𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒞𝒮).  

Definition 2.2[15] 

Let 𝑈 be the Universe and 𝑋 ⊆ 𝑈. Let 𝒢 and ℋ be two ℳ𝒱 sets in the ℳ𝒱𝒯𝒮 (𝑈, 𝜏𝑅(𝑋), 𝜂𝑅(𝑋)) of the form 𝒢 

= {〈𝑥, [𝜇𝒢(𝑥), 𝛾𝒢(𝑥)]〉/𝑥 ∈ 𝑋} and ℋ = {〈𝑥, [𝜇ℋ(𝑥), 𝛾ℋ(𝑥)]〉/𝑥 ∈ 𝑋}  respectively. Then the following 

conditions holds:  

(i) 𝒢 ⊆ ℋ 𝑖𝑓𝑓 𝜇𝒢(𝑥) ≤ 𝜇ℋ(𝑥), 𝛾𝒢(𝑥) ≤ 𝛾ℋ(𝑥)  ∀𝑥 ∈ 𝑈 

(ii) 𝒢 = ℋ 𝑖𝑓𝑓 𝒢 ⊆ ℋ 𝑎𝑛𝑑 ℋ ⊆ 𝒢 

(iii) 𝒢𝐶 = {〈𝑥, 1 − 𝛾𝒢(𝑥), 1 − 𝜇𝒢(𝑥)〉/∀𝑥 ∈ 𝑈} 

(iv) 𝒢 ∪ ℋ = {〈𝑥, (𝜇𝒢(𝑥) ⋁ 𝜇ℋ(𝑥), 𝛾𝒢(𝑥) ⋁ 𝛾ℋ(𝑥))〉/∀𝑥 ∈ 𝑈} 

(v) 𝒢 ∩ ℋ = {〈𝑥, (𝜇𝒢(𝑥) ⋀ 𝜇ℋ(𝑥),   𝛾𝒢(𝑥) ⋀ 𝛾ℋ(𝑥))〉/∀𝑥 ∈ 𝑈} 

(vi) 0ℳ𝒱 = 〈𝑥, (0,0)〉 and 1ℳ𝒱 = 〈𝑥, (1,1)〉 ∀𝑥 ∈ 𝑈. 

 

3. Various types of Micro Vague Continuous Mappings 

Definition 3.1 

We define the image and preimage of ℳ𝒱 𝑆𝑒𝑡𝑠. Let ℱ= {〈𝑥, [𝜇ℱ(𝑥), 𝛾ℱ(𝑥)]〉/𝑥 ∈ 𝑋} and 𝒢 = 

{〈𝑥, [𝜇𝒢(𝑥), 𝛾𝒢(𝑥)]〉/𝑥 ∈ 𝑋} be two ℳ𝒱 𝑆𝑒𝑡𝑠 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) respectively. Let 

𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be a function, then the following statements hold: 

(i) The pre-image of 𝒢 under 𝒽 denoted by 𝒽−1(𝒢) is the ℳ𝒱 set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) defined by 𝒽−1(𝒢) =

{〈𝑥, [𝒽−1(𝜇𝒢)(𝑥), 𝒽−1(𝛾𝒢)(𝑥)]/𝑥 ∈ 𝑋〉}. 

(ii) The image of ℱ under f denoted by 𝒽(ℱ) is the ℳ𝒱 set in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) defined by 𝓀(ℱ) =

{〈𝑥, [𝒽(𝜇ℱ)(𝑥), 𝒽( 𝛾ℱ)(𝑥)]/𝑥 ∈ 𝑋〉}. 

Corollary 3.2 

Let 𝒞ℳ𝒱, 𝒞𝑖ℳ𝒱
(𝑖 ∈ ℐ) be ℳ𝒱 sets in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) and  𝒟ℳ𝒱 , 𝒟𝑖ℳ𝒱

(𝑗 ∈ 𝒥) be ℳ𝒱 sets in 

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). Let us define a function 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). Then the following 

properties holds 
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a) If 𝒞1ℳ𝒱
⊆ 𝒞2ℳ𝒱

, then 𝒽(𝒞1ℳ𝒱
) ⊆ 𝒽(𝒞2ℳ𝒱

). 

b) If 𝒟1ℳ𝒱
⊆  𝒟2ℳ𝒱

, then 𝒽(𝒟1ℳ𝒱
) ⊆ 𝒽(𝒟2ℳ𝒱

). 

c) 𝒞ℳ𝒱 ⊆ 𝒽−1(𝒽(𝒞ℳ𝒱)).  

d) 𝒞ℳ𝒱 = 𝒽−1(𝒽(𝒞ℳ𝒱)) if 𝒽 is injective. 

e) 𝒽(𝒽−1(𝒟ℳ𝒱)) ⊆ 𝒟ℳ𝒱 . 

f) 𝒽(𝒽−1(𝒟ℳ𝒱)) = 𝒟ℳ𝒱  if 𝒽 is surjective. 

g) 𝒽−1(⋃ 𝒟𝑖 ℳ𝒱
) = ⋃ 𝒽−1(𝒟𝑖 ℳ𝒱

). 

h) 𝒽−1(⋂ 𝒟𝑖 ℳ𝒱
) = ⋂ 𝒽−1(𝒟𝑖 ℳ𝒱

). 

i) 𝒽(⋃ 𝒞𝑖ℳ𝒱
) = ⋃ 𝒽(𝒞𝑖ℳ𝒱

). 

j) 𝒽(⋂ 𝒞𝑖ℳ𝒱
) ⊆ ⋂ 𝒽(𝒞𝑖ℳ𝒱

). 

k) If 𝒽 is injective, then 𝒽(⋂ 𝒞𝑖ℳ𝒱
) = ⋂ 𝒽(𝒞𝑖ℳ𝒱

). 

l) 𝒽−1(1ℳ𝒱) = 1ℳ𝒱 . 

m) 𝒽−1(0ℳ𝒱) = 0ℳ𝒱 . 

n) 𝒽(1ℳ𝒱) = 1ℳ𝒱 , if 𝒽 is surjective. 

o) 𝒽(0ℳ𝒱) = 0ℳ𝒱 . 

p) 𝒽(𝒞ℳ𝒱)  ⊆  𝒽(𝒞ℳ𝒱), if 𝒽 is surjective. 

q) 𝒽−1(𝒟ℳ𝒱) = 𝒽−1(𝒟ℳ𝒱).  

Proof: Proof is obvious. 

Definition 3.3 

 Let (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be any two ℳ𝒱𝒯𝒮 . A map 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is said to be 

1. ℳ𝒱𝒪 mapping (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒪ℳ) iff the image of each ℳ𝒱𝒪 sets in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) is ℳ𝒱𝒪 in 

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). 

2. ℳ𝒱 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒞ℳ), if the inverse image 𝒽−1(ℱ) of every ℳ𝒱𝒞 set ℱ in 

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒞 set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

3. ℳ𝒱𝒮 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒮𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱𝒮𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

4. ℳ𝒱𝒫 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒫𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱𝒫𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

5. ℳ𝒱𝒮𝒫 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒮𝒫𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) 

is ℳ𝒱𝒮𝒫𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

6. ℳ𝒱𝛼 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝛼𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱α𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

7. ℳ𝒱ℛ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱ℛ𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱ℛ𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

8. ℳ𝒱𝒢 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒢𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱𝒢𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

9. ℳ𝒱𝒢𝒫 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒢𝒫𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) 

is ℳ𝒱𝒢𝒫𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

10. ℳ𝒱𝒢𝒮𝒫 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒢𝒮𝒫𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in 

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒢𝒮𝒫𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 
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11. ℳ𝒱𝛼𝒢 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝛼𝒢𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) 

is ℳ𝒱α𝒢𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

12. ℳ𝒱𝒢𝛼 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒢𝛼𝒞ℳ), if 𝒽−1(ℱ) of every ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) 

is ℳ𝒱𝒢α𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

 

Definition 3.4 

 Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is both one-to-one and onto mapping where 

(𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) are two ℳ𝒱𝒯𝒮𝑠. Then 𝒽 is said to be ℳ𝒱-𝐻𝑜𝑚𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 if 𝒽 

and 𝒽−1 are ℳ𝒱𝒞ℳ. 

4. Characterizations and Properties of Micro Vague Generalized Semi Continuous Mappings 

Definition 4.1  

Let (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be any two ℳ𝒱𝒯𝒮. A map 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶

(𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is said to be ℳ𝒱𝒢𝒮 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱𝒢𝒮𝒞ℳ), if 𝒽−1(ℱ) of every 

ℳ𝒱𝒞𝒮 ℱ in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒢𝒮𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

Example 4.2: Let 𝒰 = {α, β, γ} be the Universe of discourse. 𝒰 /ℛ = {{α}, {β, γ}} be the equivalence relation on 

𝒰. Let 𝒮 = {<  α, (0.2,0.5) >, < β, (0.2,0.7) >, < γ, (0.2,0.4) >} be a subset of 𝒰. Then, ϑℛ(𝒮) = {0NV, 1NV, {<

α, (0.2,0.5) >, < β, (0.2,0.4) >, <  γ, (0.2,0.4) >}, {< α, (0.2,0.5) >, < β, (0.2,0.7) >, < γ, (0.2,0.7) >} } is a 

𝒩𝒱𝒯 on 𝒰. Let η ={< α, (0.3,0.8) >, < β, (0.5,0.8) >, < γ, (0.3,0.8) >}. Then ηℛ(𝒮) = {0NV, 1NV, {<

α, (0.2,0.5) >, < β, (0.2,0.4) >, <  γ, (0.2,0.4) >}, {< α, (0.2,0.5) >, < β, (0.2,0.7) >, < γ, (0.2,0.7) >}, {<

α, (0.3,0.8) >, < β, (0.5,0.8) >, < γ, (0.3,0.8) >} } is a ℳ𝒱𝒯 and  (𝒰, ϑℛ(𝒮), ηℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Let 𝒱 = {δ, σ, τ} be another universe of discourse. 𝒱 /ℛ = {{δ, τ}{σ}} be the equivalence relation on 𝒱. Let 𝒮 =

{< δ, (0.1,0.7) >, < σ, (0.3,0.6) >, < τ, (0.2,0.3) >} be a subset of 𝒱. Then, μℛ(𝒮) = {0NV, 1NV, {<

δ, (0.1,0.3) >, < σ, (0.3,0.6) >, <  τ, (0.1,0.3) >}, {< δ, (0.2,0.7) >, < σ, (0.3,0.6) >, < τ, (0.2,0.7) >} } is a 

𝒩𝒱𝒯 on 𝒰. Let ζ ={< δ, (0.4,0.5) >, < σ, (0.1,0.4) >, < τ, (0.2,0.3) >}. Then ζℛ(𝒮) = {0NV, 1NV, {<

δ, (0.1,0.3) >, < σ, (0.3,0.6) >, <  τ, (0.1,0.3) >}, {< δ, (0.2,0.7) >, < σ, (0.3,0.6) >, < τ, (0.2,0.7) >},   {<

δ, (0.4,0.5) >, < σ, (0.1,0.4) >, < τ, (0.2,0.3) >}} is a ℳ𝒱𝒯 and (𝒱, μℛ(𝒮), ζℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Define a mapping 𝒽: (𝒰, ϑℛ(𝒮), ηℛ(𝒮)) ⟶ (𝒱, μℛ(𝒮), ζℛ(𝒮)) by 𝒽(α) = δ, 𝒽(β) = σ and 𝒽(γ) = τ. Then 𝒽 

is ℳ𝒱𝒢𝒮 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠.  

Theorem 4.3 

1. Every ℳ𝒱𝒞ℳ is ℳ𝒱𝒢𝒞ℳ. 

2. Every ℳ𝒱𝒞ℳ is ℳ𝒱𝛼𝒞ℳ. 

3. Every ℳ𝒱𝒞ℳ is ℳ𝒱𝒫𝒞ℳ. 

4. Every ℳ𝒱𝛼𝒞ℳ is ℳ𝒱𝒫𝒞ℳ. 

5. Every ℳ𝒱ℛ𝒞ℳ is ℳ𝒱𝒞ℳ. 

6. Every ℳ𝒱𝛼𝒞ℳ is ℳ𝒱𝒮𝒞ℳ. 

7. Every ℳ𝒱𝒮𝒞ℳ is ℳ𝒱𝒮𝒫𝒞ℳ. 

8. Every ℳ𝒱𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 

9. Every ℳ𝒱𝒢𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 

10. Every ℳ𝒱𝒮𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 
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11. Every ℳ𝒱𝛼𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 

12. Every ℳ𝒱ℛ𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 

13. Every ℳ𝒱𝛼𝒢𝒞ℳ is ℳ𝒱𝒢𝒮𝒞ℳ. 

14. Every ℳ𝒱𝒢𝒮𝒞ℳ is ℳ𝒱𝒮𝒫𝒞ℳ. 

15. Every ℳ𝒱𝒢𝒮𝒞ℳ is ℳ𝒱𝒢𝒮𝒫𝒞ℳ. 

16. ℳ𝒱𝒫𝒞ℳ and ℳ𝒱𝒢𝒮𝒞ℳ are independent to each other. 

17. ℳ𝒱𝒢𝒫𝒞ℳ and ℳ𝒱𝒢𝒮𝒞ℳ are independent to each other. 

Proof:  

1. Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be a ℳ𝒱𝒞ℳ. Let ℱ be a ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). Then 

𝒽−1(ℱ) is ℳ𝒱𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Since every ℳ𝒱𝒞𝒮 is ℳ𝒱𝒢𝒞𝒮, 𝒽−1(ℱ) is ℳ𝒱𝒢𝒞𝒮 in 

(𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Hence 𝒽 is ℳ𝒱𝒢𝒞ℳ. 

2. Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be a ℳ𝒱𝒞ℳ. Let ℱ be a ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). Then 

𝒽−1(ℱ) is ℳ𝒱𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Since every ℳ𝒱𝒞𝒮 is ℳ𝒱𝛼𝒞𝒮, 𝒽−1(ℱ) is ℳ𝒱𝛼𝒞𝒮 in 

(𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Hence 𝒽 is ℳ𝒱𝛼𝒞ℳ. 

3. Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be a ℳ𝒱𝒞ℳ. Let ℱ be a ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). Then 

𝒽−1(ℱ) is ℳ𝒱𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Since every ℳ𝒱𝒞𝒮 is ℳ𝒱𝒫𝒞𝒮, 𝒽−1(ℱ) is ℳ𝒱𝒫𝒞𝒮 in 

(𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Hence 𝒽 is ℳ𝒱𝒫𝒞ℳ. 

Proof of (4) – (17) is same as (1) – (3). 

Remark 4.4: The invert of the preceding theorem may not be true as seen in the succeeding examples.  

Example 4.5: Let 𝒰 = {𝜌, 𝜆, 𝜃}, 𝒰 /ℛ = {{𝜌, 𝜃}, {𝜆}}. Let 𝒮 = {< 𝜌 , (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <

𝜃, (0.2,0.7) >} be a subset of 𝒰. Then, 𝜗ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝜌, (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <  𝜃, (0.1,0.4) >

}, {< 𝜌, (0.2,0.7) >, < 𝜆, (0.3,0.5) >, < 𝜃, (0.2,0.7) >}} is a 𝒩𝒱𝒯 on 𝒰. Let 𝜂 ={< 𝜌, (0.2,0.3) >, <

 𝜆, (0.2,0.5) >, <  𝜃, (0.3,0.4) >}. Then, 𝜂𝑅(𝐴) = {0ℳ𝒱 , 1ℳ𝒱 , {<  𝜌 (0.2,0.3) >, < λ, (0.2,0.5) >, <

θ, (0.3,0.4) >}, {< ρ, (0.1,0.4) >, < λ, (0.3,0.5) >, < θ, (0.1,0.4) >}, {ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, <

θ, (0.2,0.7) >}, {< ρ, (0.1,0.3) >, < λ, (0.2,0.5) >, < θ, (0.1,0.4) >}, {< ρ, (0.2,0.3) >, < λ, (0.2,0.5) >, <

θ, (0.2,0.4) >}, {< ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, < θ, (0.3,0.4) >}, {< ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, <

θ, (0.2,0.4) >}, {< ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, < θ, (0.3,0.7) >}} is a ℳ𝒱𝒯 on 𝒰 and (𝒰, 𝜏𝑅(𝒮), 𝜂𝑅(𝒮)) is 

called as the ℳ𝒱𝒯𝒮.  

Let 𝒱 = {𝛿, 𝜎, 𝜏}, 𝒱 /ℛ = {{𝛿}{𝜎, 𝜏}}. Let 𝒮 = {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >} be a subset 

of 𝒱. Then, 𝜇ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.3,0.5) >} } is a Nano Vague 

Topology on 𝒰. Let 𝜁 ={< 𝛿, (0.2,0.3) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >}. Then 𝜁ℛ(𝒮) = {0𝑀𝑉 , 1𝑀𝑉 , {<

𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.3,0.5) >}, {< 𝛿, (0.2,0.3) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >} } is a 

ℳ𝒱𝒯 and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Here, 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by 𝒽(𝜌) = 𝛿, 𝒽(𝜆) = 𝜎 and 𝒽(𝜃) = 𝜏 is ℳ𝒱𝛼𝒞ℳ, 

ℳ𝒱𝒮𝒞ℳ and ℳ𝒱𝒫𝒞ℳ but not ℳ𝒱𝒞ℳ since, ℱ = {< 𝛿, (0.6,0.8) >, < 𝜎, (0.5,0.7) >, < 𝜏, (0.5,0.7) >} is 

ℳ𝒱𝒞 set in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) but 𝒽−1(ℱ) is not ℳ𝒱𝒞 set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)).   

Example 4.6: Let 𝒰 = {𝛼, 𝛽, 𝛾}, 𝒰 /ℛ = {{𝛼}, {𝛽, 𝛾}}. Let 𝒮 = {<  𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.7) >, <

𝛾, (0.2,0.4) >}. Then, 𝜗ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.4) >, <  𝛾, (0.2,0.4) >}, {<

𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.7) >, < 𝛾, (0.2,0.7) >} }. Let 𝜂 ={< 𝛼, (0.3,0.8) >, < 𝛽, (0.5,0.8) >, <

𝛾, (0.3,0.8) >}. Then 𝜂ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.4) >, <  𝛾, (0.2,0.4) >}, {<

𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.7) >, < 𝛾, (0.2,0.7) >}, {< 𝛼, (0.3,0.8) >, < 𝛽, (0.5,0.8) >, < 𝛾, (0.3,0.8) >} } is a 

ℳ𝒱𝒯 and  (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 
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Let 𝒱 = {𝛿, 𝜎, 𝜏}, 𝒱 /ℛ = {{𝛿, 𝜏}{𝜎}}. Let 𝒮 = {< 𝛿, (0.1,0.7) >, < 𝜎, (0.3,0.6) >, < 𝜏, (0.2,0.3) >}. Then, 

 𝜇ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛿, (0.1,0.3) >, < 𝜎, (0.3,0.6) >, <  𝜏, (0.1,0.3) >}, {< 𝛿, (0.2,0.7) >, < 𝜎, (0.3,0.6) >

, < 𝜏, (0.2,0.7) >} }. Let 𝜁 ={< 𝛿, (0.1,0.3) >, < 𝜎, (0.2,0.5) >, < 𝜏, (0.1,0.3) >}. Then 𝜁ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {<

𝛿, (0.1,0.3) >, < 𝜎, (0.3,0.6) >, <  𝜏, (0.1,0.3) >}, {< 𝛿, (0.2,0.7) >, < 𝜎, (0.3,0.6) >, < 𝜏, (0.2,0.7) >},   {<

𝛿, (0.1,0.3) >, < 𝜎, (0.2,0.5) >, < 𝜏, (0.1,0.3) >}} is ℳ𝒱𝒯 and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Here, 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by 𝒽(𝛼) = 𝛿, 𝒽(𝛽) = 𝜎 and 𝒽(𝛾) = 𝜏 is ℳ𝒱𝒢𝒮𝒞ℳ but not 

ℳ𝒱𝒞ℳ, ℳ𝒱𝒮𝒞ℳ, ℳ𝒱𝒢𝒞ℳ, ℳ𝒱𝛼𝒞ℳ, ℳ𝒱ℛ𝒞ℳ, ℳ𝒱𝛼𝒢𝒞ℳ since,  ℱ = {< 𝛿, (0.7,0.9) >, <

𝜎, (0.5,0.8) >, < 𝜏, (0.7,0.9) >} is ℳ𝒱𝒞 set in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) but 𝒽−1(ℱ) is not ℳ𝒱𝒞, ℳ𝒱𝒮𝒞, ℳ𝒱𝒢𝐶, 

ℳ𝒱𝛼𝐶, ℳ𝒱ℛ𝐶, ℳ𝒱𝛼𝒢𝐶 set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)).  

Example 4.7: Let 𝒰 = {𝜌, 𝜆, 𝜃}, 𝒰 /ℛ = {{𝜌, 𝜃}, {𝜆}}. Let 𝒮 = {< 𝜌 , (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <

𝜃, (0.2,0.7) >}. Then, 𝜗ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝜌, (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <  𝜃, (0.1,0.4) >}, {<

𝜌, (0.2,0.7) >, < 𝜆, (0.3,0.5) >, < 𝜃, (0.2,0.7) >}}. Let 𝜂 ={< 𝜌, (0.2,0.3) >, <  𝜆, (0.2,0.5) >, <

 𝜃, (0.3,0.4) >}. Then, 𝜂𝑅(𝐴) = {0ℳ𝒱 , 1ℳ𝒱 , {<  𝜌 (0.2,0.3) >, < λ, (0.2,0.5) >, < θ, (0.3,0.4) >}, {<

ρ, (0.1,0.4) >, < λ, (0.3,0.5) >, < θ, (0.1,0.4) >}, {ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, < θ, (0.2,0.7) >}, {<

ρ, (0.1,0.3) >, < λ, (0.2,0.5) >, < θ, (0.1,0.4) >}, {< ρ, (0.2,0.3) >, < λ, (0.2,0.5) >, < θ, (0.2,0.4) >}, {<

ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, < θ, (0.3,0.4) >}, {< ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, < θ, (0.2,0.4) >}, {<

ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, < θ, (0.3,0.7) >}} is a ℳ𝒱𝒯 on 𝒰 and  (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) is ℳ𝒱𝒯𝒮.  

Let 𝒱 = {𝛿, 𝜎, 𝜏}, 𝒱 /ℛ = {{𝛿, 𝜏}{𝜎}}. Let 𝒮 = {< 𝛿, (0.1,0.4) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.2,0.4) >}. Then, 

𝜇ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛿, (0.1,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.1,0.4) >}, {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >

, <  𝜏, (0.2,0.4) >} }. Let 𝜁 ={< 𝛿, (0.1,0.3) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.1,0.3) >}. Then 𝜁ℛ(𝒮) = {0𝑀𝑉 , 1𝑀𝑉 , {<

𝛿, (0.1,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.1,0.4) >}, {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.2,0.4) >}, {<

𝛿, (0.1,0.3) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.1,0.3) >}} is a ℳ𝒱𝒯 and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Here, 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by 𝒽(𝜌) = 𝛿, 𝒽(𝜆) = 𝜎 and 𝒽(𝜃) = 𝜏 is ℳ𝒱𝒫𝒞ℳ, 

ℳ𝒱𝒮𝒫𝒞ℳ, ℳ𝒱𝒢𝒫𝒞ℳ, ℳ𝒱𝒢𝒮𝒫𝒞ℳ but not ℳ𝒱𝛼𝒞ℳ and ℳ𝒱𝒢𝒮𝒞ℳ since, ℱ = {< 𝛿, (0.7,0.9) >, <

𝜎, (0.5,0.7) >, < 𝜏, (0.7,0.9) >} is ℳ𝒱𝒞 set in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) but 𝒽−1(ℱ) is not ℳ𝒱𝛼𝒞 and ℳ𝒱𝒢𝒮𝐶 set in 

(𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

Example 4.8: Let 𝒰 = {𝛼, 𝛽, 𝛾}, 𝒰 /ℛ = {{𝛼, 𝛽}, {𝛾}}. Let 𝒮 = {< 𝛼, (0.5,0.7) >, < 𝛽, (0.2,0.5) >, <

𝛾, (0.3,0.4) >}. Then, 𝜗ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.5) >, <  𝛾, (0.3,0.4) >}, {<

𝛼, (0.5,0.7) >, < 𝛽, (0.5,0.7) >, < 𝛾, (0.3,0.4) >} }. Let 𝜂 ={< 𝛼, (0.6,0.7) >, < 𝛽, (0.6,0.7) >, <

𝛾, (0.4,0.8) >}. Then 𝜂𝓡(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.5) >, <  𝛾, (0.3,0.4) >}, {<

𝛼, (0.5,0.7) >, < 𝛽, (0.5,0.7) >, < 𝛾, (0.3,0.4) >}, {< 𝛼, (0.6,0.7) >, < 𝛽, (0.6,0.7) >, < 𝛾, (0.4,0.8) >} } is a 

ℳ𝒱𝒯 and  (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Let 𝒱 = {𝛿, 𝜎, 𝜏}, 𝒱 /ℛ = {{𝛿}{𝜎, 𝜏}}. Let 𝒮 = {< 𝛿, (0.4,0.6) >, < 𝜎, (0.4,0.4) >, < 𝜏, (0.2,0.4) >}. Then, 

𝜇ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛿, (0.4,0.6) >, < 𝜎, (0.2,0.4) >, < 𝜏, (0.2,0.4) >}, {< 𝛿, (0.4,0.6) >, < 𝜎, (0.4,0.4) >

, < 𝜏, (0.4,0.4) >} }. Let 𝜁 ={< 𝛿, (0.3,0.4) >, < 𝜎, (0.2,0.4) >, < 𝜏, (0.1,0.3) >}. Then 𝜁ℛ(𝒮) = {0𝑀𝑉 , 1𝑀𝑉 , {<

𝛿, (0.4,0.6) >, < 𝜎, (0.2,0.4) >, <  𝜏, (0.2,0.4) >}, {< 𝛿, (0.4,0.6) >, < 𝜎, (0.4,0.4) >, < 𝜏, (0.4,0.4) >},   {<

𝛿, (0.3,0.4) >, < 𝜎, (0.2,0.4) >, < 𝜏, (0.1,0.3) >}} is a ℳ𝒱𝒯 and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒯𝒮. 

Here, 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by 𝒽(𝛼) = 𝛿, 𝒽(𝛽) = 𝜎 and 𝒽(𝛾) = 𝜏 is ℳ𝒱𝒢𝒞ℳ but not 

ℳ𝒱𝒞ℳ since, ℱ = {< 𝛿, (0.4,0.6) >, < 𝜎, (0.6,0.8) >, < 𝜏, (0.6,0.8) >} is ℳ𝒱𝒞 set in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) but 

𝒽−1(ℱ) is not ℳ𝒱𝒞 set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)).   

Result 4.9: The relationship between various types of ℳ𝒱𝒞ℳ𝑠 is given in the following figure. 
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Figure 1 

Theorem 4.10: A mapping 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒢𝒮𝒞ℳ if and only if the inverse 

image of each ℳ𝒱𝒪𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒢𝒮𝒪𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

Proof: Necessity: Let 𝒫 be a ℳ𝒱𝒪𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). This implies that 𝒫𝒞 is ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). 

Since 𝒽 is ℳ𝒱𝒢𝒮𝒞ℳ, 𝒽−1(𝒫𝒞) is ℳ𝒱𝒢𝒮𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Since 𝒽−1(𝒫𝒞) = (𝒽−1(𝒫))𝒞, 𝒽−1(𝒫) is 

ℳ𝒱𝒢𝒮𝒪𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)).  

Sufficiency: The proof is obvious from the definition of ℳ𝒱𝒢𝒮𝒞ℳ. 

Theorem 4.11: A mapping 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is ℳ𝒱𝒢𝒮𝒞ℳ if 

ℳ𝒱𝑐𝑙(ℳ𝒱𝑖𝑛𝑡(ℳ𝒱𝑐𝑙(𝒽−1(𝒫)))) ⊆ 𝒽−1(ℳ𝒱𝑐𝑙(𝒫)) for every ℳ𝒱 set 𝒫 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). 

Proof: Let 𝒫 be ℳ𝒱𝒪𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)), then 𝒫𝒞  is ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). By hypothesis, 

ℳ𝒱𝑐𝑙(ℳ𝒱𝑖𝑛𝑡(ℳ𝒱𝑐𝑙(𝒽−1(𝒫𝒞)))) ⊆ 𝒽−1(ℳ𝒱𝑐𝑙(𝒫𝒞)) = 𝒽−1(𝒫𝒞), since 𝒫𝒞 is ℳ𝒱𝒞𝒮. Now 

(ℳ𝒱𝑖𝑛𝑡(ℳ𝒱𝑐𝑙(ℳ𝒱𝑖𝑛𝑡(𝒽−1(𝒫)))))𝒞 = ℳ𝒱𝑐𝑙(ℳ𝒱𝑖𝑛𝑡(ℳ𝒱𝑐𝑙(𝒽−1(𝒫𝒞)))) ⊆ 𝒽−1(𝒫𝒞) = 𝒽−1(𝒫)𝒞. This 

implies that 𝒽−1(𝒫) ⊆ ℳ𝒱𝑖𝑛𝑡(ℳ𝒱𝑐𝑙(ℳ𝒱𝑖𝑛𝑡(𝒽−1(𝒫)))). Hence 𝒽−1(𝒫) is ℳ𝒱𝛼𝒪𝒮 and hence it is 

ℳ𝒱𝒢𝒮𝒪𝒮. Therefore 𝒽 is ℳ𝒱𝒢𝒮𝒞ℳ continuous mapping. 

Theorem 4.12: Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be ℳ𝒱𝒢𝒮𝒞ℳ and 𝒾: (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) ⟶

(𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) be continuous mapping, then 𝒾 ∘ 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) is 

ℳ𝒱𝒢𝒮𝒞ℳ. 

Proof: Let 𝒫 be ℳ𝒱𝒞𝒮 in (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)). Then 𝒾−1(𝒫) is ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by hypothesis. Since 

𝒽 is ℳ𝒱𝒢𝒮𝒞ℳ, 𝒽−1(𝒾−1(𝒫)) is ℳ𝒱𝒢𝒮𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). Hence 𝒾 ∘ 𝒽 is ℳ𝒱𝒢𝒮𝒞ℳ. 

Remark 4.13: Composition of two ℳ𝒱𝒢𝒮𝒞ℳ need not to be a ℳ𝒱𝒢𝒮𝒞ℳ and it is shown in the following 

example. 

Example 4.14: Let 𝒰 = {𝜌, 𝜆, 𝜃}, 𝒰 /ℛ = {{𝜌, 𝜃}, {𝜆}}. Let 𝒮 = {< 𝜌 , (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <

𝜃, (0.2,0.7) >}. Then, 𝜗ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝜌, (0.1,0.4) >, < 𝜆, (0.3,0.5) >, <  𝜃, (0.1,0.4) >}, {<

𝜌, (0.2,0.7) >, < 𝜆, (0.3,0.5) >, < 𝜃, (0.2,0.7) >}}. Let 𝜂 ={< 𝜌, (0.2,0.3) >, <  𝜆, (0.2,0.5) >, <

 𝜃, (0.3,0.4) >}. Then, 𝜂𝑅(𝐴) = {0ℳ𝒱 , 1ℳ𝒱 , {<  𝜌 (0.2,0.3) >, < λ, (0.2,0.5) >, < θ, (0.3,0.4) >}, {<

ρ, (0.1,0.4) >, < λ, (0.3,0.5) >, < θ, (0.1,0.4) >}, {ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, < θ, (0.2,0.7) >}, {<

ρ, (0.1,0.3) >, < λ, (0.2,0.5) >, < θ, (0.1,0.4) >}, {< ρ, (0.2,0.3) >, < λ, (0.2,0.5) >, < θ, (0.2,0.4) >}, {<

ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, < θ, (0.3,0.4) >}, {< ρ, (0.2,0.4) >, < λ, (0.3,0.5) >, < θ, (0.2,0.4) >}, {<

ρ, (0.2,0.7) >, < λ, (0.3,0.5) >, < θ, (0.3,0.7) >}} is a ℳ𝒱𝒯 on 𝒰 and (𝒰, 𝜏𝑅(𝒮), 𝜂𝑅(𝒮)) is called as the ℳ𝒱𝒯𝒮.  
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Let 𝒱 = {𝛿, 𝜎, 𝜏}, 𝒱 /ℛ = {{𝛿}{𝜎, 𝜏}}. Let 𝒮 = {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >}. Then, 

𝜇ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, <  𝜏, (0.3,0.5) >} }. Let 𝜁 ={< 𝛿, (0.2,0.3) >, <

𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >}. Then 𝜁ℛ(𝒮) = {0𝑀𝑉 , 1𝑀𝑉 , {< 𝛿, (0.2,0.4) >, < 𝜎, (0.3,0.5) >, <

 𝜏, (0.3,0.5) >}, {< 𝛿, (0.2,0.3) >, < 𝜎, (0.3,0.5) >, < 𝜏, (0.3,0.5) >} } is a ℳ𝒱𝒯 and (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) is 

ℳ𝒱𝒯𝒮. 

Let 𝒲 = {𝛼, 𝛽, 𝛾}, 𝒲 /ℛ = {{𝛼, 𝛾}{𝛽}}. Let 𝒮 = {< 𝛼, (0.3,0.4) >, < 𝛽, (0.3,0.5) >, < 𝛾, (0.3,0.6) >}. Then, 

𝜑ℛ(𝒮) = {0𝑁𝑉 , 1𝑁𝑉 , {< 𝛼, (0.3,0.4) >, < 𝛽, (0.3,0.5) >, <  𝛾, (0.3,0.4) >}, {< 𝛼, (0.3,0.6) >, < 𝛽, (0.3,0.5) >

, <  𝛾, (0.3,0.6) >} }. Let 𝜉 ={< 𝛼, (0.5,0.8) >, < 𝛽, (0.5,0.8) >, < 𝛾, (0.4,0.8) >}. Then 𝜉ℛ(𝒮) =

{0𝑀𝑉 , 1𝑀𝑉 , {< 𝛼, (0.3,0.4) >, < 𝛽, (0.3,0.5) >, <  𝛾, (0.3,0.4) >}, {< 𝛼, (0.3,0.6) >, < 𝛽, (0.3,0.5) >, <

 𝛾, (0.3,0.6) >}, {< 𝛼, (0.5,0.8) >, < 𝛽, (0.5,0.8) >, < 𝛾, (0.4,0.8) >}} is a ℳ𝒱𝒯 and (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) is 

ℳ𝒱𝒯𝒮. 

Define mappings 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) by 𝒽(𝜌) = 𝛿, 𝒽(𝜆) = 𝜎, 𝒽(𝜃) = 𝜏 and 

𝒾: (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) ⟶ (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) by (𝛿) = 𝛼, 𝒽(𝜎) = 𝛽, 𝒽(𝜏) = 𝛾 where 𝒽 and 𝒾 are ℳ𝒱𝒢𝒮𝒞ℳ. 

Then the composite mapping 𝒾 ∘ 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) is not ℳ𝒱𝒢𝒮𝒞ℳ since ℱ = {<

𝛼, (0.2,0.5) >, < 𝛽, (0.2,0.5) >, < 𝛾, (0.2,0.6) >} is ℳ𝒱𝒞 set in (𝒲, 𝜑ℛ(𝒮), 𝜉ℛ(𝒮)) but 𝒽−1(ℱ) is not ℳ𝒱𝒢𝒮𝒞 

set in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

Definition 4.15   

Let A be a ℳ𝒱 set of the ℳ𝒱𝒯𝒮 (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). The Micro Vague Generalized Semi interior of A 

(𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱 − 𝑔𝑠 − 𝑖𝑛𝑡(𝐴)) and Micro Vague Generalized Semi closure of A (𝑠ℎ𝑜𝑟𝑡𝑙𝑦 ℳ𝒱 − 𝑔𝑠 − 𝑐𝑙(𝐴)) 

are defined as: 

1. ℳ𝒱 − 𝑔𝑠 − 𝑖𝑛𝑡(𝐴) = ⋃{𝐻/𝐻 𝑖𝑠 𝑎 ℳ𝒱𝒢𝒮𝒪𝒮 𝑖𝑛 𝑈 𝑎𝑛𝑑 𝐻 ⊆ 𝐴}. 

2. ℳ𝒱 − 𝑔𝑠 − 𝑐𝑙(𝐴) = ⋂{𝒯/𝒯 𝑖𝑠 𝑎 ℳ𝒱𝒢𝒮𝒞𝒮 𝑖𝑛 𝑈 𝑎𝑛𝑑 𝐴 ⊆ 𝒯}. 

If 𝐴 is ℳ𝒱𝒢𝒮𝒞𝒮, then ℳ𝒱𝑔𝑠𝑐𝑙(𝐴) = 𝐴. 

Theorem 4.16 

Let 𝒽: (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)) ⟶ (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) be a ℳ𝒱𝒢𝒮𝒞ℳ. Then the following conditions hold: 

i). 𝒽(ℳ𝒱𝑔𝑠𝑐𝑙(𝒫)) ⊆ ℳ𝒱𝑐𝑙(𝒽(𝒫)), for every ℳ𝒱 set 𝒫 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). 

ii). ℳ𝒱𝑔𝑠𝑐𝑙(𝒽−1(𝒬)) ⊆ 𝒽−1(ℳ𝒱𝑐𝑙(𝒬)), for every ℳ𝒱 set 𝒬 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). 

Proof: i). Since ℳ𝒱𝑐𝑙(𝒽(𝒫)) is ℳ𝒱𝒞𝒮 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)) and 𝒽 is ℳ𝒱𝒢𝒮𝒞ℳ, then 𝒽−1(ℳ𝒱𝑐𝑙(𝒽(𝒫))) is 

ℳ𝒱𝒢𝒮𝒞𝒮 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)). That is ℳ𝒱𝑔𝑠𝑐𝑙(𝒫) ⊆ 𝒽−1(ℳ𝒱𝑐𝑙(𝒽(𝒫))). Therefore, 𝒽(ℳ𝒱𝑔𝑠𝑐𝑙(𝒫)) ⊆

ℳ𝒱𝑐𝑙(𝒽(𝒫)), for every ℳ𝒱 set 𝒫 in (𝒰, 𝜗ℛ(𝒮), 𝜂ℛ(𝒮)).  

ii). Replacing 𝒫 by 𝒽−1(𝒬) in (i), we get 𝒽(ℳ𝒱𝑔𝑠𝑐𝑙(𝒽−1(𝒬))) ⊆ ℳ𝒱𝑐𝑙(𝒽(𝒽−1(𝒬))) ⊆ ℳ𝒱𝑐𝑙(𝒬). Hence, 

ℳ𝒱𝑔𝑠𝑐𝑙(𝒽−1(𝒬)) ⊆ 𝒽−1(ℳ𝒱𝑐𝑙(𝒬)), for every ℳ𝒱 set 𝒬 in (𝒱, 𝜇ℛ(𝒮), 𝜁ℛ(𝒮)). 
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5. Conclusion 

Several types of continuous mappings in Micro Vague Topological spaces are introduced and the theorems based 

on Micro Vague Continuous mappings are presented. Micro Vague Generalized Semi interior and closer are 

introduced. The inter-relation between Micro Vague Generalized Semi Continuous mappings and the other 

existing mappings are discussed and proved with the help of solid numerical. 
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