Analyzation of Micro Vague Generalized Semi Continuous Mappings in Micro Vague Topological Spaces

Vargees Vahini T1*, Trinita Pricilla M2

Research Scholar¹, Assistant Professor²

Department of Mathematics, Nirmala College for Women, Coimbatore.

Abstract: - A function is said to be continuous if it preserves the idea of closeness between the points in the domain and their corresponding points in the range. Unveiling the Micro Vague continuous mapping and Micro Vague Generalized Semi Continuous mapping is the ultimate purpose of this article. Many different types of Micro Vague Continuous mappings are introduced along with their relationships to other existing Micro Vague Continuous mappings with the help of suitable examples. They have applications in many areas of science and engineering where smooth, well-behaved functions are needed to model real-world phenomena.

Keywords: Micro Vague Continuous Mappings, Micro Vague Semi Continuous Mappings, Micro Vague Generalized Semi Continuous Mappings.

1. Introduction

An approach that delivers just one outcome for every input parameter is called a function. The input to the function is the independent variable also referred to as the argument of the function. The output of the function is the dependent variable. Continuity is a basic concept in computational mathematics and calculus. In mathematics, a continuous function is one in which there are no sudden shifts in value and a continuous variation of the function's value due to ongoing changes in the input. If a function's graph is continuous throughout the entire interval the function qualifies as continuous in that range. In real analysis, continuous functions are basic ideas that serve as a basis for learning about limit points, partial integrals, higher order derivatives and other topics.

Continuity was introduced by Augustin Louis Cauchy in 1821 in his famous textbook Cours d'Analyse. In 1965 and 1986 respectively, Zadeh [17] and Atanassov [2] proposed the ideas of Fuzzy sets and Intuitionistic Fuzzy sets. Gau and Buehrer [16] initially suggested the study of Vague sets as a continuation of fuzzy sets. There are different kind of continuous functions. Point wise continuity, Pair wise continuity, Uniform continuity, Lipschitz continuity are some of among them. Not all functions are continuous. There are various types of discontinuous functions such as Removable discontinuity, Jump discontinuity, Essential discontinuity and Infinite discontinuity.

Semi continuous functions are versatile tools in various fields allowing for more flexible and realistic modelling phenomena that may not be adequately captured by strictly continuous functions. Levine. N [4] introduced the semi open and semi continuity in 1963. Their ability to handle discontinuities and abrupt changes in data or systems makes them valuable in a wide range of applications. Generalized continuous functions are mathematical objects that generalizes the concept of functions. They often used in distribution theory and are not always traditional functions in the sense of having specific values at each point in their domain. Instead, they are defined through their action on test functions.

Micro topology is an enlargement of nano topology which has been established by Chandrasekar S [12]. By combining Micro topological space and Vague topological space, Vargees Vahini T and Trinita Pricilla M [15] have introduced the new topological space called Micro Vague Topological Space. Mashour. A. S [6] introduced

pre continuous mappings and weakly pre continuous mappings in 1982. R. Devi and H. Maki and K. Balachandran

[3] have introduced the generalized semi continuous and generalized semi homomorphism in 1995.

Generalized semi continuous sets are the combined idea of semi continuous and generalized continuous functions. It is often used in more abstract mathematical settings and it encompasses functions that may not be directly associated with real numbers. It is a broader concept that can apply to the functions defined on more general topological spaces. The notion of upper and lower semi continuity is adapted to these more general spaces. Generalized Semi continuous function is not necessarily be continuous but exhibits some degree continuity when

In this article, many types of continuous functions and generalized continuous functions in Micro Vague Topological Spaces are introduced. Particularly, Micro Vague Generalized Semi Continuous function is introduced and the relationship between Micro Vague Generalized Semi Continuous mappings and the existing Micro Vague Continuous functions are presented and investigated with the suitable examples.

2. Preliminaries

defined on topological spaces.

Definition 2.1[15]

Let $(U, \tau_R(A))$ be a Nano Vague Topological Space. Let $\eta_R(A) = \{S \cup (S' \cap \eta) : S, S' \in \tau_R(A) \text{ and } \eta \notin \tau_R(A)\}$. Then $\eta_R(A)$ is called the Micro Vague Topology (shortly \mathcal{MVT}) of $\tau_R(A)$ by η on U with respect to A. The triplet $(U, \tau_R(A), \eta_R(A))$ is called the Micro Vague Topological Space (shortly \mathcal{MVTS}). The elements of $\eta_R(A)$ are called Micro Vague open sets (shortly \mathcal{MVOS}) and the complement of \mathcal{MVOS} is called Micro Vague Closed set (shortly \mathcal{MVCS}).

Definition 2.2[15]

Let U be the Universe and $X \subseteq U$. Let \mathcal{G} and \mathcal{H} be two \mathcal{MV} sets in the \mathcal{MVTS} $(U, \tau_R(X), \eta_R(X))$ of the form $\mathcal{G} = \{\langle x, [\mu_{\mathcal{G}}(x), \gamma_{\mathcal{G}}(x)] \rangle / x \in X\}$ and $\mathcal{H} = \{\langle x, [\mu_{\mathcal{H}}(x), \gamma_{\mathcal{H}}(x)] \rangle / x \in X\}$ respectively. Then the following conditions holds:

- (i) $\mathcal{G} \subseteq \mathcal{H} \ iff \ \mu_{\mathcal{G}}(x) \leq \mu_{\mathcal{H}}(x), \gamma_{\mathcal{G}}(x) \leq \gamma_{\mathcal{H}}(x) \ \forall x \in U$
- (ii) $G = \mathcal{H} iff G \subseteq \mathcal{H} and \mathcal{H} \subseteq G$
- (iii) $\mathcal{G}^{c} = \{ \langle x, 1 \gamma_{G}(x), 1 \mu_{G}(x) \rangle / \forall x \in U \}$
- (iv) $\mathcal{G} \cup \mathcal{H} = \{ \langle x, (\mu_{\mathcal{G}}(x) \lor \mu_{\mathcal{H}}(x), \gamma_{\mathcal{G}}(x) \lor \gamma_{\mathcal{H}}(x)) \rangle / \forall x \in U \}$
- (v) $\mathcal{G} \cap \mathcal{H} = \{ \langle x, (\mu_{\mathcal{G}}(x) \wedge \mu_{\mathcal{H}}(x), \gamma_{\mathcal{G}}(x) \wedge \gamma_{\mathcal{H}}(x)) \rangle / \forall x \in U \}$
- (vi) $0_{\mathcal{MV}} = \langle x, (0,0) \rangle$ and $1_{\mathcal{MV}} = \langle x, (1,1) \rangle \ \forall x \in U$.

3. Various types of Micro Vague Continuous Mappings

Definition 3.1

We define the image and preimage of \mathcal{MV} Sets. Let $\mathcal{F} = \{\langle x, [\mu_{\mathcal{F}}(x), \gamma_{\mathcal{F}}(x)] \rangle / x \in X\}$ and $\mathcal{G} = \{\langle x, [\mu_{\mathcal{G}}(x), \gamma_{\mathcal{G}}(x)] \rangle / x \in X\}$ be two \mathcal{MV} Sets in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ respectively. Let $\mathcal{H}: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be a function, then the following statements hold:

- (i) The pre-image of \mathcal{G} under \mathcal{H} denoted by $\mathcal{H}^{-1}(\mathcal{G})$ is the \mathcal{MV} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ defined by $\mathcal{H}^{-1}(\mathcal{G}) = \{\langle x, [\mathcal{H}^{-1}(\mu_{\mathcal{G}})(x), \mathcal{H}^{-1}(\gamma_{\mathcal{G}})(x)]/x \in X \}$.
- (ii) The image of \mathcal{F} under f denoted by $\mathcal{M}(\mathcal{F})$ is the \mathcal{MV} set in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ defined by $\mathcal{M}(\mathcal{F}) = \{(x, [\mathcal{M}(\mu_{\mathcal{F}})(x), \mathcal{M}(\gamma_{\mathcal{F}})(x)]/x \in X)\}.$

Corollary 3.2

Let $\mathcal{C}_{\mathcal{MV}}$, $\mathcal{C}_{i_{\mathcal{MV}}}(i \in \mathcal{I})$ be \mathcal{MV} sets in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ and $\mathcal{D}_{\mathcal{MV}}$, $\mathcal{D}_{i_{\mathcal{MV}}}(j \in \mathcal{J})$ be \mathcal{MV} sets in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Let us define a function $\mathcal{L}: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Then the following properties holds

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

- a) If $C_{1_{\mathcal{MV}}} \subseteq C_{2_{\mathcal{MV}}}$, then $h(C_{1_{\mathcal{MV}}}) \subseteq h(C_{2_{\mathcal{MV}}})$.
- b) If $\mathcal{D}_{1_{\mathcal{MV}}} \subseteq \mathcal{D}_{2_{\mathcal{MV}}}$, then $h(\mathcal{D}_{1_{\mathcal{MV}}}) \subseteq h(\mathcal{D}_{2_{\mathcal{MV}}})$.
- c) $\mathcal{C}_{\mathcal{MV}} \subseteq h^{-1}(h(\mathcal{C}_{\mathcal{MV}})).$
- d) $\mathcal{C}_{\mathcal{MV}} = h^{-1}(h(\mathcal{C}_{\mathcal{MV}}))$ if h is injective.
- e) $h(h^{-1}(\mathcal{D}_{\mathcal{MV}})) \subseteq \mathcal{D}_{\mathcal{MV}}.$
- f) $h(h^{-1}(\mathcal{D}_{\mathcal{MV}})) = \mathcal{D}_{\mathcal{MV}}$ if h is surjective.
- g) $h^{-1}(\bigcup \mathcal{D}_{i_{\mathcal{MV}}}) = \bigcup h^{-1}(\mathcal{D}_{i_{\mathcal{MV}}}).$
- h) $\hbar^{-1} \left(\cap \mathcal{D}_{i_{\mathcal{MV}}} \right) = \cap \hbar^{-1} \left(\mathcal{D}_{i_{\mathcal{MV}}} \right).$
- i) $\hbar(\bigcup C_{i_{\mathcal{M}\mathcal{V}}}) = \bigcup \hbar(C_{i_{\mathcal{M}\mathcal{V}}}).$
- $\mathrm{j)} \qquad \hbar \big(\cap \mathcal{C}_{i_{\mathcal{M} \mathcal{V}}} \big) \subseteq \cap \hbar \big(\mathcal{C}_{i_{\mathcal{M} \mathcal{V}}} \big).$
- k) If h is injective, then $h(\cap C_{i_{MY}}) = \bigcap h(C_{i_{MY}})$.
- m) $h^{-1}(0_{\mathcal{MV}}) = 0_{\mathcal{MV}}.$
- n) $h(1_{MV}) = 1_{MV}$, if h is surjective.
- o) $\hbar(0_{\mathcal{MV}}) = 0_{\mathcal{MV}}.$
- p) $\overline{h(\mathcal{C}_{\mathcal{MV}})} \subseteq h(\overline{\mathcal{C}_{\mathcal{MV}}})$, if h is surjective.
- q) $\hbar^{-1}(\overline{\mathcal{D}_{\mathcal{M}\mathcal{V}}}) = \overline{\hbar^{-1}(\mathcal{D}_{\mathcal{M}\mathcal{V}})}.$

Proof: Proof is obvious.

Definition 3.3

Let $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be any two \mathcal{MVTS} . A map $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is said to be

- 1. \mathcal{MVO} mapping (shortly \mathcal{MVOM}) iff the image of each \mathcal{MVO} sets in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVO} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$.
- 2. \mathcal{MV} Continuous mapping (shortly \mathcal{MVCM}), if the inverse image $h^{-1}(\mathcal{F})$ of every \mathcal{MVC} set \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 3. \mathcal{MVS} Continuous mapping (shortly \mathcal{MVSCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVSCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 4. \mathcal{MVP} Continuous mapping (shortly \mathcal{MVPCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVPCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 5. \mathcal{MVSP} Continuous mapping (shortly \mathcal{MVSPCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVSPCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 6. $\mathcal{MV}\alpha$ Continuous mapping (shortly $\mathcal{MV}\alpha\mathcal{C}\mathcal{M}$), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is $\mathcal{MV}\alpha\mathcal{CS}$ in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 7. \mathcal{MVR} Continuous mapping (shortly \mathcal{MVRCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVRCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 8. \mathcal{MVG} Continuous mapping (shortly \mathcal{MVGCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 9. \mathcal{MVGP} Continuous mapping (shortly \mathcal{MVGPCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGPCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 10. \mathcal{MVGSP} Continuous mapping (shortly $\mathcal{MVGSPCM}$), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is $\mathcal{MVGSPCS}$ in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

11. \mathcal{MVaG} Continuous mapping (shortly \mathcal{MVaGCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$

- 11. $\mathcal{MV}\alpha\mathcal{G}$ Continuous mapping (shortly $\mathcal{MV}\alpha\mathcal{G}\mathcal{C}\mathcal{M}$), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is $\mathcal{MV}\alpha\mathcal{G}\mathcal{C}\mathcal{S}$ in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- 12. $\mathcal{MVG}\alpha$ Continuous mapping (shortly $\mathcal{MVG}\alpha\mathcal{CM}$), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCS} \mathcal{F} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is $\mathcal{MVG}\alpha\mathcal{CS}$ in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Definition 3.4

Let $\hbar: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is both one-to-one and onto mapping where $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ are two \mathcal{MVTSs} . Then \hbar is said to be \mathcal{MV} -Homeomorphism if \hbar and \hbar^{-1} are \mathcal{MVCM} .

4. Characterizations and Properties of Micro Vague Generalized Semi Continuous Mappings

Definition 4.1

Let $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be any two \mathcal{MVTS} . A map $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is said to be \mathcal{MVGS} Continuous mapping (shortly \mathcal{MVGSCM}), if $h^{-1}(\mathcal{F})$ of every \mathcal{MVCSF} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGSCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Example 4.2: Let $\mathcal{U} = \{\alpha, \beta, \gamma\}$ be the Universe of discourse. $\mathcal{U} / \mathcal{R} = \{\{\alpha\}, \{\beta, \gamma\}\}$ be the equivalence relation on \mathcal{U} . Let $\mathcal{S} = \{<\alpha, (0.2,0.5)>, <\beta, (0.2,0.7)>, <\gamma, (0.2,0.4)>\}$ be a subset of \mathcal{U} . Then, $\vartheta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2,0.5)>, <\beta, (0.2,0.4)>, <\gamma, (0.2,0.4)>\}$, is a \mathcal{NVT} on \mathcal{U} . Let $\eta = \{<\alpha, (0.3,0.8)>, <\beta, (0.5,0.8)>, <\gamma, (0.3,0.8)>\}$. Then $\eta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2,0.5)>, <\beta, (0.2,0.7)>, <\gamma, (0.2,0.7)>\}$, $\{<\alpha, (0.2,0.5)>, <\beta, (0.2,0.4)>, <\gamma, (0.2,0.4)>\}$, $\{<\alpha, (0.2,0.5)>, <\beta, (0.2,0.7)>, <\gamma, (0.2,0.7)>\}$, $\{<\alpha, (0.3,0.8)>, <\beta, (0.5,0.8)>, <\gamma, (0.3,0.8)>\}$ is a \mathcal{MVT} and $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}$ be another universe of discourse. $\mathcal{V} / \mathcal{R} = \{\{\delta, \tau\}\{\sigma\}\}$ be the equivalence relation on \mathcal{V} . Let $\mathcal{S} = \{<\delta, (0.1,0.7)>, <\sigma, (0.3,0.6)>, <\tau, (0.2,0.3)>\}$ be a subset of \mathcal{V} . Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.1,0.3)>, <\sigma, (0.3,0.6)>, <\tau, (0.1,0.3)>\}$, $\{<\delta, (0.2,0.7)>, <\sigma, (0.3,0.6)>, <\tau, (0.2,0.7)>\}$ is a \mathcal{NVT} on \mathcal{U} . Let $\zeta = \{<\delta, (0.4,0.5)>, <\sigma, (0.1,0.4)>, <\tau, (0.2,0.3)>\}$. Then $\zeta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.1,0.3)>, <\sigma, (0.3,0.6)>, <\tau, (0.1,0.3)>\}$, $\{<\delta, (0.2,0.7)>, <\sigma, (0.3,0.6)>, <\tau, (0.2,0.7)>\}$, $\{<\delta, (0.4,0.5)>, <\sigma, (0.1,0.4)>, <\tau, (0.2,0.3)>\}$ is a \mathcal{MVT} and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Define a mapping $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $h(\alpha) = \delta$, $h(\beta) = \sigma$ and $h(\gamma) = \tau$. Then h is \mathcal{MVGS} Continuous.

Theorem 4.3

- 1. Every \mathcal{MVCM} is \mathcal{MVGCM} .
- 2. Every \mathcal{MVCM} is $\mathcal{MV}\alpha\mathcal{CM}$.
- 3. Every \mathcal{MVCM} is \mathcal{MVPCM} .
- 4. Every $\mathcal{MV}\alpha\mathcal{C}\mathcal{M}$ is \mathcal{MVPCM} .
- 5. Every \mathcal{MVRCM} is \mathcal{MVCM} .
- 6. Every $\mathcal{MV}\alpha\mathcal{C}\mathcal{M}$ is \mathcal{MVSCM} .
- 7. Every \mathcal{MVSCM} is \mathcal{MVSPCM} .
- 8. Every \mathcal{MVCM} is \mathcal{MVGSCM} .
- 9. Every \mathcal{MVGCM} is \mathcal{MVGSCM} .
- 10. Every MVSCM is MVGSCM.

- 11. Every $\mathcal{MV}\alpha\mathcal{C}\mathcal{M}$ is \mathcal{MVGSCM} .
- 12. Every \mathcal{MVRCM} is \mathcal{MVGSCM} .
- 13. Every $\mathcal{MV}\alpha\mathcal{G}\mathcal{C}\mathcal{M}$ is $\mathcal{MVG}\mathcal{S}\mathcal{C}\mathcal{M}$.
- 14. Every \mathcal{MVGSCM} is \mathcal{MVSPCM} .
- 15. Every \mathcal{MVGSCM} is $\mathcal{MVGSPCM}$.
- 16. \mathcal{MVPCM} and \mathcal{MVGSCM} are independent to each other.
- 17. \mathcal{MVGPCM} and \mathcal{MVGSCM} are independent to each other.

Proof:

- 1. Let $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be a \mathcal{MVCM} . Let \mathcal{F} be a \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Then $h^{-1}(\mathcal{F})$ is \mathcal{MVCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Since every \mathcal{MVCS} is $\mathcal{MVGCS}, h^{-1}(\mathcal{F})$ is \mathcal{MVGCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Hence h is \mathcal{MVGCM} .
- 2. Let $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be a \mathcal{MVCM} . Let \mathcal{F} be a \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Then $h^{-1}(\mathcal{F})$ is \mathcal{MVCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Since every \mathcal{MVCS} is $\mathcal{MVaCS}, h^{-1}(\mathcal{F})$ is \mathcal{MVaCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Hence h is \mathcal{MVaCM} .
- 3. Let $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be a \mathcal{MVCM} . Let \mathcal{F} be a \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Then $h^{-1}(\mathcal{F})$ is \mathcal{MVCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Since every \mathcal{MVCS} is $\mathcal{MVPCS}, h^{-1}(\mathcal{F})$ is \mathcal{MVPCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Hence h is \mathcal{MVPCM} .

Proof of (4) - (17) is same as (1) - (3).

Remark 4.4: The invert of the preceding theorem may not be true as seen in the succeeding examples.

Example 4.5: Let $\mathcal{U} = \{\rho, \lambda, \theta\}$, $\mathcal{U}/\mathcal{R} = \{\{\rho, \theta\}, \{\lambda\}\}$. Let $\mathcal{S} = \{<\rho, (0.1, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.2, 0.7) >\}$ be a subset of \mathcal{U} . Then, $\theta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\rho, (0.1, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.1, 0.4) >\}$, $\{<\rho, (0.2, 0.7) >, <\lambda, (0.3, 0.5) >, <\theta, (0.2, 0.7) >\}$ is a \mathcal{NVT} on \mathcal{U} . Let $\eta = \{<\rho, (0.2, 0.3) >, <\lambda, (0.2, 0.5) >, <\theta, (0.3, 0.4) >\}$. Then, $\eta_{\mathcal{R}}(A) = \{0_{\mathcal{MV}}, 1_{\mathcal{MV}}, \{<\rho, (0.2, 0.3) >, <\lambda, (0.2, 0.5) >, <\theta, (0.3, 0.4) >\}$, $\{<\rho, (0.1, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.1, 0.4) >\}$, $\{\rho, (0.2, 0.7) >, <\lambda, (0.3, 0.5) >, <\theta, (0.1, 0.4) >\}$, $\{<\rho, (0.1, 0.3) >, <\lambda, (0.2, 0.5) >, <\theta, (0.1, 0.4) >\}$, $\{<\rho, (0.2, 0.3) >, <\lambda, (0.2, 0.5) >, <\theta, (0.1, 0.4) >\}$, $\{<\rho, (0.2, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.3, 0.4) >\}$, $\{<\rho, (0.2, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.3, 0.4) >\}$, $\{<\rho, (0.2, 0.4) >, <\lambda, (0.3, 0.5) >, <\theta, (0.3, 0.7) >\}\}$ is a \mathcal{MVT} on \mathcal{U} and $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is called as the \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}, \mathcal{V} / \mathcal{R} = \{\{\delta\}\{\sigma, \tau\}\}$. Let $\mathcal{S} = \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}$ be a subset of \mathcal{V} . Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}\}$ is a Nano Vague Topology on \mathcal{U} . Let $\zeta = \{<\delta, (0.2, 0.3)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}$. Then $\zeta_{\mathcal{R}}(\mathcal{S}) = \{0_{MV}, 1_{MV}, \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}$ is a \mathcal{MVT} and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Here, $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $h(\rho) = \delta$, $h(\lambda) = \sigma$ and $h(\theta) = \tau$ is \mathcal{MVacM} , \mathcal{MVscM} and \mathcal{MVPcM} but not \mathcal{MVcM} since, $\mathcal{F} = \{ < \delta, (0.6, 0.8) >, < \sigma, (0.5, 0.7) >, < \tau, (0.5, 0.7) > \}$ is \mathcal{MVC} set in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ but $h^{-1}(\mathcal{F})$ is not \mathcal{MVC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Example 4.6: Let $\mathcal{U} = \{\alpha, \beta, \gamma\}$, $\mathcal{U}/\mathcal{R} = \{\{\alpha\}, \{\beta, \gamma\}\}$. Let $\mathcal{S} = \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.7) >, <\gamma, (0.2, 0.4) >\}$. Then, $\mathcal{O}_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.4) >, <\gamma, (0.2, 0.4) >\}, \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.4) >, <\gamma, (0.2, 0.4) >\}, \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.7) >, <\gamma, (0.2, 0.7) >\}\}$. Let $\eta = \{<\alpha, (0.3, 0.8) >, <\beta, (0.5, 0.8) >, <\gamma, (0.3, 0.8) >\}$. Then $\eta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.4) >, <\gamma, (0.2, 0.4) >\}, \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.7) >, <\gamma, (0.2, 0.7) >\}, \{<\alpha, (0.3, 0.8) >, <\beta, (0.5, 0.8) >, <\gamma, (0.3, 0.8) >\}\}$ is a \mathcal{MVT} and $(\mathcal{U}, \mathcal{O}_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}, \ \mathcal{V}/\mathcal{R} = \{\{\delta, \tau\}\{\sigma\}\}.$ Let $\mathcal{S} = \{<\delta, (0.1, 0.7)>, <\sigma, (0.3, 0.6)>, <\tau, (0.2, 0.3)>\}.$ Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.1, 0.3)>, <\sigma, (0.3, 0.6)>, <\tau, (0.1, 0.3)>\}, \{<\delta, (0.2, 0.7)>, <\sigma, (0.3, 0.6)>, <\tau, (0.2, 0.7)>\}\}.$ Let $\mathcal{C} = \{<\delta, (0.1, 0.3)>, <\sigma, (0.2, 0.5)>, <\tau, (0.1, 0.3)>\}.$ Then $\mathcal{C}_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.1, 0.3)>, <\sigma, (0.3, 0.6)>, <\tau, (0.1, 0.3)>, <\sigma, (0.3, 0.6)>, <\tau, (0.1, 0.3)>\}.$ {\$\delta, \text{\$\delta}, (0.1, 0.3)>, <\sigma, (0.1, 0.3)>, <\sigma, (0.2, 0.5)>, <\tau, (0.1, 0.3)>, <\sigma, (0.2, 0.5)>, <\tau, (0.1, 0.3)>, <\tau, (0.1, 0.3)

Here, \hbar : $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $\hbar(\alpha) = \delta$, $\hbar(\beta) = \sigma$ and $\hbar(\gamma) = \tau$ is \mathcal{MVGSCM} but not \mathcal{MVCM} , \mathcal{MVSCM} , \mathcal{MVGCM} , \mathcal{MVACM} , \mathcal{MVRCM} , \mathcal{MVAGCM} since, $\mathcal{F} = \{<\delta, (0.7, 0.9) >, < \sigma, (0.5, 0.8) >, < \tau, (0.7, 0.9) >\}$ is \mathcal{MVC} set in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ but $\hbar^{-1}(\mathcal{F})$ is not \mathcal{MVC} , \mathcal{MVSC} , \mathcal{MVGC} , \mathcal{MVAC} , \mathcal{MVAC} , \mathcal{MVAC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Example 4.7: Let $\mathcal{U} = \{\rho, \lambda, \theta\}$, $\mathcal{U} / \mathcal{R} = \{\{\rho, \theta\}, \{\lambda\}\}$. Let $\mathcal{S} = \{\langle \rho, (0.1, 0.4) \rangle, \langle \lambda, (0.3, 0.5) \rangle, \langle \lambda, (0.3, 0.5) \rangle, \langle \lambda, (0.3, 0.5) \rangle$ $\vartheta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\rho, (0.1, 0.4)>, <\lambda, (0.3, 0.5)>, <\theta, (0.1, 0.4)>\}, \{<\rho, (0.1, 0.4)>, <\lambda, (0.3, 0.5)>, <\theta, (0.1, 0.4)>\}$ θ , (0.2,0.7) >}. ρ , (0.2,0.7) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.2,0.7) >}. ={ $< \rho$, (0.2,0.3) >, $< \lambda$, (0.2,0.5) >,<Let η θ , (0.3,0.4) >}. Then, $\eta_R(A) = \{0_{\mathcal{MV}}, 1_{\mathcal{MV}}, \{<\rho(0.2,0.3)>, <\lambda, (0.2,0.5)>, <\theta, (0.3,0.4)>\},$ ρ , (0.1,0.4) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.1,0.4) >}, $\{\rho$, (0.2,0.7) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.2,0.7) >}, {< ρ , (0.1,0.3) >, $< \lambda$, (0.2,0.5) >, $< \theta$, (0.1,0.4) >}, $\{< \rho$, (0.2,0.3) >, $< \lambda$, (0.2,0.5) >, $< \theta$, (0.2,0.4) >}, {< ρ , (0.2,0.4) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.3,0.4) >}, $\{< \rho$, (0.2,0.4) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.2,0.4) >}, $\{< \rho$ ρ , (0.2,0.7) >, $< \lambda$, (0.3,0.5) >, $< \theta$, (0.3,0.7) >} is a \mathcal{MVT} on \mathcal{U} and $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}, \ \mathcal{V} / \mathcal{R} = \{\{\delta, \tau\} \{\sigma\}\}.$ Let $\mathcal{S} = \{<\delta, (0.1, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.2, 0.4)>\}.$ Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.1, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.1, 0.4)>\}, \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.2, 0.4)>\}.$ Let $\mathcal{C} = \{<\delta, (0.1, 0.3)>, <\sigma, (0.3, 0.5)>, <\tau, (0.1, 0.3)>\}.$ Then $\mathcal{C}_{\mathcal{R}}(\mathcal{S}) = \{0_{MV}, 1_{MV}, \{<\delta, (0.1, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.1, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.1, 0.4)>\}, \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.2, 0.4)>\}, \{<\delta, (0.1, 0.3)>, <\sigma, (0.3, 0.5)>, <\tau, (0.1, 0.3)>\}$ is a \mathcal{MVT} and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \mathcal{C}_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Here, $\hbar: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $\hbar(\rho) = \delta$, $\hbar(\lambda) = \sigma$ and $\hbar(\theta) = \tau$ is \mathcal{MVPCM} , \mathcal{MVSPCM} , $\mathcal{MVGSPCM}$ but not \mathcal{MVaCM} and \mathcal{MVGSCM} since, $\mathcal{F} = \{<\delta, (0.7, 0.9)>, <\sigma, (0.5, 0.7)>, <\tau, (0.7, 0.9)>\}$ is \mathcal{MVC} set in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ but $\hbar^{-1}(\mathcal{F})$ is not \mathcal{MVaC} and \mathcal{MVGSC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Example 4.8: Let $\mathcal{U} = \{\alpha, \beta, \gamma\}$, $\mathcal{U}/\mathcal{R} = \{\{\alpha, \beta\}, \{\gamma\}\}$. Let $\mathcal{S} = \{<\alpha, (0.5, 0.7)>, <\beta, (0.2, 0.5)>, <\gamma, (0.3, 0.4)>\}$. Then, $\theta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2, 0.5)>, <\beta, (0.2, 0.5)>, <\gamma, (0.3, 0.4)>\}, \{<\alpha, (0.5, 0.7)>, <\beta, (0.5, 0.7)>, <\gamma, (0.3, 0.4)>\}\}$. Let $\eta = \{<\alpha, (0.6, 0.7)>, <\beta, (0.6, 0.7)>, <\gamma, (0.4, 0.8)>\}$. Then $\eta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.2, 0.5)>, <\beta, (0.2, 0.5)>, <\gamma, (0.3, 0.4)>\}, \{<\alpha, (0.5, 0.7)>, <\beta, (0.5, 0.7)>, <\gamma, (0.3, 0.4)>\}, \{<\alpha, (0.6, 0.7)>, <\beta, (0.6, 0.7)>, <\gamma, (0.4, 0.8)>\}$ is a \mathcal{MVT} and $(\mathcal{U}, \theta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}$, $\mathcal{V}/\mathcal{R} = \{\{\delta\}\{\sigma, \tau\}\}$. Let $\mathcal{S} = \{<\delta, (0.4, 0.6)>, <\sigma, (0.4, 0.4)>, <\tau, (0.2, 0.4)>\}$. Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.4, 0.6)>, <\sigma, (0.2, 0.4)>, <\tau, (0.2, 0.4)>\}, \{<\delta, (0.4, 0.6)>, <\sigma, (0.4, 0.4)>\}$. Let $\mathcal{C} = \{<\delta, (0.3, 0.4)>, <\sigma, (0.2, 0.4)>, <\tau, (0.1, 0.3)>\}$. Then $\mathcal{C}_{\mathcal{R}}(\mathcal{S}) = \{0_{MV}, 1_{MV}, \{<\delta, (0.4, 0.6)>, <\sigma, (0.2, 0.4)>, <\tau, (0.4, 0.6)>, <\sigma, (0.2, 0.4)>, <\tau, (0.4, 0.6)>, <\sigma, (0.4, 0.4)>\}$, $\{<\delta, (0.4, 0.6)>, <\sigma, (0.2, 0.4)>, <\tau, (0.4, 0.4)>\}$, $\{<\delta, (0.3, 0.4)>, <\sigma, (0.2, 0.4)>, <\tau, (0.1, 0.3)>\}$ is a \mathcal{MVT} and $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \mathcal{C}_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Here, \hbar : $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $\hbar(\alpha) = \delta$, $\hbar(\beta) = \sigma$ and $\hbar(\gamma) = \tau$ is \mathcal{MVGM} but not \mathcal{MVCM} since, $\mathcal{F} = \{ \langle \delta, (0.4, 0.6) \rangle, \langle \sigma, (0.6, 0.8) \rangle, \langle \tau, (0.6, 0.8) \rangle \}$ is \mathcal{MVC} set in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ but $\hbar^{-1}(\mathcal{F})$ is not \mathcal{MVC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Result 4.9: The relationship between various types of \mathcal{MVCMs} is given in the following figure.

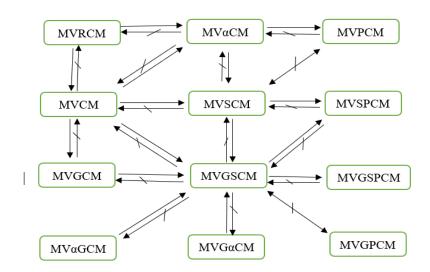


Figure 1

Theorem 4.10: A mapping \mathbb{A} : $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGSCM} if and only if the inverse image of each \mathcal{MVOS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGSOS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Proof: Necessity: Let \mathcal{P} be a \mathcal{MVOS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. This implies that $\mathcal{P}^{\mathcal{C}}$ is \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. Since \mathcal{M} is \mathcal{MVGSCM} , $\mathcal{M}^{-1}(\mathcal{P}^{\mathcal{C}})$ is \mathcal{MVGSCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Since $\mathcal{M}^{-1}(\mathcal{P}^{\mathcal{C}}) = (\mathcal{M}^{-1}(\mathcal{P}))^{\mathcal{C}}$, $\mathcal{M}^{-1}(\mathcal{P})$ is \mathcal{MVGSOS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Sufficiency: The proof is obvious from the definition of \mathcal{MVGSCM} .

Theorem 4.11: A mapping $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGSCM} if $\mathcal{MVcl}(\mathcal{MVint}(\mathcal{MVcl}(h^{-1}(\mathcal{P})))) \subseteq h^{-1}(\mathcal{MVcl}(\mathcal{P}))$ for every \mathcal{MV} set \mathcal{P} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$.

Proof: Let \mathcal{P} be \mathcal{MVOS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$, then $\mathcal{P}^{\mathcal{C}}$ is \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$. By hypothesis, $\mathcal{MVcl}(\mathcal{MVint}(\mathcal{MVcl}(\hbar^{-1}(\mathcal{P}^{\mathcal{C}})))) \subseteq \hbar^{-1}(\mathcal{MVcl}(\mathcal{P}^{\mathcal{C}})) = \hbar^{-1}(\mathcal{P}^{\mathcal{C}})$, since $\mathcal{P}^{\mathcal{C}}$ is \mathcal{MVCS} . Now $(\mathcal{MVint}(\mathcal{MVcl}(\mathcal{MVint}(\hbar^{-1}(\mathcal{P})))))^{\mathcal{C}} = \mathcal{MVcl}(\mathcal{MVint}(\mathcal{MVcl}(\hbar^{-1}(\mathcal{P}^{\mathcal{C}})))) \subseteq \hbar^{-1}(\mathcal{P}^{\mathcal{C}}) = \hbar^{-1}(\mathcal{P})^{\mathcal{C}}$. This implies that $\hbar^{-1}(\mathcal{P}) \subseteq \mathcal{MVint}(\mathcal{MVcl}(\mathcal{MVint}(\hbar^{-1}(\mathcal{P}))))$. Hence $\hbar^{-1}(\mathcal{P})$ is \mathcal{MVaOS} and hence it is \mathcal{MVGSOS} . Therefore \hbar is \mathcal{MVGSCM} continuous mapping.

Theorem 4.12: Let $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be \mathcal{MVGSCM} and $i: (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$ be continuous mapping, then $i \circ h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVGSCM} .

Proof: Let \mathcal{P} be \mathcal{MVCS} in $(\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$. Then $i^{-1}(\mathcal{P})$ is \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by hypothesis. Since \mathcal{M} is \mathcal{MVGSCM} , $\mathcal{M}^{-1}(i^{-1}(\mathcal{P}))$ is \mathcal{MVGSCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. Hence $i \circ \mathcal{M}$ is \mathcal{MVGSCM} .

Remark 4.13: Composition of two \mathcal{MVGSCM} need not to be a \mathcal{MVGSCM} and it is shown in the following example.

Example 4.14: Let $\mathcal{U} = \{\rho, \lambda, \theta\}$, $\mathcal{U}/\mathcal{R} = \{\{\rho, \theta\}, \{\lambda\}\}$. Let $\mathcal{S} = \{<\rho, (0.1,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.7) >\}$. Then, $\theta_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\rho, (0.1,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.1,0.4) >\}, \{<\rho, (0.2,0.7) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.7) >\}$. Let $\eta = \{<\rho, (0.2,0.3) >, <\lambda, (0.2,0.5) >, <\theta, (0.3,0.4) >\}$. Then, $\eta_{\mathcal{R}}(A) = \{0_{\mathcal{MV}}, 1_{\mathcal{MV}}, \{<\rho, (0.2,0.3) >, <\lambda, (0.2,0.5) >, <\theta, (0.3,0.4) >\}, \{<\rho, (0.1,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.1,0.4) >\}, \{<\rho, (0.2,0.7) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.7) >\}, \{<\rho, (0.1,0.3) >, <\lambda, (0.2,0.5) >, <\theta, (0.1,0.4) >\}, \{<\rho, (0.2,0.3) >, <\lambda, (0.2,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.4) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.7) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.7) >, <\lambda, (0.3,0.5) >, <\theta, (0.2,0.4) >\}, \{<\rho, (0.2,0.7) >, <\lambda, (0.3,0.5) >, <\theta, (0.3,0.7) >\}\}$ is a \mathcal{MVT} on \mathcal{U} and $(\mathcal{U}, \tau_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$ is called as the \mathcal{MVTS} .

Let $\mathcal{V} = \{\delta, \sigma, \tau\}$, $\mathcal{V}/\mathcal{R} = \{\{\delta\}\{\sigma, \tau\}\}$. Let $\mathcal{S} = \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}$. Then, $\mu_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\delta, (0.2, 0.4)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>\}$. Let $\mathcal{C} = \{<\delta, (0.2, 0.3)>, <\sigma, (0.3, 0.5)>, <\tau, (0.3, 0.5)>, <$

Let $\mathcal{W} = \{\alpha, \beta, \gamma\}, \mathcal{W}/\mathcal{R} = \{\{\alpha, \gamma\}\{\beta\}\}.$ Let $\mathcal{S} = \{<\alpha, (0.3,0.4)>, <\beta, (0.3,0.5)>, <\gamma, (0.3,0.6)>\}.$ Then, $\varphi_{\mathcal{R}}(\mathcal{S}) = \{0_{NV}, 1_{NV}, \{<\alpha, (0.3,0.4)>, <\beta, (0.3,0.5)>, <\gamma, (0.3,0.4)>\}, \{<\alpha, (0.3,0.6)>, <\beta, (0.3,0.5)>, <\gamma, (0.3,0.6)>\}.$ Let $\mathcal{E} = \{<\alpha, (0.5,0.8)>, <\beta, (0.5,0.8)>, <\gamma, (0.4,0.8)>\}.$ Then $\mathcal{E}_{\mathcal{R}}(\mathcal{S}) = \{0_{MV}, 1_{MV}, \{<\alpha, (0.3,0.4)>, <\beta, (0.3,0.5)>, <\gamma, (0.3,0.4)>\}, \{<\alpha, (0.3,0.6)>, <\beta, (0.5,0.8)>, <\gamma, (0.4,0.8)>\}\}$ is a \mathcal{MVT} and $(\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \mathcal{E}_{\mathcal{R}}(\mathcal{S}))$ is \mathcal{MVTS} .

Define mappings $\hbar: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ by $\hbar(\rho) = \delta$, $\hbar(\lambda) = \sigma$, $\hbar(\theta) = \tau$ and $i: (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$ by $(\delta) = \alpha$, $\hbar(\sigma) = \beta$, $\hbar(\tau) = \gamma$ where \hbar and i are \mathcal{MVGSCM} . Then the composite mapping $i \circ \hbar: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$ is not \mathcal{MVGSCM} since $\mathcal{F} = \{<\alpha, (0.2, 0.5) >, <\beta, (0.2, 0.5) >, <\gamma, (0.2, 0.6) >\}$ is \mathcal{MVC} set in $(\mathcal{W}, \varphi_{\mathcal{R}}(\mathcal{S}), \xi_{\mathcal{R}}(\mathcal{S}))$ but $\hbar^{-1}(\mathcal{F})$ is not \mathcal{MVGSC} set in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

Definition 4.15

Let A be a \mathcal{MV} set of the \mathcal{MVTS} $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. The Micro Vague Generalized Semi interior of A $(shortly\ \mathcal{MV} - gs - int(A))$ and Micro Vague Generalized Semi closure of A $(shortly\ \mathcal{MV} - gs - cl(A))$ are defined as:

- 1. $\mathcal{MV} gs int(A) = \bigcup \{H/H \text{ is a } \mathcal{MVGSOS} \text{ in } U \text{ and } H \subseteq A\}.$
- 2. $\mathcal{MV} gs cl(A) = \bigcap \{T/T \text{ is a } \mathcal{MVGSCS} \text{ in } U \text{ and } A \subseteq T\}.$

If A is \mathcal{MVGSCS} , then $\mathcal{MVgscl}(A) = A$.

Theorem 4.16

Let $h: (\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S})) \to (\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ be a \mathcal{MVGSCM} . Then the following conditions hold:

- i). $h(\mathcal{MV}gscl(\mathcal{P})) \subseteq \mathcal{MV}cl(h(\mathcal{P}))$, for every \mathcal{MV} set \mathcal{P} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.
- ii). $\mathcal{MV}gscl(\hbar^{-1}(Q)) \subseteq \hbar^{-1}(\mathcal{MV}cl(Q))$, for every \mathcal{MV} set Q in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$.

Proof: i). Since $\mathcal{MVcl}(\hbar(\mathcal{P}))$ is \mathcal{MVCS} in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$ and \hbar is \mathcal{MVGSCM} , then $\hbar^{-1}(\mathcal{MVcl}(\hbar(\mathcal{P})))$ is \mathcal{MVGSCS} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$. That is $\mathcal{MVgscl}(\mathcal{P}) \subseteq \hbar^{-1}(\mathcal{MVcl}(\hbar(\mathcal{P})))$. Therefore, $\hbar(\mathcal{MVgscl}(\mathcal{P})) \subseteq \mathcal{MVcl}(\hbar(\mathcal{P}))$, for every \mathcal{MV} set \mathcal{P} in $(\mathcal{U}, \vartheta_{\mathcal{R}}(\mathcal{S}), \eta_{\mathcal{R}}(\mathcal{S}))$.

ii). Replacing \mathcal{P} by $h^{-1}(Q)$ in (i), we get $h(\mathcal{MVgscl}(h^{-1}(Q))) \subseteq \mathcal{MVcl}(h(h^{-1}(Q))) \subseteq \mathcal{MVcl}(Q)$. Hence, $\mathcal{MVgscl}(h^{-1}(Q)) \subseteq h^{-1}(\mathcal{MVcl}(Q))$, for every \mathcal{MV} set Q in $(\mathcal{V}, \mu_{\mathcal{R}}(\mathcal{S}), \zeta_{\mathcal{R}}(\mathcal{S}))$.

Statements and Declarations

Conflict of interest: On behalf of all authors, the corresponding author declares that there is no conflict of interest. **Availability of data and materials:** No data was used for the research described in the article.

5. Conclusion

Several types of continuous mappings in Micro Vague Topological spaces are introduced and the theorems based on Micro Vague Continuous mappings are presented. Micro Vague Generalized Semi interior and closer are introduced. The inter-relation between Micro Vague Generalized Semi Continuous mappings and the other existing mappings are discussed and proved with the help of solid numerical.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

Refrences

- [1] A.P. DhanaBalan and R. Buvaneswari, On Almost Feebly Totally Continuous Functions in Topological Spaces, *International Journal of Computer Science and Information Technology Research*, Vol.3, Issue 1, pp.274 279, 2015.
- [2] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy sets and systems, vol 20, p.87-96, 1986.
- [3] Devi. R, Maki. H and Balachandram. K, Semi-generalized homeomorphisms and generalized semi homeomorphisms, *Indian J. Pure. Appl. Math.*, 26 (3) (1995), 271-284.
- [4] Levine. N, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, (70), 36-41, 1963.
- [5] Mahesh K Bhat, On Strongly Sgp-Continuous and Perfectly Sgp-Continuous Functions in Topological Spaces, *IJCRT*, Vol 10, Issue 8, a59 a63, August 2022.
- [6] Mashour. A.S, M.E. Abd. EI- Monsef and S.N. EI-Deeb, On pre-continuous mappings and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt.* 1982; 53:47-53.
- [7] Md. HanifPAGE, N. Raksh Ben and P.G. Patil, Neutrosophic Totally Semi-Continuous Functions, *Neutrosophic Sets and Systems*, Vol.56, 41 47, 2023.
- [8] Navalagi. G.B, Semi-pre continuous functions and properties of generalized semi-pre closed sets in topological spaces, *IJMMS*, 29(2):85-98, 2002.
- [9] On τ*-Generalized Semi Continuous Multifunctions in Topological Spaces, A. Ponsuryadevi, R. Selvi, *J. Math. Comput. Sci.* 11, No. 4, 4454-4463, https://doi.org/10.28919/jmcs/5610, 2021.
- [10] P. Karthiksankar and P. Subblakshmi, On Nano totally semi continuous functions in Nano topological space, *International Journal of Mathematical Archive*, 10(5), 14 18, 2019.
- [11] P. Thirunavukarasu and R. Revathy, Generalized Pre-Semi Continuous Mappings in Intuitionistic Fuzzy Topological Space, *Advances and Applications in Mathematical Sciences*, Vol.21, Issue 8, pp. 4653 4659, 2022.
- [12] S. Chandrasekar, On Micro Topological Spaces, Journal of New Theory, (26), 23-31, 2019.
- [13] S. Eswaran and A. Pushpalatha, $\tau*$ -generalized continuous functions in topological spaces, *International J. of Math Sci & Engg. Appls. (IJM-SEA)*, ISSN 0973-9424 Vol. 3, No. IV, pp. 67 76, 2009.
- [14] S. Maragathavalli and K. Ramesh, On Almost π Generalized Semi Continuous Mappings in Intuitionistic Fuzzy Topological Spaces, *Mathematical Theory and Modelling*, Vol.2, No. 4, 18 28, 2012.
- [15] Vargees Vahini T and Trinita Pricilla M, An Introduction to Micro Vague Topological Space, *International Journal of Creative Research Thoughts*, Vol 11, Issue 8, a508-a516, August 2023.
- [16] W.L. Gau and D.J. Buehrer, Vague sets, *IEEE Transactions on Systems Man and Cybernetics*, 1993, 23(2), pp 610-614.
- [17] Zadeh L.A., Fuzzy Sets, Information and Control, p.338-335, 1965.