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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex not in D 

is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric dominating set if for every 

vV−D, there exists at least one eccentric vertex of v in D. The minimum cardinality of an eccentric dominating 

set is called the eccentric domination number and is denoted by ed(G). A subset D of V(G) is a restrained 

eccentric dominating set if D is a restrained dominating set of G and for every v  V − D, there exists at least 

one eccentric vertex of v in D. The minimum of the cardinalities of the restrained eccentric dominating set of G 

is called the restrained eccentric domination number of G and is denoted by red(G). Let p  6 be a positive 

integer. The circulant graph Cp2, 3 is the graph with vertex set  {v0, v1, v2, …, vp-1} and edge set {{vi, vi+j}: 

i{0, 1, 2, …, p−1} and j{2, 3}}.  In this paper, we initiate the study of domination number, restrained 

domination number, eccentric domination number and restrained eccentric domination number in the circulant 

graphs Cp2, 3. 
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Circulant Graphs. 

Mathematics Subject Classification: 05C12, 05C69. 

1.  Introduction 

Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set E(G). For graph theoretic 

terminology refer to Harary [7], Buckley and Harary [5].  

The concept of domination in graphs is originated from the chess games theory and that paved the way to the 

development of the study of various domination parameters and its relation to various other graph parameters. 

For details on domination theory, refer to Haynes, Hedetniemi and Slater [8]. Janakiraman, Bhanumathi and 

Muthammai [9] introduced Eccentric domination in Graphs. Bhanumathi, John Flavia and Kavitha [1] 

introduced and studied the concept of Restrained Eccentric domination in Graphs.  

Definition 1.1: Let p  6 be a positive integer. The circulant graph Cp2, 3 is the graph with vertex set {v0, v1, 

v2, …, vp-1} and edge set {{vi, vi+j}: i  {0, 1, 2, …, p−1} and                j  {2, 3}}.   

Definition 1.2: Let G be a connected graph and v be a vertex of G. The eccentricity e(v) of v is the distance to a 

vertex farthest from v. Thus, e(v) = max{d(u, v) : u  V}. The radius r(G) is the minimum eccentricity of the 

vertices, whereas the diameter diam(G) = d(G) is the maximum eccentricity. For any connected graph G, r(G) ≤ 

diam(G) ≤ 2r(G). The vertex v is a central vertex if e(v) = r(G). The center C(G) is the set of all central vertices.  
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For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. Eccentric set of a vertex v is 

defined as E(v) = {u  V(G) / d(u, v) = e(v)}. 

Definition 1.3: A graph G is called a m-eccentric point graph if each point of G has exactly m  1 eccentric 

points. 

Definition 1.4 [6, 8]: A set D  V is said to be a dominating set in G, if every vertex in    V−D is adjacent to 

some vertex in D. The minimum cardinality of a dominating set is called the domination number and is 

denoted by (G).  

Definition 1.5 [7]: A set D  V(G) is a restrained dominating set if every vertex not in D is adjacent to a 

vertex in D and to a vertex in V−D. The cardinality of minimum restrained dominating set is called the 

restrained domination number and is denoted by r(G).  

Definition 1.6 [9]: A set D  V(G) is an eccentric dominating set if D is a dominating set of G and for every 

vV−D, there exists at least one eccentric vertex of v in D. The minimum cardinality of an eccentric dominating 

set is called the eccentric domination number and is denoted by ed(G).  

Definition 1.7 [1]: A subset D of V(G) is a restrained eccentric dominating set if D is a restrained dominating 

set of G and for every vV−D, there exists at least one eccentric vertex of v in D. The minimum of the 

cardinalities of the restrained eccentric dominating set of G is called the restrained eccentric domination 

number of G and is denoted by red(G). 

Theorem 1.1 [8]: For any graph G, p/(1+(G)) ≤ γ(G) ≤ p−(G). 

Theorem 1.2 [3]: Let G be a connected graph. Let u  V(G) be eccentric to atmost m vertices, then  p/(1+m) 

≤ γed(G). 

2. Domination, Restrained domination, Eccentric domination and Restrained eccentric domination in 

Circulant Graph Cp2, 3 

Let p  6 be a positive integer. The circulant graph Cp2, 3 is the graph with vertex set {v0, v1, v2, …, vp − 1} and 

edge set {{vi, vi + j}: i  {0, 1, 2, …, p − 1} and     j  {2, 3}}.   

In this section, the domination number, the restrained domination number, the eccentric domination number and 

the restrained eccentric domination number of circulant graph Cp2, 3, for any integer p  6 are determined. 

Cleary, Cp2, 3 is a 4-regular graph on p vertices.  

Clearly, (Cp2, 3) ≤ ed(Cp2, 3) ≤ red(Cp2, 3) and 

              (Cp2, 3) ≤ ed(Cp2, 3) ≤ red(Cp2, 3) 

Example 2.1: 
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C9 2, 3 
Figure 2.1 
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In Figure 2.1, S1 = {v0, v4, v8} is a minimum dominating set. It is also a minimum restrained dominating set. 

Therefore, (C92, 3) = r(C92, 3) = 3. 

S2 = {v0, v3, v6} is a minimum eccentric dominating set and is also a minimum restrained eccentric dominating 

set. Therefore, ed(C92, 3) = red(C92, 3) = 3. 

Theorem 2.1: For any integer p > 6, (Cp2, 3) = γr(Cp2, 3) = p/4. 

Proof: Let p > 6 and let Cp represent the cycle in Cp2, 3 with vertices v0, v1, v2, …, vp − 1 and edges v0v2, v0v3, 

…, vp − 3v0, vp − 2v0. Cp2, 3 is a four regular graph. 

 Hence, (Cp2, 3)  p/1 + 4 = p/5. 

 Let S be a minimum dominating set of Cp2, 3. Suppose v0  S. Vertex v0 dominate v0, v2, v3, vp − 3 and 

vp − 2. So, to dominate v1 any one of v1, v3 or v4 must lie in S. As a worst case, we can assume that v4  S. 

 So, for every consecutive four vertices of Cp, there must be a vertex in S. 

Therefore, (Cp2, 3)  p/4.                                      (1) 

Case (i): p = 4k, k  2. 

In this case, S = {v0, v4, v8, …, vp − 8, vp − 4} is a dominating set of Cp2, 3 andS= p/4. Thus, (Cp2, 3) ≤ 

p/4.  

Case (ii): p = 4k + 1, k  2. 

In this case, S = {v0, v4, v8, …, vp − 5, vp − 1} is a dominating set of Cp2, 3 and S= p/4. Thus, (Cp2, 3) ≤ 

p/4.  

Case (iii): p = 4k + 2, k  3. 

In this case, S = {v0, v4, v8, …, vp − 6, vp − 3} is a dominating set of Cp2, 3 and S= p/4. Thus, (Cp2, 3) ≤ 

p/4.  

Case (iv): p = 4k + 3, k  1. 

In this case, S = {v0, v4, v8, …, vp − 7, vp − 3} is a dominating set of Cp2, 3 andS= p/4. Thus, (Cp2, 3) ≤ 

p/4.  

  So, in all cases, (Cp2, 3) ≤ p/4.                                (2) 

From (1) and (2), we get (Cp2, 3) = p/4. 

In all the above cases, S is also a restrained dominating set of Cp2, 3. Therefore, γr(Cp2, 3) = γ(Cp2, 3). 

Remark 2.1:  

(i) S1 = {v0, v3} is a minimum dominating set of C62, 3 and is also a minimum restrained dominating set 

of C62, 3. Hence, (C62, 3) = r(C62, 3) = 2. 

(ii) S2 = {v0, v4, v7} is a minimum dominating set of C102, 3 and is also a minimum restrained dominating 

set of C102, 3. Hence, (C102, 3) = r(C102, 3) = 3. 

Theorem 2.2: For any integer p > 13,    
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Also, p/4 ≤ ed(Cp2, 3) ≤ p/3 − 1 if p = 12k + 4, k is a multiple of odd number and p = 12k + 10, ed(Cp2, 

3)  = p/4 if p = 12k + 4, k is a multiple of two. 

Proof: Let v0, v1, v2, …, vp − 1 be the vertices of Cp2, 3. 

By Theorem 2.1, (Cp2, 3) = p/4.                                      (3) 

Case (i): p = 12k, k > 1. 

In this case, Cp2, 3 is a p/6 self-centered graph. The vertices 
i

p
i

p
i

p
i

p
i

p vvvvv
+

+
+

+
++

−
+
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2

4
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22
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4 ,,,, are the eccentric 

vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3 is a 5-eccentric point graph.  

S = {v0, v4, v8, …, vp − 8,  vp − 4} is an eccentric dominating set of Cp2, 3 and S= p/4.  

Thus, ed(Cp2, 3)  ≤ p/4.                                         (4)                                         

 From (3) and (4), ed(Cp2, 3) = p/4.           

Case (ii): p = 12k + 1, k > 1. 

In this case, Cp2, 3  is a (p − 1)/6 self-centered graph. The vertices 
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are the eccentric vertices of vi (i = 0, 1, 2, ...,      p − 1). Therefore, Cp2, 3  is a 6-eccentric point graph.  

S = {v0, v4, v8, …, vp − 5,  vp − 1} is an eccentric dominating set of Cp2, 3 and S= p/4. 

Thus, ed(Cp2, 3)  ≤ p/4.                                        (5)                         

From (3) and (5), ed(Cp2, 3) = p/4. 

Case (iii): p = 12k + 2, k  1. 
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In this case, Cp2, 3  is a (p + 4)/6 self-centered graph. The vertex 
i

pv
+

2

is the eccentric vertex of vi (i = 0, 1, 2, 

..., p − 1). Therefore, Cp2, 3  is a self-centered unique eccentric point graph.  

Hence, by Theorem 1.2, γed(Cp2, 3) ≥ p/2.             (6)                                            

S = {v0, v2, v4, …, vp − 4,  vp − 2} is an eccentric dominating set of Cp2, 3 and S= p/2.   

Thus, γed(Cp2, 3) ≤ p/2.                                            (7) 

From (6) and (7), γed(Cp2, 3) = p/2.      

Case (iv): p = 12k + 3, k  1. 

In this case, Cp2, 3  is a (p + 3)/6 self-centered graph. The vertices 
i

p
i

p vv
+

+
+

−

2

1
,

2

1
are the eccentric vertices of vi (i 

= 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 2-eccentric point graph.                          

Hence, by Theorem 1.2,   p/3  ≤ γed(Cp2, 3).            (8) 

S = {v0, v3, v6, …, vp − 6,  vp − 3} is an eccentric dominating set of Cp2, 3 and S= p/3.  

           Thus, γed(Cp2, 3) ≤ p/3.                                             (9) 

From (8) and (9), γed(Cp2, 3  = p/3.      

Case (v): p = 12k + 5, k  1. 

In this case, Cp2, 3  is a (p + 1)/6 self-centered graph. The vertices 
i

p
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p
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p
i
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1
,

2

1
,

2

3
are the eccentric 

vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 4-eccentric point graph.     

S = {v0, v4, v8, …, vp − 5,  vp − 1} is an eccentric dominating set of Cp2, 3 and S= p/4. 

Thus, γed(Cp2, 3) ≤ p/4.                                            (10)                                                            

From (3) and (10), γed(Cp2, 3) = p/4.     

Case (vi): p = 12k + 6, k  1. 

 In this case, Cp2, 3  is a p/6 self-centered graph. The vertices 
i

p
i

p
i

p
i

p
i

p vvvvv
+

+
+

+
++

−
+

−

2

4

2

2

22

2

2

4 ,,,, are the 

eccentric vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3 is a 5-eccentric point graph. 

S = {v0, v4, v8, …, vp − 6,  vp − 3} is an eccentric dominating set of Cp2, 3 and S= p/4. 

Thus, γed(Cp2, 3) ≤ p/4.                                          (11)                                                                        

From (3) and (11), γed(Cp2, 3) = p/4.     

Case (vii): p = 12k + 7, k  1. 

In this case, Cp2, 3 is a (p − 1)/6 self-centered graph. The vertices 
i
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are the eccentric vertices of vi (i = 0, 1, 2, ...,      p − 1). Therefore, Cp2, 3  is a 6-eccentric point graph. 

S = {v0, v4, v8, …, vp − 7,  vp − 3} is an eccentric dominating set of Cp2, 3 and S= p/4. 

Thus, γed(Cp2, 3) ≤ p/4.                                          (12)                                                                            

From (3) and (12), γed(Cp2, 3) = p/4.     
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Case (viii): p = 12k + 8, k  1. 

In this case, Cp2, 3  is a (p + 4)/6 self-centered graph. The vertex 
i

pv
+

2

is the eccentric vertex of vi (i = 0, 1, 2, 

..., p − 1). Therefore, Cp2, 3  is a self-centered unique eccentric point graph. 

Hence, by Theorem 1.2, γed(Cp2, 3) ≥ p/2.                (13) 

S = {v0, v2, v4, …, v(p − 4)/2, v(p + 2)/2, v(p + 6)/2, v(p + 10)/2, …, vp − 3, vp − 1} is an eccentric dominating set of Cp2, 3 

andS= p/2. 

Thus, γed(Cp2, 3) ≤ p/2.                                              (14) 

From (13) and (14), γed(Cp2, 3) = p/2.    

Case (ix): p = 12k + 9, k  1. 

In this case, Cp2, 3  is a (p + 3)/6 self-centered graph. The vertices 
i

p
i
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+

+
+

−

2

1
,

2

1
are the eccentric vertices of vi (i 

= 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 2-eccentric point graph.                          

Hence, by Theorem 2.1, p/3  ≤ γed(Cp2, 3).               (15)                                                                          

S = {v0, v3, v6, …, vp − 6,  vp − 3} is an eccentric dominating set of Cp2, 3 andS= p/3. 

           Thus, γed(Cp2, 3) ≤ p/3.                                               (16)                                                                  

From (15) and (16), γed(Cp2, 3) = p/3.      

Case (x): p = 12k + 11, k  1. 

In this case, Cp2, 3  is a (p + 1)/6 self-centered graph. The vertices 
i
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2

1
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2

3
are the eccentric 

vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 4-eccentric point graph.     

S = {v0, v4, v8, …, vp − 7,  vp − 3} is an eccentric dominating set of Cp2, 3 andS= p/4.   

Thus, γed(Cp2, 3) ≤ p/4.                                              (17)                                                                     

From (3) and (17), γed(Cp2, 3) = p/4.     

Case (xi): p = 12k + 4, k  1. 

Subcase (i): k is a multiple of odd number. 

In this case, Cp2, 3  is a (p + 2)/6 self-centered graph. The vertices 
i

p
i

p
i

p vvv
+

+
++

−

2

2

22

2 ,, are the eccentric 

vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3 is a 3-eccentric point graph. 

S = {v0, v3, v6, …, vp − 7,  vp − 4} is an eccentric dominating set of Cp2, 3 andS= p/3 − 1. 

Thus, ed(Cp2, 3) ≤ p/3 − 1.                                         (18)                                              

From (3) and (18), p/4 ≤ ed(Cp2, 3) ≤ p/3 − 1.                                                                                                                              

Subcase (ii): k is a multiple of two. 

In this case, Cp2, 3 is a (p + 2)/6 self-centered graph. The vertices 
i

p
i

p
i

p vvv
+

+
++

−

2

2

22

2 ,, are the eccentric vertices 

of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 3-eccentric point graph. 
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S = {v0, v4, v8, …, vp − 8,  vp − 4} is an eccentric dominating set of Cp2, 3 and S= p/4.   

Thus, γed(Cp2, 3) ≤ p/4.                                               (19)                                                                

From (3) and (19), γed(Cp2, 3) = p/4.     

Case (xii): p = 12k + 10, k  1. 

In this case, Cp2, 3  is a (p + 2)/6 self-centered graph. The vertices 
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2 ,, are the eccentric 

vertices of vi (i = 0, 1, 2, ..., p − 1). Therefore, Cp2, 3  is a 3-eccentric point graph. 

S = {v0, v3, v6, …, vp − 7,  vp − 4} is an eccentric dominating set of Cp2, 3 and S= p/3 − 1. 

Thus, ed(Cp2, 3) ≤ p/3 − 1.                                         (20) 

From (3) and (20), p/4 ≤ ed(Cp2, 3) ≤ p/3 − 1. 

Remark 2.2: 

• S1 = {v0, v3} is a minimum eccentric 

dominating set of C62, 3.  

Hence, ed(C62, 3) = 2. 

• S2 = {v0, v3, v6} is a minimum eccentric dominating set of Cp2, 3.  

Hence, ed(Cp2, 3) = 3, p = 7, 8, 9. 

• S3 = {v0, v4, v7} is a minimum eccentric dominating set of C102, 3.  

Hence, ed(C102, 3) = 3. 

• S4 = {v0, v4, v8} is a minimum eccentric dominating set of Cp2, 3.  

Hence, ed(Cp2, 3) = 3, p = 11, 12. 

• S5 = {v0, v4, v8, v12} is a minimum eccentric dominating set of       

C132, 3. Hence, ed(C132, 3) = 4. 

Corollary 2.1: For any integer p > 13,    
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Also, p/4 ≤ red(Cp2, 3) ≤ p/3 − 1 if p = 12k + 4, k is a multiple of odd number and p = 12k + 10, red(Cp2, 

3)  = p/4 if p = 12k + 4, k is a multiple of two. 
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Proof: The ed-sets found in Theorem 2.2 are also restrained eccentric dominating sets. Hence, the theorem 

follows. 

Remark 2.3: 

• S1 = {v0, v3} is a minimum eccentric 

dominating set of C62, 3.  

Hence, red(C62, 3) = 2. 

• S2 = {v0, v3, v6} is a minimum eccentric dominating set of Cp2, 3.  

Hence, red(Cp2, 3) = 3, p = 7, 8, 9. 

• S3 = {v0, v4, v7} is a minimum eccentric dominating set of C102, 3.  

Hence, red(C102, 3) = 3. 

• S4 = {v0, v4, v8} is a minimum eccentric dominating set of Cp2, 3.  

Hence, red(Cp2, 3) = 3, p = 11, 12. 

• S5 = {v0, v4, v8, v12} is a minimum eccentric dominating set of       

C132, 3. Hence, red(C132, 3) = 4. 

Conclusion:  

In this paper, we have found out the exact values of domination number and restrained domination number of 

Cp2, 3. Also, we have evaluated the exact values of eccentric domination number and restrained eccentric 

domination number of circulant graphs             Cp2, 3. 
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