ISSN:1001-4055 Vol. 44 No.2(2023)

Generalized Eccentricity k^{th} Power Sum Adjacency Energy of Graphs $(EGE^kSA(G))$

Dr. M. Deva Saroja¹, M. Mutharasi², Dr. A.R. Agnes Porselvi³

¹ Assistant Professor, ² Research Scholar (Register Number: 19221172092014)

³ Assistant Professor, ^{1,2,3} PG and Research Department of Mathematics,

Rani Anna Government College for Women, Tirunelveli - 627 008.

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli - 627 012, India)

Abstract

Let G be a finite, simple and undirected graph. For any integer $1 \le k < \infty$, generalized eccentricity k^{th} power sum adjacency matrix of G is $m \times m$ matrix with its $(i,j)^{th}$ entry as $e(v_i)^k + e(v_j)^k$, if v_i adjacent to v_j and zero otherwise, where e(v) is the eccentricity of the vertex v of a graph G. In this paper, the new energy of graph under the name as generalized eccentricity k^{th} power sum adjacency energy of G ($EGE^kSA(G)$) has been introduced. Generalized eccentricity k^{th} power sum adjacency energy $EGE^kSA(G)$ of some standard graphs and regular graphs obtained by complete graph.

AMS Subject Classification: 05C50

Keywords: Eccentricity, generalized eccentricity k^{th} power sum adjacency matrix, generalized eccentricity k^{th} power sum adjacency polynomial, eigenvalues and generalized eccentricity k^{th} power sum adjacency energy.

1.Introduction

Let G = (V(G), X(G)) be a finite, simple and undirected graph with |V(G)| = m and |X(G)| = q. The distance d(u, v) between any two vertices u and v in a graph G is the length of the shortest u - v path. Eccentricity of a vertex is defined as the maximum distance between a vertex to all other vertices [1]. In 1978, the concept energy of a graph G originated by I. Gutman [9].

In 2023, B. Fathima have defined the generalized eccentricity k^{th} power sum energy $EGE^kS(G)$ of G [8]. Motivated by these papers, the concept of generalized k^{th} power sum adjacency energy $EGE^kSA(G)$ of G.

Let G be a graph with m vertices and q edges. For any integer $1 \le k < \infty$, a graph G whose matrix is denoted by $GE^kSA(G) = [ge^ksa_{ij}]$ is determined as $ge^ksa_{ij} = \begin{cases} e^k(v_i) + e^k(v_j), & \text{if } v_i \text{ adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$.

The generalized eccentricity k^{th} power sum adjacency energy of G is indicated by $EGE^tSA(G) = \sum_{i=1}^m |\eta_i|$, where $\eta_1, \eta_2, \dots, \eta_m$ are eigenvalues of $GE^kSA(G)$.

2. Preliminaries

Lemma 2.1 [5]

Let M, N, P and Q be matrices with M invertible. Then we have $\begin{vmatrix} M & N \\ P & Q \end{vmatrix} = |M||Q - PM^{-1}N|$

Lemma 2.2 [5]

Let M, N, P and Q be matrices. Let $S = \begin{pmatrix} M & N \\ P & Q \end{pmatrix}$ if M and P commutes. Then |S| = |MQ - PN|.

Lemma 2.3 [15]

If $A(K_p)$ is the adjacency matrix of K_p , then $A^2(K_p) = (p-2)A(K_p) + (p-1)I_p$.

3. Generalized eccentricity k^{th} power of sum adjacency energy of some graphs

Theorem 3.1

In a complete graph K_m $(m \ge 2)$, $EGE^kSA(K_m) = 4(m-1)$.

Proof:

Let K_m be the complete graph with m vertices for $m \ge 2$.

Since K_m is a connected graph with $e(v_i) = 1$, $1 \le k \le m$, we get

$$ge^{k}sa_{ij}(K_{m}) = \begin{cases} 1^{k} + 1^{k}, & if \ v_{i} \ adjacent \ to \ v_{j} \\ 0, & otherwise \end{cases}$$

and the generalized eccentricity k^{th} power sum adjacency eigenvalues of K_m are -2 of multiplicity (m-1) and 2(m-1) of multiplicity 1 respectively. Hence $EGE^kSA(K_m)=4(m-1)$.

Theorem 3.2

In a complete bipartite graph $K_{m,n}$ $(m, n \ge 2)$, $EGE^kSA(K_{m,n}) = 2^{k+2}(m)$.

Proof:

Let G be a complete bipartite graph of order m + n and mn edges.

Since
$$ge^k sa_{ij}(K_{m,n}) = \begin{cases} 2^{k+1}, & if \ v_i \ adjacent \ to \ v_j \\ 0, & otherwise \end{cases}$$
, we get

$$GE^kSA(K_{m,n}) = \begin{bmatrix} 0 & 2^{k+1}J \\ 2^{k+1}J & 0 \end{bmatrix}$$
 and where $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$

$$PGE^{k}SA(K_{m,n})(\eta) = |\eta I_{m} - GE^{k}SA(K_{m,n})|$$

$$= |\eta I_{m} - 2^{k+1}J|$$

$$= |\eta I_{m} - 2^{k+1}J|$$

$$= (\eta I_{m})^{2} - (2^{k+1}J)^{2}$$

$$= (\eta I_{m} - 2^{k+1}J) (\eta I_{m} + 2^{k+1}J)$$

$$= (\eta I_{m} - 2^{k+1}m) (\eta I_{m} - 2^{k+1}m)\eta^{2m-2}$$

Hence
$$S_p(GE^kSA(K_{m,n})) = \begin{pmatrix} 2^{k+1}m & 2^{k+1}m & 0 \\ 1 & 1 & 2m-2 \end{pmatrix}$$
 and

$$EGE^{k}SA(K_{m,n}) = 2^{k+2}(m).$$

Theorem 3.3

In a star graph $K_{1,m}$ $(m \ge 2)$, $EGE^kSA(K_{1,m}) = 2(2^k + 1)\sqrt{m}$.

Proof:

Let G be a star graph of order m+1 and m edges.

Since
$$ge^k sa_{ij}(K_{1,m}) = \begin{cases} 2^k + 1, & \text{if } v_i \text{ adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$$
, we get

$$GE^{k}SA(K_{1,m}) = \begin{bmatrix} 0 & 2^{k} + 1 & 2^{k} + 1 & \cdots & 2^{k} + 1 \\ 2^{k} + 1 & 0 & 0 & \cdots & 0 \\ 2^{k} + 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{k} + 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \text{ and }$$

$$PGE^{k}SA(K_{m,n})(\eta) = |\eta I_{m} - GE^{k}SA(K_{1,m})|$$

$$= \begin{vmatrix} \eta I_m & -(2^k + 1) & -(2^k + 1) & \cdots & -(2^k + 1) \\ -(2^k + 1) & \eta I_m & 0 & \cdots & 0 \\ -(2^k + 1) & 0 & \eta I_m & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -(2^k + 1) & 0 & 0 & \cdots & \eta I_m \end{vmatrix}$$

$$= \eta^{m-1}(\eta^2 - (2^k + 1)^2 m)$$

Hence
$$S_p(GE^kSA(K_{1,m}))=\begin{pmatrix} 2^{k+1}\sqrt{m} & 2^{k+1}\sqrt{m} & 0 \\ 1 & 1 & m-1 \end{pmatrix}$$
 and

$$EGE^kSA(K_{1,m}) = 2(2^k + 1)\sqrt{m} .$$

4. Generalized eccentricity k^{th} power sum adjacency energy of some regular graphs obtained by complete graph

Theorem 4.1

Let $D_1(K_{2m})$ be the edge deleting graph 1 of K_{2m} . Then $EGE^kSA(D_1(K_{2m})) = 2^{k+3}(m-1)$.

Proof:

Let G be a edge deleting graph 1 of order $2m, m=1,2,\cdots,n$ and 2m(m-1) edges. Since $ge^ksa_{ij}(D_1(K_{2m}))=\begin{cases} 2^{k+1}, & \text{if } v_i \text{ adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$,

we get
$$GE^kSA(D_1(K_{2m})) = \begin{bmatrix} 2^{k+1}A(K_m) & 2^{k+1}A(K_m) \\ 2^{k+1}A(K_m) & 2^{k+1}A(K_m) \end{bmatrix}$$
 and

$$PGE^{k}SA(D_{1}(K_{2m}))(\eta) = |\eta I_{m} - GE^{k}SA(D_{1}(K_{2m}))|$$

$$= \begin{vmatrix} \eta I_{m} - 2^{k+1}A(K_{m}) & -2^{k+1}A(K_{m}) \\ -2^{k+1}A(K_{m}) & \eta I_{m} - 2^{k+1}A(K_{m}) \end{vmatrix}$$

$$= |(\eta I_{m} - 2^{k+1}A(K_{m}))^{2} - (2^{k+1}A(K_{m}))^{2}|$$

$$= |\eta^{2}I_{m} - 2\eta(2^{k+1}A(K_{m}))|$$

$$= (2\eta)^{m} \left| \frac{\eta^{2}}{2\eta} I_{m} - 2^{k+1}A(K_{m}) \right|$$

$$= (2\eta)^{m} \left(\frac{\eta}{2} - 2^{k+1}(m-1) \right) \left(\frac{\eta}{2} + 2^{k+1} \right)^{m-1}$$

$$= \eta^{m} (\eta - 2^{k+2}(m-1)) (\eta + 2^{k+2})^{m-1}$$

Hence
$$S_p(GE^kSA(D_1(K_{2m}))) = \begin{pmatrix} 2^{k+2}(m-1) & -2^{k+2} & 0 \\ 1 & m-1 & m \end{pmatrix}$$
 and

$$EGE^{k}SA(D_{1}(K_{2m})) = 2^{k+3}(m-1).$$

Theorem 4.2

Let $D_3(K_{2m})$ be the edge deleting graph 3 of K_{2m} . Then $EGE^kSA(D_1(K_{2m}))=8(3^k)(m-1)$, where $(m \ge 3)$.

Proof:

Let G be a edge deleting graph 3 of K_{2m} order 2m, $m = 3,4, \dots, n$ and m(m-1) edges.

Since
$$ge^k sa_{ij}(D_3(K_{2m})) = \begin{cases} 2(3^k), & \text{if } v_i \text{ adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$$
,

we get $GE^k SA(D_3(K_{2m})) = \begin{bmatrix} 0 & 2(3)^k A(K_m) \\ (3^k) A(K_m) & 0 \end{bmatrix}$ and

 $PGE^k SA(D_3(K_{2m}))(\eta) = |\eta I_m - GE^k SA(D_3(K_{2m}))|$

$$= \begin{vmatrix} \eta I_m & -2(3^k) A(K_m) \\ -2(3^k) A(K_m) & \eta I_m \end{vmatrix}$$

 $= |\eta I_m| |\eta I_m - (2(3^k)A(K_m))^{-1}$

$$= \eta^m \left| \eta I_m - 4(3^{2k}) \left(\frac{(m-2)A(K_m) + (m-1)I_m}{\eta} \right) \right|$$

= $\left| \eta^2 I_m - 4(3^{2k})(m-2)A(K_m) - 4(3^{2k})(m-1)I_m \right|$

$$= (m-2)^m \left| \left(\frac{\eta^2 - 4(3^{2k})(m-1)}{m-2} \right) I_m - 4(3^{2k}) A(K_m) \right|$$

$$= (m-2)^m \left(\frac{\eta^2 - 4(3^{2k})(m-1)}{m-2} - 4(3^{2k})(m-1) \right)$$

$$\left(\frac{\eta^2 - 4(3^{2k})(m-1)}{m-2} + 4(3^{2k})\right)^{m-1}$$

$$= (\eta^2 - 4(3^{2k})(m-1)^2)(\eta^2 - 4(3^{2k}))^{m-1}$$

Hence $S_p(GE^kSA(D_3(K_{2m})) = \begin{pmatrix} -2(3^k)(m-1) & 2(3^k)(m-1) & -2(3^k) & 2(3^k) \\ 1 & 1 & m-1 & m-1 \end{pmatrix}$ and $EGE^kSA(D_3(K_{2m})) = 8(3^k)(m-1)$.

Theorem 4.3

Let JK_m^m be the join of complete graph. Then $EGE^kSA(JK_m^m) = 2^{k+3}(m-1)$.

Proof:

Let G be a join of complete graph of order 2m and m^2 edges.

Since
$$ge^k sa_{ij}(JK_m^m) = \begin{cases} 2^{k+1}, & if \ v_i \ adjacent \ to \ v_j \\ 0, & otherwise \end{cases}$$
,

we get
$$GE^kSA(JK_m^m) = \begin{bmatrix} 2^{k+1}A(K_m) & 2^{k+1}(I_m) \\ 2^{k+1}(I_m) & 2^{k+1}A(K_m) \end{bmatrix}$$
 and

$$PGE^{k}SA(JK_{m}^{m})(\eta) = |\eta I_{m} - GE^{k}SA(JK_{m}^{m})|$$

$$= \begin{vmatrix} \eta I_{m} - 2^{k+1}A(K_{m}) & -2^{k+1}(I_{m}) \\ -2^{k+1}(I_{m}) & \eta I_{m} - 2^{k+1}A(K_{m}) \end{vmatrix}$$

$$\begin{split} &= (\eta I_m - 2^{k+1}A(K_m))^2 - (2^{k+1}(I_m))^2 \\ &= \left((\eta - 2^{k+1})I_m - 2^{k+1}(m-1)\right) \left((\eta - 2^{k+1})I_m + 2^{k+1}\right)^{m-1} \\ &\qquad \qquad ((\eta + 2^{t+1})I_m - 2^{k+1}(m-1))((\eta + 2^{k+1})I_m + 2^{k+1})^{m-1} \\ &= \eta^{m-1} \left(\eta - 2^{k+1}(m)\right) (\eta + 2^{k+2} - 2^{k+1}(m))(\eta + 2^{k+2})^{m-1} \end{split}$$
 Hence $S_p(GE^KSA(JK_m^m)) = \begin{pmatrix} -2^{k+1}(m) & 2^{k+1}(m) - 2^{k+2} & -2^{k+2} & 0 \\ 1 & 1 & m-1 & m-1 \end{pmatrix}$

and $EGE^{k}SA(JK_{m}^{m}) = 2^{k+3}(m-1)$.

5. Generalized eccentricity k^{th} power sum adjacency energy complement of regular graph obtained from complete graph

Theorem 5.1

Let $D_2(K_{2m})$ be the complement of edge deleting graph 2 of K_{2m} . Then $EGE^kSA(\overline{D_2(K_{2m})})=2^{k+2}(m)$.

Proof:

Since $A(D_2(K_{2m})) = \begin{bmatrix} A(K_m) & 0 \\ 0 & A(K_m) \end{bmatrix}$ [by theorem 4.1] and $\bar{A} = J - I - A$, where \bar{A} is the adjacency matrix of complement graph, where $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$

Therefore, we get $GE^kSA(\overline{D_2(K_{2m})}) = \begin{bmatrix} 0 & 2^{k+1}(I) \\ 2^{k+1}(I) & 0 \end{bmatrix}$ and

$$PGE^{k}SA(\overline{D_{2}(K_{2m})}) = \left| \eta I_{m} - GE^{k}SA(\overline{D_{2}(K_{2m})}) \right|$$
$$= \left| \begin{matrix} \eta I_{m} & -2^{k+1}(J) \\ -2^{k+1}(J) & \eta I_{m} \end{matrix} \right|$$

Thus the characteristic root of $GE^kSA(\overline{D_2(K_{2m})})$ are $\pm 2^{k+1}(m)$ of multiplicity, zero of multiplicity 2m-2 respectively and hence $EGE^kSA(\overline{D_2(K_{2m})}) = 2^{k+2}(m)$.

Theorem 5.2

Let $D_3(K_{2m})$ be the complement of edge deleting graph 3 of K_{2m} . Then $EGE^kSA(\overline{D_3(K_{2m})})=2^{k+3}(m-1)$.

Proof:

Since $GE^kSA(D_3(K_{2m})) = \begin{bmatrix} 0 & 2(3)^kA(K_m) \\ (3^k)A(K_m) & 0 \end{bmatrix}$ (by theorem 4.2) and $\bar{A} = J - I - A$, where \bar{A} is the adjacency matrix of complement graph, where $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$,.

we get
$$GE^kSA(\overline{D_3(K_{2m})}) = \begin{bmatrix} 2^{k+1}A(K_m) & 2^{k+1}I_m \\ 2^{k+1}I_m & 2^{k+1}A(K_m) \end{bmatrix}$$

= $GE^kSA(JK_m^m)$ (by theorem 4.3)

Since
$$EGE^{k}SA(JK_{m}^{m}) = 2^{k+3}(m-1)$$
.

Hence we get $EGE^kSA(\overline{D_3(K_{2m})}) = 2^{k+3}(m-1)$.

Theorem 5.3

Let (JK_m^m) be the complement of join of complete graph. Then $EGE^kSA(\overline{JK_m^m}) = 8(3^k)(m-1)$, where $m \ge 3$.

Proof:

Since
$$GE^kSA(JK_m^m) = \begin{bmatrix} 2^{k+1}A(K_m) & 2^{k+1}(I_m) \\ 2^{k+1}(I_m) & 2^{k+1}A(K_m) \end{bmatrix}$$
 (by theorem 4.3) and $\bar{A} = J - I - A$, where \bar{A} is the adjacency matrix of complement graph, where $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$

we get
$$GE^kSA(\overline{JK_m}^m) = \begin{bmatrix} 0 & 2(3)^kA(K_m) \\ (3^k)A(K_m) & 0 \end{bmatrix}$$

= $GE^kSA(D_3(K_{2m}))$ (by theorem 4.2)

Since
$$EGE^kSA(D_3(K_{2m})) = 8(3^k)(m-1)$$
.

Hence
$$GE^kSA(\overline{JK_m}^m) = 8(3^k)(m-1)$$
.

Reference

- [1] J.Akiyma, K.Ando and D.Avis, "Eccentric graph", Discr. Math. 56(1985), 1-6.
- [2] Andries E Brouwer, Willem H Haemers, Spectra of graph.
- [3] R.Balakrishan, "The Energy of a graph", Linear Algebra and its applications 384 (2004) 287-295.
- [4] J.A Bondy and U.S.R Murty, "Graph theory with applications, 1976, Elsevier Science.
- [5] Cvetkovic D.M, Doob M, Sachs H, "Spectra of graphs", Academic press, New York, 1980.
- [6] M. Deva Saroja, M.S Paulraj, "Equienergetic regular graphs", Int. Joul. of Algori. Compu. and Math. Vol 3 No.3 (2010) 21-25.
- [7] M. Deva Saroja, M.S Paulraj, "Energy of complement graphs of some equienergetic regular graphs", J. Comp. and Sci. Vol. 1(6), 754-757 (2010).
- [8] Fathima, Generalized Kth power sum energy of graphs, "Mathematical Statistician and Engineering Applications", Vol. 72, No. 1 (1062-1069) (2023).
- [9] I.Gutman, "The energy of a graph", Ber. Math. Statist. Sekt. Forschungz. Graz., 103 (1978), 1-22.
- [10] F.Harary, "Graph Theory", Addison welsey, Reading, 1969.
- [11] M.A. Naji, N.D.Soner, "The maximum eccentricity energy of a graph", Int. J. Sci. Engin. Rec. 7 (2016) 5-13.
- [12] Mohammad Issa Sowaity and B.Sharada, "The Sum Eccentricity Energy of a graph", International Journal of Recent and Innovation Trends in Computing and Communication, Volume:5, Issue:6, ISSN: 2321-8169, 293-304 (2017).
- [13] N.Prabhavathy, "A new concept of energy from eccentricity matrix of graphs", Malaya Journal of Matematik, (2019), 400-402.
- [14] D.S. Revankar, M.M. Patil, H.S. Ramane, "On eccentricity sum eigenvalues and eccentricity sumenergy of a graph of a graph", Ann. Pure. Math. 13 (2017).
- [15] H.B Walikar and S.R.Jog, "Spectra and energy of graphs obtained from complete graph", Graph theory and its applications Editors. R.Balakrishnan et al Narosa Publishing House New Delhi, India (2004).