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Abstract

This study evaluates the effects of Jatropha and Karanja biodiesels and their blends on a diesel engine's fuel
economy, performance, and exhaust emissions. Response Surface Methodology was applied to model engine
responses using four key input parameters: blend percentage, load, injection timing, and Exhaust Gas
Recirculation. RSM projected multiple Pareto-optimal solutions through multi-objective optimization and
contour plots. The study investigated important engine responses like Brake Thermal Efficiency, Brake Specific
Fuel Consumption, HC emissions, smoke, NOx, and EGR. RSM maodels for Jatropha biodiesel and blends
displayed high R? values, ranging from 0.93 to 0.99. Similarly, Karanja biodiesel and blends exhibited R? values
ranging from 0.94 to 0.98. The results indicate that all tested fuels provided accurate approximations for the
engine responses. Furthermore, an Artificial Neural Network model was developed to predict input parameters
based on desired performance and emission constraints. The ANN approach proved effective in predicting
engine responses based on operating conditions, injection system parameters, and exhaust gas recirculation.

Keywords: Biodiesel, Optimization, Biodiesel blends, Response Surface Methodology, Artificial Neural
Network.

1 Introduction

Biofuels have emerged as a viable alternative to fossil fuels and have been in use for several years now. These
fuels are derived from plant matter and are considered low-carbon. It is predicted that biofuels will witness a
significant rise in demand over the next five years, thereby reducing our dependence on fossil fuels. Biofuels are
known to burn more efficiently and emit fewer pollutants and greenhouse gases when compared to conventional
fossil fuels. The availability of petroleum resources is limited, and they are primarily concentrated in specific
geographical regions. Furthermore, the demand for petroleum-based fuels is continuously increasing, leading to
a corresponding rise in prices [1]. Petro-diesel is known to emit a significant amount of pollutants and
greenhouse gases, such as carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), sulphur dioxide
(S0O»), and nitrogen oxides (NOx), which have adverse health and environmental effects. The harmful impacts
of these contaminants on human health have been established in previous studies (Silverman et al., 2012) [2].
On the other hand, biodiesel exhibits similar properties to diesel fuel in terms of cetane number, heating value,
long-chain unbranched hydrocarbons, etc. [3-5].

Biofuels are considered an eco-friendly and convenient alternative to conventional fuels as they promote energy
security, support economic development, reduce greenhouse gas emissions and other pollutants, maintain energy
balance, and are biodegradable and recyclable [6]. Numerous studies have investigated the advantages,
disadvantages, and characteristics of biofuels [3-7]. These fuels can be produced using edible vegetable oils
such as sunflower, palm, peanut, soybean, coconut, and rapeseed, as well as non-edible vegetable oils such as
Jatropha, Karanja, algae, halophytes, and sea mango. Additionally, biofuels can also be made from recycled or
waste oils and animal fats such as cow tallow, yellow grease, chicken fat, and fish oil by-products.
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Figure 1. shows the overview of the common method for the production of biodiesel from the feed stock. It is
popularly known as trans-esterification process.

Biodiesel Separation and Washing Trans esterification

Fig. 1 Biodiesel production from feedstock via trans-esterification process [8].

Over the past few years, the use of biodiesel as a diesel engine fuel has gained significant attention, with several
investigations examining its performance, emission analysis, stability, and efficiency properties. The aim has
been to achieve higher Brake Thermal Efficiency (BTE) and lower Brake Specific Fuel Consumption (BSFC) to
reduce fuel consumption and greenhouse gas emissions. Researchers have conducted tests to determine if
biodiesel and its blends with diesel can outperform pure diesel in terms of efficiency [9-12].

Studies have shown that biodiesel blends can achieve higher efficiency levels than pure diesel. For instance,
Devarajan et al. [13] evaluated neat biodiesel and heptanol biodiesel blends in a diesel engine. The study
showed that as the heptanol level in the heptanol and biodiesel blends increased, the BSFC decreased, and the
BTE increased. The engine exhibited a maximum reduction in BSFC of 0.19 kg/kWh and a 1.7 percent increase
in BTE when fueled with the 228 M80H20 blend under naturally aspirated conditions. Similarly, several studies
have found that using biodiesel blends improves BTE [7,14].

However, several studies have reported a decline in efficiency with the use of biodiesel. Patidar et al. [15]
studied the performance and durability of a single-cylinder direct injection diesel engine running on a biodiesel-
diesel fuel blend that was water emulsified. According to the findings, in comparison to HSD, PB20S10W and
B20 showed higher BSFC. PB20S10W and B20 had 7.40 percent and 3.23 percent greater BSFC than HSD at
75 percent load, respectively. Pal et al. [16] conducted an experimental and numerical study on Jatropha
biodiesel and found that, as compared to conventional diesel engines, BTE lowered as biodiesel share in blends
increased. The amount of biodiesel in blended fuels enhances the BSFC. The usage of Jatropha biodiesel, which
has a higher oxygen content, resulted in an increase in NOx emissions, according to this study. However, when
compared to pure diesel metrics remained inferior at full loads [8]. Due to the combined effect of higher
viscosity and lower calorific value, BSFC increased with the addition of biodiesel to the mix during full load
circumstances, resulting in a lowered BTE than diesel fuel [7, 17].

Numerous studies [1-15] have concluded that most of the emissions decrease but there is significant increase in
NOx emissions. Agarwal et al. [37] investigated that biodiesel reduced PM mass emissions, which have lower
environmental and health-related toxicity. Dincer [38] investigated the effect of biodiesel and found that total
hydrocarbon emissions (a significant element in the localized production of smog and ozone) from biodiesel are
on average 67 percent lower than diesel fuel. However, some researchers have come up with some suggestions
to lower NOx emissions, and the proof shows that Radhey Sham et al. [18] conducted an experimental
investigation study on the impacts of employing EGR (exhaust gas recirculation) in a directed injection diesel
engine. As a result, it was observed that when EGR is larger than 16 percent, NOx emissions tend to decrease,
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and that cooling EGR plays an essential role in lowering NOx emissions. Kumar et al. [19] conducted a similar
experiment on a Cl engine using a 20 percent blend of Jatropha biodiesel. At maximum load condition, NOx
was reduced by 20.8 percent and 36.9 percent at 10 percent and 20 percent EGR, respectively.

The performance and emission characteristics of the biodiesel also depend on the feedstock of the biodiesel,
which may be edible or non-edible vegetable oil. In the Indian context, the non-edible vegetable oils produced
from Jatropha and Karanja have great suitability [19, 20]. Some studies [4, 19-22] have investigated the
production and attributes of Jatropha biodiesel because it has a higher percentage of methyl esters [8]. Aparna
Singh et al. [23] investigated biodiesel synthesis using heterogeneous catalysts, as well as the use of Taguchi
robust design and response surface methods to improve diesel engine performance when employing Jatropha
biodiesel blends. When compared to baseline mineral diesel, B30 (30 percent biodiesel+70 percent diesel) has
been proven to function similarly. As a result, biodiesel made from Jatropha curcas oil employing a
heterogeneous catalyst can be used as a fuel blend with diesel in normal diesel engines without requiring any
engine modifications. The Use of Jatropha Biodiesel as a Future Sustainable Fuel was also studied by Datta et
al. [11].

It is important to note that the impact of biodiesel on engine efficiency and emissions can vary depending on
several factors, including the type and quality of biodiesel used, the engine type, operating conditions, and fuel
blend ratios. Overall, while biodiesel has the potential to improve engine efficiency and reduce emissions,
further research is needed to fully understand its impact and to develop strategies to mitigate its potential
negative effects, such as increased NOx emissions. Additionally, it is important to consider the sustainability of
biodiesel production and the potential impact on land use, food security, and biodiversity. From the literature
review it has been observed that though there have been numerous performance and emission studies on the use
of biodiesel yet there is very less literature available to find the combined effect of various engine input
parameters. Also, very few studies have done the optimization under various operating and performance
parameters. Therefore, the present work has been undertaken to bridge the mentioned gap. The main focus of
this study is on the biodiesel produced from non-edible oils from Jatropha and Karanja, which have been
identified as prospective biodiesel sources in India's biodiesel mission [10].

The comprehensive and specific objectives of the present work are:

1. Investigating the combined effects of load and injection timing, blending, and EGR on diesel engine
performance and emissions to provide a better understanding of how these factors interact and affect
engine operation.

2. Comparing the performance of biodiesel from Jatropha and Karanja in order to give insight into which
of these fuels is more suitable for use in diesel engines.

3. Developing a mathematical model and an ANN-based predictive model to enable the prediction of
engine performance and emissions under different operating conditions and making it easier to
optimize engine design and operation.

Overall, these objectives will contribute to the advancement of knowledge and understanding of the use of
biodiesel in diesel engines, which can lead to improved engine performance and reduced emissions.

2. Materials and Methodology:
2.1 Biodiesel Blend preparation

The biodiesel samples were produced from Jatropha and Karanja oils using a catalytic trans-esterification
process with KOH as the catalyst. Commercial diesel was obtained from a local fuel station and was blended
with the biodiesel samples to create blends with 20% and 50% biodiesel content. The blends that were tested
included Diesel, KB20, KB50, KB100, JB20, JB50, and JB100. The qualities of each blend and biodiesel
sample were evaluated according to applicable standards, and the results are shown in Table 1.
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Table 1. The physicochemical properties of biodiesel blends

Properties Test Diesel KB20 KB50 KB100 JB20 JB50 JB100
Methods
Density ASTM D 844 856 868 891 852 863 878
(Kg/md) 4052
Kinematic  ASTM D 3.84 4.10 4.68 5.64 3.97 4.35 5.11
Viscosity 445
@40°C
(cSt)
Gross ASTM D 44.3 42.8 41.6 38.1 43.08 42.37 39.2
Calorific 240
Value
(MJ/Kg)
Net 41.42 39.5 38.7 34.8 40.2 39.1 36.3
Calorific -
Value
(MJ/Kq)

2.2 Engine set-up

The study employed a Kirloskar CAF1 single cylinder DI engine with a rated power of 4.5 kW and a constant
speed of 1500 rpm. The engine's parameters are listed in Table 2, and its set-up schematic is depicted in Figure
2. Two storage tanks, one for diesel and one for biodiesel, were attached to the engine. The engine was also
connected to an alternator whose supply was coupled to a control panel with a total of 4.5 kW load lamps. The
control panel also included a digital temperature indicator, a digital voltmeter, and a digital ammeter. To detect
the exhaust gas temperature, a digital temperature indicator was connected to the sensor at the engine's exhaust
manifold. Smoke opacity was quantified using the AVL 437 smoke analyzer, while unburnt HC and NOx
emissions were measured using the AVL digas 4000 gas analyzer. Injection timing was determined using the
spill approach. Load cells were switched according to the desired value to vary the load. Before testing
biodiesels or blends, the engine was run on diesel first, then the biodiesel tank's fuel valve was closed, and the
biodiesel tank’s fuel valve was opened. Data were taken only after ensuring that the engine was functioning
under constant conditions to allow for easy comparison. For each fuel, readings were taken in triplicate under
each condition, and the average measurement was used in the computations.

Biodiesel Diesel
Tank Tank

? @
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controll unit 3 Air Filter
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Digas
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Figure 2. Schematic of Engine set up.
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2.3 Exhaust Gas Recirculation

EGR is a method of reducing NOx emissions. Since, the use of biodiesel raises NOx emissions in the engine,
trials were conducted with EGR. The impact of EGR on BSFC and BTE, as well as on exhaust gas emissions
(smoke, HC, and NOXx), has been thoroughly explored. The EGR system was connected to the engine during the
investigation. The studies were conducted with 10% and 20% EGR, and the results were compared to those
conducted without EGR.

For the identical operating conditions, the volume flow rate was measured with exhaust gas recirculation (V2)
and without exhaust gas recirculation (V1), and the percentage of exhaust gas recirculation was determined as
follows:

% EGR = (V2 - V1)/(V1) x100% 1)

The engine was run under different biodiesel load conditions, and the effects of EGR on various engine
characteristics were investigated by analysing the output responses.

Table 2. Technical specifications of the engine

Engine manufacturer Kirloskar Qil Engines Limited, Rajkot (India)
Engine type Single cylinder, vertical, 4- stroke diesel engine
Type of cooling Air cooled
Bore and stroke (mm) 80x110
Maximum rated speed (RPM) 1500
Brake horsepower (BHP) 6HP (4.41 KW) at 1500 RPM
Compression ratio 175:1
Type of injection Direct injection
Injection timing 23° btdc
Lubrication oil SAE 30/SAE 40
Governing class “A2/B1”

3. Results and Discussion
3.1 Performance and emission analysis
Brake specific Fuel Consumption

Upon analysis results, it was observed that an increase in EGR percentage from 0 to 20% leads to an increase in
BSFC for all fuels and loads. This can be attributed to the depletion of oxygen in the input mixture due to the
presence of Exhaust Gas Recirculation, leading to improper combustion. The impact of EGR on BSFC varies
based on the type of fuel, with diesel fuel being affected the most and pure biodiesel being affected the least due
to its oxygen content. However, the effect of EGR on all fuels decreases at a load of 40%. This could be due to
the accumulation of oxygen during combustion because of the reduced fuel intake in the combustion chamber.

Figures 3a-3c show the variation in BSFC with a change in EGR for a delayed injection of 180 btdc, while
Figures 4a-4c illustrate the fluctuation of BSFC at conventional injection timing of 230. Figures 5a-c depict the
influence of EGR on BSFC btdc at advanced injection timing of 280 btdc for different loads. Results indicate
that the BSFC was lower at 70% loads and 10% EGR than at 40% load, under both normal and advanced
injection time. This could be attributed to the possibility of unburned fuel particles returning with the exhaust
gases at 10% EGR. Combustion also improves slightly due to sufficient oxygen and time for mixing, resulting

409



Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055
Vol. 45 No. 2 (2024)

in a decrease in BSFC. However, the BSFC shows an increasing trend with EGR % when injection timing is
delayed. This may be due to the reduced time available for mixing, as the injection start time is delayed.
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Fig. 4 Effect of EGR, load and blending on BSFC at Normal injection 23° btdc.
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Fig. 5 Effect of EGR, load and blending on BSFC at Advanced injection (28° btdc).
Brake Thermal Efficiency (BTE)

The graphs in Figures 6a-6¢ illustrate how the Brake Thermal Efficiency (BTE) changes with Exhaust Gas
Recirculation (EGR) for normal injection timing. At full loads, increasing EGR slightly decreases BTE, but at
low and mid loads, a 10% EGR can slightly improve efficiency. This is due to the decrease in Brake Specific
Fuel Consumption (BSFC) caused by the recirculation of unburned fuel particles, which was explained in the
previous section. EGR has a greater impact on diesel fuel and blends than pure biodiesel.

The impact of EGR on BTE during delayed injection can be observed in Figures 7a-7c, where EGR reduces
efficiency at all loads. This is likely due to reduced timing for mixing air and fuel in the combustion chamber.
At full load, EGR reduces efficiency quickly.

Finally, the effect of EGR on efficiency at advanced injection can be seen in Figures 8a-8c. For almost all fuels,
efficiency improves at low loads when EGR is set at 10%.
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Figures 8(a-c) Effect of EGR, load and blending on BTE at advanced injection timing  (28° btdc)

Smoke Emissions

The use of Exhaust Gas Recirculation (EGR) was found to increase smoke opacity, as smoke emissions rose
with increasing loads and EGR percentages. When EGR was increased from 10% to 20%, the smoke level
increased more significantly than when it was increased from 0% to 10%. This could be due to the larger
volume of recirculated exhaust within the combustion chamber, which reduces the available oxygen supply.
Since biodiesels contain oxygen, the increase in smoke was more prominent in diesel fuel than in biodiesels.
The impact of increased EGR was more pronounced at full load compared to low and mid loads, likely due to
higher fuel consumption for combustion. The trends in smoke variation with changing injection timing were
similar, as shown in Figures 9 (a-c), which depict the changes in smoke opacity with EGR at various loads and
injection rates.
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Figure 9 a. 40% Load
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Figures 9(a-c) Effect of EGR, load and blending on Smoke emissions at Normal injection timing (23° btdc)
Unburnt Hydrocarbon (HC) Emissions

Figures 10 (a-c) demonstrate how Exhaust Gas Recirculation (EGR), load, and blending affect the hydrocarbon
(HC) emissions for all the fuels tested at normal injection. The results indicate that increasing EGR leads to
higher Unburned Hydrocarbon (UBHC) emissions. This is due to the dilution of the intake mixture and a
subsequent decrease in oxygen content. This causes the formation of a locally over-rich mixture, which slows
down the combustion reactions and leads to incomplete combustion. Furthermore, at a given volume, the
exhaust gases in the intake mixture lower the temperature and pressure, resulting in a longer ignition delay
period and increased HC emissions. The increase in HC emissions was found to be greater for diesel than pure
biodiesels between 10-20% EGR. For most fuels, UBHC emissions increase linearly at full loads.
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Figures 10(a-c) Effect of EGR, load and blending on HC Emissions at Normal injection timing.
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Exhaust Gas Temperature (EGT)

The results indicate that exhaust gas temperature (EGT) increases with increasing engine load for all the tested
fuels. The decreased thermal efficiency of biodiesels and their blends compared to fossil diesel results in
increased heat loss in exhaust gases and fuel consumption. This increased fuel consumption leads to a rise in
engine cylinder temperature and subsequently, exhaust temperature. Additionally, greater heat loss occurs in
exhaust gases with an increase in engine load. Biodiesel blends display higher exhaust gas temperatures than
fossil diesel across the entire engine load range. EGT decreases as EGR percentage increases for all the fuels
tested. This could be attributed to the reduced availability of oxygen for fuel burning. However, at 10% EGR,
where combustion is enhanced and BSFC slightly decreases, EGT still

decreases, which could be due to the higher specific heat of a mixture of fresh air and exhaust gases. Figures 11
(a-c) illustrate the impact of load, blending, and EGR at normal injection timing.
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Figure 11c. Full Load
Figures 11(a-c) Effect of EGR, load and blending on EGT at Normal injection timing

NOXx emissions

NOx emissions are a significant environmental concern in diesel engines, as they contribute to the formation of
smog and acid rain. EGR has become a popular technique for reducing NOx emissions in diesel engines. When
exhaust gases are recirculated into the engine's intake, the combustion temperature is lowered, resulting in lower
NOx emissions. The decrease in NOx emissions with increasing EGR is nearly linear. Higher EGR rates have
been found to result in greater reductions in NOx emissions at high loads than at low loads.
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The impact of EGR on NOx emissions was more significant with biodiesel than with diesel. This is because
biodiesel contains oxygen, which leads to greater formation of NOx. The reduction in NOx emissions with
increasing EGR was more significant with biodiesel than with diesel. The findings suggest that EGR can be an
effective technique for reducing NOx emissions in diesel engines, especially when using biodiesel. Figures 12

(a-c) demonstrate the impact of EGR on NOx emissions at normal injection timing.

Figure 12 c. Full Load
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Figure12(a-c) Effect of EGR, load and blending on NOx emissions at Normal injection timing.

3.2 Statistical analysis and Optimisation

In this study, the impact of various parameters such as blends, load, injection time, and EGR on BSFC, BTE,
smoke, UBHC, EGT, and NOx were investigated through statistical analysis. To achieve this, the experimental
results were analyzed using the Analysis of Variance (ANOVA) method, and a multi-objective problem was
created. Design Expert 12 software was used for the optimization problem, where models for each parameter
were created for Jatropha biodiesel, Karanja biodiesel, and their corresponding blends. The multi-objective
optimization was then performed using these models, and the influence of all the parameters was analyzed
through response surface plots. These plots showed the combined and individual effects of each parameter.

Finally, the optimum solutions were determined and presented graphically through the models created.
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Optimisation of Engine Operating parameters

The primary aim of this study is to enhance the operational parameters of the engine, which include blends,
load, injection timing, and EGR, to achieve optimal performance in terms of thermal efficiency, BSFC, smoke,
HC emissions, EGT, and NOx. Optimization problems can be classified into two categories: single-objective
and multi-objective. Single-objective problems involve maximizing a single function, whereas multi-objective
problems require the optimization of multiple objective functions. Since this study involves six output
parameters, it requires a multi-objective optimization approach, where we need to minimize or maximize several
objective functions. Generally, multi-objective optimization can be described as the process of minimizing or
maximizing multiple objective functions simultaneously given by the following equation [44]:

Minimize/Maximize  fa(X), a=12, e, A;

Subject to gj(x) >0, J=1,2, e, N 2
h(x)=0, k=1,2,...... , K
x < xi < x©, =12, e, ,n.

A solution vector x comprises n choice variables and is represented as x = (X1, X2, ...... Xn)T. The decision
variable space is constrained by variable bounds that limit each decision variable x;to an upper x;(U) and lower
xi(L) bound. Constraint functions are expressed as g;(x) and hx(x).

In this study, the multi-objective optimization problem was solved using the Design-Expert 12.0.0 software
package, which utilizes desirability functions to overcome optimization challenges. Each response Y; is
transformed into an individual desirability function d; that varies across the range. The desirability function d;
takes a value between zero and one, where djis one when the response is at its target, and zero when it falls
outside the acceptable range.

The design parameters are then selected to maximise overall desirability:
D = (di * do*....... *dn)1/n (3)
Where, n is the number of responses.
If the goal for the response Y; is a maximum value, the desirability curve is defined as:
di = [(Yi- L)/(Hi - L™ (4)
If the goal for the response Y is a minimum value, the desirability curve is defined as:
di = [(Li - Yi)/(Hi - L™ (5)

Where, Lijand Hiare the lower and higher limits for the response Y;and wt;is the response's weight. Weights are
used to highlight the target value or upper/lower bounds. Hence, when wt; = 1, the di has a linear range of 0 to 1,
while wt;> 1 and wt; < 1 are indicated as having high and low importance in the target's proximity, respectively
[39]

Optimization models for Jatropha and Karanja Biodiesel blends

To solve an optimization problem, it is essential to construct a suitable model that relates the output responses to
the input parameters. In this study, six models were developed for load, blend ratio, injection timing, and EGR,
as there were six output variables to consider. The statistical models were built using the response surface
methodology (RSM) technique, with individual models developed for the Karanja and Jatropha biodiesel blends,
including a 0% blend (pure diesel) and a 100% blend (pure biodiesel).

RSM is a powerful approach that employs various mathematical and statistical tools to analyze complex systems
with multiple inputs and outputs, with the ultimate goal of optimizing the system's response. Typically, RSM
uses a low-order polynomial to establish a connection between the input parameters and the output response,
with the polynomial being valid for some regions of the independent variables. The general equation for this
polynomial can be expressed as:
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Y = Po + PaXy + BaXy + e + B +e (6)

If there is a curvature in the system, a polynomial of higher degree is used. The following equation shows a
second-order model:

y:BO+ZB'x_+ZZB"x_x_+zB X2 +¢ @)

The models created in this study include all of the input parameters' individual terms, quadratic terms, and two-
way interaction terms. The Jatropha models are shown below.

BSFC = +393.74 -79.69*A + 44.63*B - 47.29*C + 12.38*D -8.43*AB +5.48*AC + 2.00*AD - 4.32*BC -
1.02*BD -6.58*CD +60.54*A? + 1.25*B? + 6.25*C? + 10.08*D? (8)

BTE = +23.55 + 3.57*A - 0.79*B +2.30*C - 0.60*D - 0.084*AB + 0.47*AC -0.25*AD -0.078*BC + 0.11* BD
+0.21*CD - 2.51*A? + 0.14* B2 - 0.098*C? - 0.51*D? 9)

SMOKE = +31.89 + 31.89* A - 7.99* B - 6.16* C + 8.35* D -1.47* AB - 1.43* AC + 4.05*AD + 0.62*BC -
0.59* BD -0.41*CD + 3.07*A? + 3.00*B? +1.08* C? + 1.81* D2 (10)

HC = +19.03 - 1.36*A -6.98* B + 2.79* C + 5.03*D - 0.90*AB -1.08*AC -0.69*AD - 0.36*BC - 1.25*BD +
2.48*CD + 4.55*A2 + 5.24*B2 - 0.56*C? + 1.92*D? (11)

EGT = +337.40 + 56.94*A - 7.56*B + 17.83*C -13.91*D + 1.06*AB + 1.85*AC + 0.54*AD - 0.7*BC +
0.95*BD - 0.31*CD + 12.14*A? - 24.58*B2 - 1.24* C? - 3.28* D? (12)

NOx = +1061.34 +309.26* A + 88.68*B +124.29*C - 59.34*D +20.61*AB + 46.42*AC -7.06 * AD +
19.50*BC - 13.64*BD - 13.77* CD - 22.89*A? - 41.08*B2 + 29.78*C? + 4.07* D? (13)

Where, A-Load, B-Blend percentage, C-Injection timing before TDC and D- EGR.
The models for Karanja are shown below.

BSFC = +414.83 - 79.58*A + 60.91*B - 51.22*C + 12.29*D -10.00*AB + 2.31*AC + 2.04*AD - 7.02*BC -
0.60*BD - 7.04*CD + 61.17*A2 + 1.18*B2 + 8.25 * C2 + 6.21* D2 (14)

BTE = +22.75 + 3.36*A - 1.05*B + 2.35*C - 0.56*D - 0.15*AB + 0.60*AC -0.24*AD - 0.057*BC + 0.12*BD +
0.22*CD - 2.41*A2 + 0.41* B2 - 0.20*C2 - 0.28*D2 (15)

HC = +21.38 - 1.27*A - 6.57*B + 2.79*C + 5.63*D - 1.47*AB - 0.90*AC -0.98*AD - 0.74*BC - 0.97*BD +
2.40*CD + 4.65*A2 + 3.45*B2 - 1.05*C2 + 2.67* D2 (16)

SMOKE= +34.42 + 13.04*A - 6.81*B - 6.59*C + 8.64*D - 1.13*AB - 1.26*AC + 4.30*AD + 0.15*BC -
0.23*BD - 0.30*CD + 3.02*A2 + 1.77*B2 + 1.01*C2 + 2.08*D2

(17)

EGT= +329.43 + 56.10*A - 10.53*B + 17.77*C - 13.84*D + 0.39*AB + 1.31*AC + 0.25*AD - 0.054*BC +
0.80*BD - 0.67*CD + 11.57*A2 -20.65*B2 - 0.31*C2 - 3.60*D2 (18)

NOx = +1038.38 + 298.89*A + 75.48*B + 122.38*C - 55.86*D + 8.32*AB + 45.44*AC - 9.52*AD +
19.38*BC - 16.86*BD - 11.77*CD - 25.08*A2 -36.77*B2 + 43.50*C2 - 3.92*D2
(19)

Where, A-Load, B-Blend percentage, C-Injection timing before TDC and D- EGR.

Multi-objective optimisation is carried out using statistical models. To verify the fitness of the response surface
models, several output responses were exhibited individually versus the two input parameters. The 3-D response
surfaces reflect the combined influence of the two factors at any particular moment. These response surfaces
were drawn for a wide range of combinations, from 0% (pure diesel) to 100% (pure biodiesel). Separate
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analyses were performed on Jatropha and Karanja biodiesel/blends. Some of the results are seen in Figures 13 —
28. Table 3 displays the lowest, maximum, and mean values of the measured responses. The R? value of the
response surface models is also shown in the table. The R? value indicates how near the data set is totheitted
regression line. It's also referred to as the coefficient of determination. It can be calculated using the following

formula:
Coefficient of determination, R? = (Sum of squares due to model)/(total Sum of squares) (20)

As the total sum of squares = Sum of squares due to model + sum of squares due to residuals/ errors, therefore
the equation can also be written as:

Coefficient of determination, R? = 1- (Sum of squares due to residuals/errors)/(total Sum of squares) (21)

R2 can be calculated using either of the following formulae. R2 = 0 means that the dependent variable cannot be
predicted using the input variables, but R2 = 1 means that the error-free output response can be predicted using
the input parameters. R2 = 0.9, on the other hand, shows that the output response is 90% correct and 10%
unexpected.

Figures 13-28 illustrate response surface graphs and predicted vs. experimental data graphs for various
combinations of input parameters to demonstrate the combined effect.

Table.3 Important statistical values for biodiesel/ biodiesel blends

BSFC (g/kwh) BTE (%) Smoke (HSU) HC (ppm vol:) Nox (ppm vol:)
Karanja Jatropha|Karanja Jatropha|Karanja Jatropha|Karanja Jatropha|Karanja Jatropha
biodiesel biodiesel | biodiesel biodiesel | biodiesel biodiesel | biodiesel biodiesel | biodiesel biodiesel
blends blends | blends blends | blends blends | blends blends blends  blends
.. 312 312 14.4 14.7 16.1 14.3 14 14 581 581
Minimum
. 716 671 27.9 28.6 85 85 54 53 1689 1751
Maximum
Mean 456.8 439.02 21.2 21.6 40.5 38.8 28.5 27.1 1015.0 1031.1
R2 0.98 0.99 0.98 0.98 0.98 0.98 0.94 0.93 0.98 0.99

BSFC (g/KWh)

BSFC (g/KWh)

D: EGR (%)

BLEND (%)

LOAD (%)

Fig. 13 Response surface of BSFC for KB100 at
0% EGR and retarded injection (18° btdc)

Fig. 14 Response surface of BSFC for diesel at
normal injection
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0" a0 LOAD (%)

Fig. 15 Response surface of BTE for KB50 at 20% EGR Fig.

SMOKE (HSU)

Fig. 17 Response surface of smoke for KB100 at
20% EGR

NOX (ppm)

INJECTION TIMING (DEG btd¢) BLEND (%)

Fig. 19 Response surface of NOXx for biodiesel
blends at 0% EGR and 40% load

Predicted

Actual

Fig. 21 Comparison of Actual and predicted values
of BSFC for Jatropha biodiesel and blends (R?=

0.99)

HC (ppm)

Predicted

BTE (%)

EGR (%)

7
~INJECTION TIMING

7o
LOAD (%)

Fig. 18 Response surface of HC emissions for
KB50 at 20% EGR

NOXx (ppm)

LOAD (%)

INJECTION TIMING (DEG btdc)

Fig. 20 Response surface of NOx jatropha for
JB100 at 10% EGR

AAAAAA

Fig. 22 Comparison of Actual and predicted values
of BSFC for Karanja biodiesel and blends (R*=

0.98)
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Predicted

Fig. 23 Comparison ofsdgtual and predicted values
of BTE for Jatropha biodiesel
blends (R>= 0.98)

100~

Predicted

T T T T T T
0 20 40 60 80 100

Fig. 25 Comparison of Aetual and predicted values
of smoke for Jatropha biodiesel
and blends (R?= 0.98)

Predicted

Actual

Fig. 27 Comparison of Actual and predicted values
of NOx for Jatropha biodiesel and blends (R*=
0.99)

Predicted

Fig. 24 Comparison, of Actual and predicted
values of BTE for Karanja biodiesel and and
blends (R?= 0.98)

Predicted

Fig. 26 Comparison af.Actual and predicted values
of smoke for Karanja biodiesel
and blends (R?= 0.98)

Predicted

Actual

Fig. 28 Comparison of Actual and predicted values
of NOx for Karanja biodiesel and blends (R?= 0.98)
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Optimisation Results

The objective of the optimization process was to identify the optimal operating parameter values for achieving
the desired output conditions. The solutions that met the input parameter values for the specified output
conditions were obtained by applying various constraints on the output parameters such as BSFC, BTE, smoke,
HC emissions, EGT, and NOx. EGT did not have a direct impact on any of the six output responses, but it
affected NOx, emissions, and performance measures. Thus, EGT was not restricted. The aim was to maximize
the efficiency of the five output responses and minimize the other values. The upper limit for all parameters that
needed to be minimized was set at the mean value. Design Expert 12.0 software was used to evaluate and
optimize the models, which can address multi-objective optimization problems.

The input parameters were chosen during optimization to optimize overall desirability. The optimization process
involved using each input parameter combination, one at a time, as the starting point for finding the best
combination. Statistical models were employed to optimize each fuel mix independently. The optimization
process generated a set of solutions that satisfied the specified output requirements.
The study applied the following optimization constraints for Jatropha blends and Karanja blends:

i. Maximizing BTE while minimizing each response one at a time and keeping the values of the remaining

responses below their mean value.

ii. Minimizing each response one at a time while keeping all other responses within the limit.

iii. Maximizing BTE while keeping all other responses below their mean value.

iv. Minimizing two responses while keeping the others below the mean value.

Tables 4-13 list the limitations and the set of solutions for various diesel and biodiesel blends, loads, and
injection start times that satisfy the specified constraints. The optimization process yielded output responses that
were within the specified limits, as shown in these tables. It is important to note that while there may be multiple
solutions for a given set of constraints, none of them can be deemed superior to others because they all meet the
necessary requirements in the same zone. Pareto-optimal solutions are examples of this type of solution.

Table 4 Output responses constrains for minimizing NOx and maximizing BTE for Jatropha biodiesel
/diesel blends

Name Goal Lower Upper

Limit Limit
LOAD is in range 40 100
INPUT BLEND is in range 0 100
RESPONSES INJECTION TIMING is in range 18 28
EGR is in range 0 20
SMOKE is in range 14.36 38
HC is in range 14 27.1
OUTPUT EGT None 228 443
RESPONSES NOx Minimize 581 1031.1
BSFC is in range 312 439
BTE Maximize 25 28.6
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Table 5. Solutions to the response constrains for minimizing NOx and maximizing BTE for diesel/ Jatropha
biodiesel blends.

S.No. LOAD BLEND INJECTION EGR SMOKE HC EGT NOXx BSFC BTE
TIMING
1 68.8 2.6 25.0 2.2 336 27.1 336.9 1016.2 337.3 253
2 68.8 2.6 25.0 2.3 336 27.1 336.9 10162 3373 253
3 68.7 2.6 25.0 2.3 335 27.1 336.8 1016.2 3373 253
4 68.7 2.6 25.0 2.2 335 27.1 336.8 10160 3374 253
5 68.7 24 25.0 2.1 335 27.1 336.8 1016.1 3373 253
6 69.0 2.4 24.9 2.2 33.7 271 33.9 10161 3372 253
7 68.9 2.3 24.9 2.1 336 27.1 3369 10165 3371 254
8 68.6 25 25.0 2.1 334 27.1 336.8 1016.3 3373 253
9 68.8 2.8 25.0 24 336 27.1 3369 1016.3 3374 253
10 69.0 2.6 24.9 2.3 338 27.1 337.0 10159 3373 253
11 68.8 2.2 24.9 2.0 336 27.1 3369 10163 3371 253

Table 6 Output responses constrains for minimizing HC emissions and BSFC for Jatropha biodiesel/ diesel
blends

cou A e
LOAD is in range 40 100
INPUT BLEND is in range 0 100
RESPONSES INJECTION TIMING is in range 18 28
EGR is in range 0 20
SMOKE is in range 14.36 38
HC Minimize 14 27.1
OUTPUT EGT None 228 443
RESPONSES NOXx is in range 581 1031.1
BSFC Minimize 312 439
BTE None 25 28.6

Table 7. Solutions to the response constrains for minimizing HC emissions and BSFC for diesel/ jatropha
biodiesel blends.

INJECTION

No. LOAD BLEND JECTIO EGR SMOKE HC EGT NOXx BSFC BTE
TIMING

1 70.2 11.1 23.7 1.7 33.0 241 3414 10311 3499 248

2 70.1 11.2 23.8 1.7 329 241 3414 10311 3499 248
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70.1

70.3

70.3

70.0

11.0

111

11.2

11.0

23.7

23.7

23.7

23.8

1.6
1.7
1.7

1.6

33.0

33.1

33.1

32.8

24.1 3414 10311 3499 248
241 3414 10311 3499 248
24.1 3415 10311 3499 248
24.1 3413 10311 3498 248

Table 8. Output responses constrains for minimizing smoke for Jatropha biodiesel/diesel blends

Lower Upper
Name Goal Lmit Limi
LOAD is in range 40 100
INPUT BLEND is in range 0 100
RESPONSES INJECTION TIMING is in range 18 28
EGR is in range 0 20
SMOKE minimize 14.3 38
HC is in range 14 27.1
OUTPUT EGT none 228 443
RESPONSES NOx is in range 581 1031.1
BSFC is in range 312 439
BTE none 25 28.6

Table 9 Solutions to the response constrains for minimizing smoke for Jatropha biodiesel/diesel blends

No. LOAD BLEND IN‘[\']|E|\5|:|T[\:8N EGR SMOKE HC EGT NOx BSFC BTE
1 49.7 56.0 28.0 2.3 17.0 194 3276 10311 439.0 216
2 49.6 55.3 28.0 2.0 17.0 193 3279 10311 439.0 216
3 49.6 55.0 28.0 1.9 17.0 193 3281 10311 439.0 216
4 49.7 56.7 28.0 2.6 17.0 19.4 3271 10311 439.0 217
5 49.7 55.8 28.0 2.2 17.0 19.4 3277 10311 439.0 216
6 49.6 54.8 28.0 1.8 17.0 193 3282 10311 439.0 216
7 49.8 57.2 28.0 2.8 17.0 195 3268 10311 439.0 217
8 495 54.3 28.0 1.6 17.0 19.3 3285 10311 4389 216
9 49.8 57.8 28.0 3.0 17.0 195 3265 10311 439.0 217
10 49.9 57.2 28.0 2.7 17.0 19.4 3268 1030.9 439.0 217
11 49.4 52.8 28.0 1.0 171 19.2 329.2 1031.0 439.0 215
12 49.5 53.2 28.0 11 171 19.2 3290 10311 439.0 215
13 49.9 57.1 27.9 2.6 171 19.3 3270 10311 439.0 217
14 50.0 56.3 27.8 2.2 171 19.2 3275 10311 439.0 216
15 50.0 59.4 28.0 3.7 171 19.7 3255 10311 439.0 217
16 49.3 51.9 28.0 0.6 171 19.1 3296 10311 439.0 215
17 49.3 515 28.0 0.5 171 19.1 3298 10311 439.0 215
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18 49.9 56.6 28.0 2.8 17.1 195 3272 10311 4379 217
19 49.7 54.0 28.0 1.7 17.1 19.3 3286 1031.1 4378 21.6

Table 10 Output responses constrains for minimizing HC emissions and maximizing BTE for Karanja biodiesel/

diesel blends
Lower Upper
Name Goal Limit Limit
LOAD is in range 40 100
INPUT BLEND is in range 100
RESPONSES INJECTION TIMING is in range 18 28
EGR is in range 20
SMOKE is in range 16.1 40
HC minimize 14 28
OUTPUT EGT none 222 436
RESPONSES NOXx isin range 581 1015
BSFC is in range 312 456
BTE maximize 14.4 27.9

1 Solutions to the response constrains for minimizing HC emissions and maximizing BTE for

Table 1, jiosel blends. Karanja

biodies

No. LOAD BLEND WECTION rop SMOKE HC EGT NOx BSFC BTE

TIMING

1 670 550 213 31 300 178 3245 10150 4409 218
2 669 550 21.4 30 299 178 3244 10150 4408 218
3 669 554 21.4 31 299 178 3242 10150 4415 218
4 670 550 21.4 31 300 178 3245 10150 4407 218
5 669 546 21.4 29 299 179 3247 10150 4400 218
6 672 548 213 31 303 178 3246 10150 4408 218
7 672 556 21.2 32 302 177 3241 10150 4422 218
8 673 539 213 30 303 179 3251 10150 4392 218
9 672 539 213 29 301 179 3251 10150 4393 218
10 672 538 21.4 31 302 180 3251 10150 4387 218
11 671 563 21.2 32 301 177 3237 10150 4435 217
12 669 537 21.4 28 298 180 3252 10150 4385 218
13 670  56.2 213 34 300 178 3238 10150 4427 218
14 667 563 21.4 32 298 178 3237 10150 4427 218
15 672 534 21.4 29 302 180 3254 10150 4380 219
16 672 563 21.2 34 302 177 3237 10150 4432 217
17 672 546 21.2 28 301 178 3247 10150 4409 218
18 667  54.0 215 27 296 180 3250 10150 4389 218
19 666 547 21.4 27 296 179 3246 10150 4403 218
20 672 5658 21.2 33 302 176 3234 10150 4444 217
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21
22
23
24
25

67.1
66.7
66.7
67.4
67.0

55.1
53.6
57.3
56.5
52.9

214
21.6
21.4
21.1
21.4

3.5
2.8
3.4
3.4
25

30.2
29.6
29.7
30.5
29.9

17.9
18.0
17.7
17.6
18.0

324.4
325.2
323.1
323.6
325.6

1015.0
1015.0
1015.0
1015.0
1015.0

440.6
437.8
4444
444.2
437.4

21.8
21.9
21.7
21.7
21.9

Table 12 Output responses constrains for minimizing smoke maximizing BTE for Karanja biodiesel/ diesel

blends.

Table 13 Solutions to the response constrains for minimizing smoke emissions and maximizing BTE for

cou e e
LOAD is in range 40 100
INPUT BLEND is in range 0 100
RESPONSES INJECTION TIMING is in range 18 28
EGR is in range 0 20
SMOKE minimize 16.1 40
HC is in range 14 28
OUTPUT EGT none 222 436
RESPONSES NOXx is in range 581 1015
BSFC is in range 312 456
BTE maximize 144 27.9

Karanja biodiesel/diesel blends.

NO. LOAD BLEND INJECTION EGR SMOKE HC EGT NOx BSFC BTE
TIMING
1 58.0 10.9 28.0 0.0 25.8 25.6 333.2 1015.0 3695 24.1
2 57.8 114 28.0 0.0 25.7 255 3332 1015.0 3705 24.0
3 58.1 10.3 28.0 0.0 259 25.7 3332 10150 3682 24.1
4 57.7 12.0 28.0 0.0 25.6 254 3331 10150 3718 240
5 58.3 9.6 28.0 0.0 26.1 259 333.2 1015.0 366.4 24.2
6 57.5 12.9 28.0 0.0 254 252 3331 1015.0 373.7 239
7 57.8 116 28.0 0.1 25.7 255 3331 10150 370.7 240
8 57.7 12.1 28.0 0.2 25.6 254 3331 10147 3718 240
9 57.2 13.9 28.0 0.0 251 250 3331 10150 3761 238
10 58.2 10.8 28.0 0.0 259 256 3332 10150 3688 24.1
11 58.9 7.5 28.0 0.1 26.6 26.3 333.1 10150 3618 244
12 59.1 7.0 28.0 0.0 26.7 264 3331 1015.0 360.7 244
13 57.9 125 27.9 0.0 25.6 253 3333 1015.0 3721 239
14 57.7 12.8 28.0 0.7 25.6 255 3329 1015.0 3722 239
15 57.4 12.2 28.0 0.0 255 254 3328 10122 3732 239
16 57.3 14.6 27.9 0.0 251 249 3332 10150 376.7 238
17 58.7 8.8 28.0 0.5 26.5 26.2 333.0 10148 363.8 24.3
18 56.6 16.3 28.0 0.0 24.6 246 3329 10148 3815 236
19 58.1 118 28.0 0.9 259 258 3329 10150 3694 24.1
20 56.5 16.9 28.0 0.1 24.5 246 3329 10150 3825 235
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21 58.3 11.9 27.8 0.0 25.9 254 3334 10150 370.1 24.0
22 58.7 9.3 28.0 0.7 26.4 26.2 333.0 1015.0 3644 243
23 56.5 17.3 28.0 0.0 245 244 3329 10150 3833 235
24 57.2 15.9 28.0 1.6 25.3 253 3325 10150 3770 238
25 56.0 19.4 28.0 0.6 24.2 243 3325 1015.0 386.7 234
26 57.3 10.7 28.0 0.0 25.7 25.7 332.0 10058 3719 239
27 60.3 2.9 28.0 0.0 27.7 27.2 333.0 1015.0 3517 248
28 58.8 11.9 27.8 0.9 26.3 25.7 3332 10150 3679 241
29 56.5 13.6 28.0 0.0 25.1 25.2 3319 10056 3785 23.7
30 58.0 7.3 28.0 0.0 26.5 26.4 331.7 10035 3651 242

4. PREDICTIVE MODELING OF OUTPUT RESPONSES USING ARTIFICIAL NEURAL NETWORK
(ANN)

Dr. Robert Hecht-Neilson, who developed the first neurocomputer, defines an artificial neural network (ANN)
as "a computing system consisting of interconnected processing components that process information based on
their dynamic state response to external inputs.” In practical terms, neural networks are nonlinear statistical
modeling tools used to model complex input-output relationships or identify patterns in data. They are
massively parallel distributed processors with a natural ability to store and use experiential data as needed. By
simulating the functioning of human brain neurons and dendrites using wires and silicon, ANN demonstrates
similarities to the human brain in two ways:

() acquiring knowledge through a training process or learning, and
(i) using inter-neuron connection strength, known as synaptic weights, to store knowledge
[41,42].

ANN acquires knowledge by learning from pre-recorded experimental data. When a mechanism's operation is
excessively complex or expensive, ANN can be a useful tool. In recent years, ANN techniques have been
employed to predict internal combustion engine (IC) characteristics [41-50].

This study employed ANN to predict six output responses using four input parameters. The input parameters
were Fuel blend, Load, Injection timing, and EGR, and the projected responses were BSFC, BTE, smoke
opacity, HC emissions, EGT, and NOx. Table 14 presents the various levels and values of the input parameters
for Jatropha and Karanja diesel/biodiesel blends, and all the fuels evaluated shared the same input parameters.
The Neuro Intelligence software was used for training, and multilayer perception (MLP) was used for output
prediction based on the input parameters for the current design and modelling work.

A sophisticated approach was utilized to train individual MLPs for each engine output response. This allowed
for each MLP to have a unique network design, which enhanced its ability to focus on its particular task and
improve the accuracy of approximations. Six MLPs were developed, each corresponding to a specific engine
output response, with six input neurons in the input layer and one output neuron in the output layer. Figure 29
illustrates a general schematic of a multilayer neural network used to forecast engine responses. The Levenberg-
Marquardt algorithm was employed for training, with the hidden layer using a logistic sigmoid activation
function and the output neuron utilizing a linear activation function.

To determine the number of hidden layers and neurons in each layer, an architectural search method was
employed, and only one hidden layer was used for each MLP to avoid falling into undesirable local minima. The
performance of the artificial neural network (ANN) was evaluated using two metrics: Regression Value (R?) and
Absolute Relative Error (ARE). The input engine parameters and output responses were standardized to
maximize the total variance in the data, resulting in faster learning. Specifically, the data was scaled from -1 to
+1. The absolute relative error (ARE) and regression value (R?) are calculated as follows:

Figure 29. Schematic of a Multilayer Neural Network
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Where, TV is the target value and OV is the output value.

Three different data sets were used for ANN modeling: a training data set, a validation data set, and a test data
set. The training data set was used to adjust the weights of the neural networks during training, while the
validation data set was utilized to fine-tune network architecture or network parameters other than weights, as
well as to stop training if the network performance on the validation data set did not improve. The Neuro
Intelligence software employed the validation set to determine the generalization loss and retain the best
network, which is the one with the lowest error on the validation set. Table 14 shows that there was a total of
108 data points available for biodiesel and diesel fuel blends, which were divided into a training set (80 data
points), a validation set (14 data points), and a test set (14 data points). In all of the networks, the training
performance mean square error (MSE) was set to 0.0001 to ensure high accuracy.

Table. 14 Total number of input data set for all the fuels tested.

INJECTION
DATA POINT LOAD BLEND TIMING EGR

1 40 0 18 0
2 70 0 18 0
3 100 0 18 0
4 40 20 18 0
5 70 20 18 0
6 100 20 18 0
7 40 50 18 0
8 70 50 18 0
9 100 50 18 0
10 40 100 18 0
11 70 100 18 0
12 100 100 18 0
13 40 0 23 0
14 70 0 23 0
15 100 0 23 0
16 40 20 23 0
17 70 20 23 0
18 100 20 23 0
19 40 50 23 0
20 70 50 23 0
21 100 50 23 0
22 40 100 23 0
23 70 100 23 0
24 100 100 23 0
25 40 0 28 0
26 70 0 28 0
27 100 0 28 0
28 40 20 28 0
29 70 20 28 0
30 100 20 28 0
31 40 50 28 0
32 70 50 28 0
33 100 50 28 0
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85 40 0 23 20
86 70 0 23 20
87 100 0 23 20
88 40 20 23 20
89 70 20 23 20
90 100 20 23 20
91 40 50 23 20
92 70 50 23 20
93 100 50 23 20
94 40 100 23 20
95 70 100 23 20
96 100 100 23 20
97 40 0 28 20
98 70 0 28 20
99 100 0 28 20
100 40 20 28 20
101 70 20 28 20
102 100 20 28 20
103 40 50 28 20
104 70 50 28 20
105 100 50 28 20
106 40 100 28 20
107 70 100 28 20
108 100 100 28 20

The ANN network was used to analyze the performance of Jatropha biodiesel, Karanja biodiesel and their
blends with petroleum diesel. The network was trained, validated, and tested on all six output responses. Figures
30-47 show the findings for Jatropha biodiesel/diesel blends, with the BSFC, BTE, Smoke emissions, Unburnt
HC emissions, EGT, and NOx emissions training, validation, and testing plots depicted. The MLP's hidden layer
had 11 neurons for BSFC and 14 neurons for BTE. The regression values were 0.997 for BSFC, 0.981 for BTE,
0.976 for smoke emissions, 0.966 for unburnt HC emissions, 0.976 for EGT, and 0.996 for NOx emissions,
indicating high training and prediction skills. The analysis for Karanja is identical, and the results can be plotted
similarly and has not been described because it would be redundant, with the only variation being the regression
values.

Figure 31. Network validation plot of BSFC for
Jatropha biodiesel and its blends.

Figure 30. Network s plot of BSFC for Jatropha
biodiesel and its blends
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Figure 32. Network Testing plot of BSFC for
Jatropha biodiesel and its blends.
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Figure 33. Network Training plot of BTE for
Jatropha biodiesel and its blends
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Figure 35. Network Testing plot of BTE for
Jatropha biodiesel and its blends
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Figure 36. Network Training plot of Smoke opacity
for Jatropha biodiesel and its blends

Figure 37. Network Validation plot of Smoke
opacity for Jatropha biodiesel and its blends
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Figure 38. Network Testing plot of Smoke
opacity for Jatropha biodiesel and its blends
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Figure 40. Network Validation plot of UBHC for

Jatropha biodiesel and its blends
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Figure 42. Network Training plot of EGT for
Jatropha biodiesel and its blends
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Figure 39. Network Training plot of UBHC
for Jatropha biodiesel and its blends
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Figure 41. Network Testing plot of UBHC for
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Figure 43. Network Validation plot of EGT for
Jatropha biodiesel and its blends
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Figure 46. Network Training plot of NOx for Figure 47. Network Testing plot of NOx for
Jatropha biodiesel and its blends Jatropha biodiesel and its blends
p p

The ANN models utilized in this study exhibited exceptional performance across all three data sets: training,
validation, and testing. Their regression values indicate that the MLPs were able to effectively predict and train
with a high degree of accuracy, demonstrating strong training and prediction capabilities. While there was a
slight decrease in performance for HC emissions in both biodiesel fuels, the overall results were highly
satisfactory. In fact, the ANN modelling approach successfully predicted engine output responses for both fuels,
based on six different engine control parameters. These impressive findings demonstrate the potential of ANN
models to accurately forecast and optimize engine performance, making them a valuable tool in the field of
engineering.

6. CONCLUSIONS

This study examines the fuel economy, performance, and emissions of biodiesel and its blends on a small diesel
engine. Using Jatropha Curcas and Pongamia Pinnata as sources, the performance and emissions analysis was

done on Kirloskar make CAF1 constant speed (1500 rpm), single cylinder DI engine having rated power of 4.5
kW.

+The study found that diesel has better thermal efficiency at low loads, but the 20% blend of Jatropha (JB20)

performed slightly better at high loads. The results suggest that biodiesel blends have the potential to outperform
diesel in certain conditions in terms of the efficiency.
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» The study found the decrease in BSFC was more significant when increasing the load from 40% to 70% due to
increased efficiency and reduced friction to brake power. However, at higher loads, the reduction in BSFC was
minimal due to a decrease in fuel conversion efficiency. The study also found that injection timing had a
significant impact on BSFC, with early combustion resulting in a 7-12% reduction in BSFC, while retarding
injection caused a 7-14% increase in BSFC due to lower effective pressure during the working stroke.

+ Adding biodiesel to diesel reduces smoke emissions due to the presence of oxygen. Jatropha biodiesel
outperforms Karanja biodiesel in reducing smoke emissions due to its lower viscosity and smaller droplet size.
Increased load results in higher smoke opacity due to the formation of a rich fuel-air mixture at high loads.
Advancing injection start by 50 lowers smoke by 6-18%, while retarding it by 50 increases smoke opacity by
10-22%.

- Biodiesel use increases NOx emissions due to its high cetane number and free oxygen content. JB100 and
KB100 had 24% and 19% higher NOx emissions than diesel at full load and adding 20% biodiesel increases
NOx by 4-6% at 40% load and 8-12% at full load. Jatropha biodiesel produces higher NOx due to higher
combustion temperatures than Karanja biodiesel. All fuels exhibit increased NOx emissions when load is
increased from 40% to 100% and advancing injection timing from 230 btdc to 280 btdc increases NOx by 14%-
17.8%, while retarding it reduces NOx emissions by 5-15%.

« HC emissions decrease as the biodiesel concentration in a blend is increased. Karanja biodiesel and blends
have higher HC emissions due to higher viscosity. HC emissions for all fuels decrease when load increases from
40% to 70%, and injection timing advanced by 5° decreases HC emissions up to 41%, while retarding it
increases HC emissions up to 23%.

- Smoke level increases with increased exhaust gas in the intake as exhaust gas recirculation dilutes the inlet air,
decreasing oxygen concentration. Reduced oxygen concentration leads to fuel burning in fuel-rich regions,
resulting in smoke formation. The impact of exhaust gas recirculation on smoke levels is smaller for biodiesel
and their blends than diesel, as JME contains oxygen, which aids in soot oxidation.

« HC emissions increase with increased exhaust gas recirculation for both fuels, as intake mixture dilution leads
to a locally rich mixture, resulting in slower reactions and incomplete combustion products. CO; in the intake
mixture lowers temperature and pressure at a given volume, leading to longer ignition delay periods and higher
HC emissions. At full load, the variation in HC emissions with exhaust gas recirculation is linear for all fuels.

« Increasing the percentage of exhaust gas recirculation (EGR) in the inlet was found to significantly reduce
NOx emissions. This is because EGR dilutes the inlet air, decreasing oxygen concentration and increasing heat
capacity of the inlet charge, ultimately leading to a reduction in NOx formation. However, it was observed that
the reduction in NOx emissions was more significant at low load (40% of rated load) than at high load (100% of
rated load). On the other hand, increasing EGR from 0% to 20% resulted in increased brake specific fuel
consumption (BSFC) for all fuels due to decreased oxygen concentration in the inlet mixture, which limits
complete fuel combustion. The effect of EGR on BSFC was less pronounced at 40% load for all fuels, and the
impact on diesel was greater than on biodiesel or their blends due to the presence of oxygen content in the latter.

« Response surface methodology (RSM) was found to be a useful technique for modelling engine responses
using four input parameters viz. blend percentage, load, injection timing and EGR. For Jatropha biodiesel and
blends, R2 values of the fitted RSM models for BSFC, BTE, smoke, HC and NOx were 0.99, 0.98, 0.98, 0.93
and 0.99 respectively, whereas for Karanja biodiesel and blends, the corresponding R2 values were found to be
0.98, 0.98, 0.98, 0.94 and 0.98.

. Based on multi objective optimization and contour plots, various pareto-optimal solutions were
obtained for various required input values for the desired output constraints.

. Prediction of engine responses as a function of operating, injection system parameters and exhaust gas
recirculation using neural network approach was found to be meaningful. For testing, good approximation were
obtained for all responses for both the fuels.
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