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Abstract 

This study evaluates the effects of Jatropha and Karanja biodiesels and their blends on a diesel engine's fuel 

economy, performance, and exhaust emissions. Response Surface Methodology was applied to model engine 

responses using four key input parameters: blend percentage, load, injection timing, and Exhaust Gas 

Recirculation. RSM projected multiple Pareto-optimal solutions through multi-objective optimization and 

contour plots. The study investigated important engine responses like Brake Thermal Efficiency, Brake Specific 

Fuel Consumption, HC emissions, smoke, NOx, and EGR. RSM models for Jatropha biodiesel and blends 

displayed high R2 values, ranging from 0.93 to 0.99. Similarly, Karanja biodiesel and blends exhibited R2 values 

ranging from 0.94 to 0.98. The results indicate that all tested fuels provided accurate approximations for the 

engine responses. Furthermore, an Artificial Neural Network model was developed to predict input parameters 

based on desired performance and emission constraints. The ANN approach proved effective in predicting 

engine responses based on operating conditions, injection system parameters, and exhaust gas recirculation. 

Keywords: Biodiesel, Optimization, Biodiesel blends, Response Surface Methodology, Artificial Neural 

Network. 

 
1 Introduction 

Biofuels have emerged as a viable alternative to fossil fuels and have been in use for several years now. These 

fuels are derived from plant matter and are considered low-carbon. It is predicted that biofuels will witness a 

significant rise in demand over the next five years, thereby reducing our dependence on fossil fuels. Biofuels are 

known to burn more efficiently and emit fewer pollutants and greenhouse gases when compared to conventional 

fossil fuels. The availability of petroleum resources is limited, and they are primarily concentrated in specific 

geographical regions. Furthermore, the demand for petroleum-based fuels is continuously increasing, leading to 

a corresponding rise in prices [1]. Petro-diesel is known to emit a significant amount of pollutants and 

greenhouse gases, such as carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), sulphur dioxide 

(SO2), and nitrogen oxides (NOx), which have adverse health and environmental effects. The harmful impacts 

of these contaminants on human health have been established in previous studies (Silverman et al., 2012) [2]. 

On the other hand, biodiesel exhibits similar properties to diesel fuel in terms of cetane number, heating value, 

long-chain unbranched hydrocarbons, etc. [3-5]. 

Biofuels are considered an eco-friendly and convenient alternative to conventional fuels as they promote energy 

security, support economic development, reduce greenhouse gas emissions and other pollutants, maintain energy 

balance, and are biodegradable and recyclable [6]. Numerous studies have investigated the advantages, 

disadvantages, and characteristics of biofuels [3-7]. These fuels can be produced using edible vegetable oils 

such as sunflower, palm, peanut, soybean, coconut, and rapeseed, as well as non-edible vegetable oils such as 

Jatropha, Karanja, algae, halophytes, and sea mango. Additionally, biofuels can also be made from recycled or 

waste oils and animal fats such as cow tallow, yellow grease, chicken fat, and fish oil by-products. 
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Figure 1. shows the overview of the common method for the production of biodiesel from the feed stock. It is 

popularly known as trans-esterification process. 
 

 

Fig. 1 Biodiesel production from feedstock via trans-esterification process [8]. 

Over the past few years, the use of biodiesel as a diesel engine fuel has gained significant attention, with several 

investigations examining its performance, emission analysis, stability, and efficiency properties. The aim has 

been to achieve higher Brake Thermal Efficiency (BTE) and lower Brake Specific Fuel Consumption (BSFC) to 

reduce fuel consumption and greenhouse gas emissions. Researchers have conducted tests to determine if 

biodiesel and its blends with diesel can outperform pure diesel in terms of efficiency [9-12]. 

Studies have shown that biodiesel blends can achieve higher efficiency levels than pure diesel. For instance, 

Devarajan et al. [13] evaluated neat biodiesel and heptanol biodiesel blends in a diesel engine. The study 

showed that as the heptanol level in the heptanol and biodiesel blends increased, the BSFC decreased, and the 

BTE increased. The engine exhibited a maximum reduction in BSFC of 0.19 kg/kWh and a 1.7 percent increase 

in BTE when fueled with the 228 M80H20 blend under naturally aspirated conditions. Similarly, several studies 

have found that using biodiesel blends improves BTE [7,14]. 

However, several studies have reported a decline in efficiency with the use of biodiesel. Patidar et al. [15] 

studied the performance and durability of a single-cylinder direct injection diesel engine running on a biodiesel- 

diesel fuel blend that was water emulsified. According to the findings, in comparison to HSD, PB20S10W and 

B20 showed higher BSFC. PB20S10W and B20 had 7.40 percent and 3.23 percent greater BSFC than HSD at 

75 percent load, respectively. Pal et al. [16] conducted an experimental and numerical study on Jatropha 

biodiesel and found that, as compared to conventional diesel engines, BTE lowered as biodiesel share in blends 

increased. The amount of biodiesel in blended fuels enhances the BSFC. The usage of Jatropha biodiesel, which 

has a higher oxygen content, resulted in an increase in NOx emissions, according to this study. However, when 

compared to pure diesel metrics remained inferior at full loads [8]. Due to the combined effect of higher 

viscosity and lower calorific value, BSFC increased with the addition of biodiesel to the mix during full load 

circumstances, resulting in a lowered BTE than diesel fuel [7, 17]. 

Numerous studies [1-15] have concluded that most of the emissions decrease but there is significant increase in 

NOx emissions. Agarwal et al. [37] investigated that biodiesel reduced PM mass emissions, which have lower 

environmental and health-related toxicity. Dincer [38] investigated the effect of biodiesel and found that total 

hydrocarbon emissions (a significant element in the localized production of smog and ozone) from biodiesel are 

on average 67 percent lower than diesel fuel. However, some researchers have come up with some suggestions 

to lower NOx emissions, and the proof shows that Radhey Sham et al. [18] conducted an experimental 

investigation study on the impacts of employing EGR (exhaust gas recirculation) in a directed injection diesel 

engine. As a result, it was observed that when EGR is larger than 16 percent, NOx emissions tend to decrease, 
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and that cooling EGR plays an essential role in lowering NOx emissions. Kumar et al. [19] conducted a similar 

experiment on a CI engine using a 20 percent blend of Jatropha biodiesel. At maximum load condition, NOx 

was reduced by 20.8 percent and 36.9 percent at 10 percent and 20 percent EGR, respectively. 

The performance and emission characteristics of the biodiesel also depend on the feedstock of the biodiesel, 

which may be edible or non-edible vegetable oil. In the Indian context, the non-edible vegetable oils produced 

from Jatropha and Karanja have great suitability [19, 20]. Some studies [4, 19-22] have investigated the 

production and attributes of Jatropha biodiesel because it has a higher percentage of methyl esters [8]. Aparna 

Singh et al. [23] investigated biodiesel synthesis using heterogeneous catalysts, as well as the use of Taguchi 

robust design and response surface methods to improve diesel engine performance when employing Jatropha 

biodiesel blends. When compared to baseline mineral diesel, B30 (30 percent biodiesel+70 percent diesel) has 

been proven to function similarly. As a result, biodiesel made from Jatropha curcas oil employing a 

heterogeneous catalyst can be used as a fuel blend with diesel in normal diesel engines without requiring any 

engine modifications. The Use of Jatropha Biodiesel as a Future Sustainable Fuel was also studied by Datta et 

al. [11]. 

It is important to note that the impact of biodiesel on engine efficiency and emissions can vary depending on 

several factors, including the type and quality of biodiesel used, the engine type, operating conditions, and fuel 

blend ratios. Overall, while biodiesel has the potential to improve engine efficiency and reduce emissions, 

further research is needed to fully understand its impact and to develop strategies to mitigate its potential 

negative effects, such as increased NOx emissions. Additionally, it is important to consider the sustainability of 

biodiesel production and the potential impact on land use, food security, and biodiversity. From the literature 

review it has been observed that though there have been numerous performance and emission studies on the use 

of biodiesel yet there is very less literature available to find the combined effect of various engine input 

parameters. Also, very few studies have done the optimization under various operating and performance 

parameters. Therefore, the present work has been undertaken to bridge the mentioned gap. The main focus of 

this study is on the biodiesel produced from non-edible oils from Jatropha and Karanja, which have been 

identified as prospective biodiesel sources in India's biodiesel mission [10]. 

The comprehensive and specific objectives of the present work are: 

1. Investigating the combined effects of load and injection timing, blending, and EGR on diesel engine 

performance and emissions to provide a better understanding of how these factors interact and affect 

engine operation. 

2. Comparing the performance of biodiesel from Jatropha and Karanja in order to give insight into which 

of these fuels is more suitable for use in diesel engines. 

3. Developing a mathematical model and an ANN-based predictive model to enable the prediction of 

engine performance and emissions under different operating conditions and making it easier to 

optimize engine design and operation. 

 

Overall, these objectives will contribute to the advancement of knowledge and understanding of the use of 

biodiesel in diesel engines, which can lead to improved engine performance and reduced emissions. 

2. Materials and Methodology: 

2.1 Biodiesel Blend preparation 

The biodiesel samples were produced from Jatropha and Karanja oils using a catalytic trans-esterification 

process with KOH as the catalyst. Commercial diesel was obtained from a local fuel station and was blended 

with the biodiesel samples to create blends with 20% and 50% biodiesel content. The blends that were tested 

included Diesel, KB20, KB50, KB100, JB20, JB50, and JB100. The qualities of each blend and biodiesel 

sample were evaluated according to applicable standards, and the results are shown in Table 1. 
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Table 1. The physicochemical properties of biodiesel blends 

 
Properties Test 

Methods 

Diesel KB20 KB50 KB100 JB20 JB50 JB100 

Density 

(Kg/m3) 

ASTM D 

4052 

844 856 868 891 852 863 878 

Kinematic 

Viscosity 

@40o C 

(cSt) 

ASTM D 

445 

3.84 4.10 4.68 5.64 3.97 4.35 5.11 

Gross 

Calorific 

Value 
(MJ/Kg) 

ASTM D 

240 

44.3 42.8 41.6 38.1 43.08 42.37 39.2 

Net 

Calorific 

Value 
  (MJ/Kg)  

 

- 

41.42 39.5 38.7 34.8 40.2 39.1 36.3 

 

2.2 Engine set-up 

The study employed a Kirloskar CAF1 single cylinder DI engine with a rated power of 4.5 kW and a constant 

speed of 1500 rpm. The engine's parameters are listed in Table 2, and its set-up schematic is depicted in Figure 

2. Two storage tanks, one for diesel and one for biodiesel, were attached to the engine. The engine was also 

connected to an alternator whose supply was coupled to a control panel with a total of 4.5 kW load lamps. The 

control panel also included a digital temperature indicator, a digital voltmeter, and a digital ammeter. To detect 

the exhaust gas temperature, a digital temperature indicator was connected to the sensor at the engine's exhaust 

manifold. Smoke opacity was quantified using the AVL 437 smoke analyzer, while unburnt HC and NOx 

emissions were measured using the AVL digas 4000 gas analyzer. Injection timing was determined using the 

spill approach. Load cells were switched according to the desired value to vary the load. Before testing 

biodiesels or blends, the engine was run on diesel first, then the biodiesel tank's fuel valve was closed, and the 

biodiesel tank's fuel valve was opened. Data were taken only after ensuring that the engine was functioning 

under constant conditions to allow for easy comparison. For each fuel, readings were taken in triplicate under 

each condition, and the average measurement was used in the computations. 

Figure 2. Schematic of Engine set up. 
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2.3 Exhaust Gas Recirculation 

EGR is a method of reducing NOx emissions. Since, the use of biodiesel raises NOx emissions in the engine, 

trials were conducted with EGR. The impact of EGR on BSFC and BTE, as well as on exhaust gas emissions 

(smoke, HC, and NOx), has been thoroughly explored. The EGR system was connected to the engine during the 

investigation. The studies were conducted with 10% and 20% EGR, and the results were compared to those 

conducted without EGR. 

For the identical operating conditions, the volume flow rate was measured with exhaust gas recirculation (V2) 

and without exhaust gas recirculation (V1), and the percentage of exhaust gas recirculation was determined as 

follows: 

% EGR = (V2 - V1)/(V1) x100% (1) 

The engine was run under different biodiesel load conditions, and the effects of EGR on various engine 

characteristics were investigated by analysing the output responses. 

Table 2. Technical specifications of the engine 

 
Engine manufacturer Kirloskar Oil Engines Limited, Rajkot (India) 

Engine type Single cylinder, vertical, 4- stroke diesel engine 

Type of cooling Air cooled 

Bore and stroke (mm) 80x110 

Maximum rated speed (RPM) 1500 

Brake horsepower (BHP) 6HP (4.41 KW) at 1500 RPM 

Compression ratio 17.5: 1 

Type of injection Direct injection 

Injection timing 23° btdc 

Lubrication oil SAE 30/SAE 40 

Governing class “A2/B1” 

 
3. Results and Discussion 

3.1 Performance and emission analysis 

Brake specific Fuel Consumption 

Upon analysis results, it was observed that an increase in EGR percentage from 0 to 20% leads to an increase in 

BSFC for all fuels and loads. This can be attributed to the depletion of oxygen in the input mixture due to the 

presence of Exhaust Gas Recirculation, leading to improper combustion. The impact of EGR on BSFC varies 

based on the type of fuel, with diesel fuel being affected the most and pure biodiesel being affected the least due 

to its oxygen content. However, the effect of EGR on all fuels decreases at a load of 40%. This could be due to 

the accumulation of oxygen during combustion because of the reduced fuel intake in the combustion chamber. 

Figures 3a-3c show the variation in BSFC with a change in EGR for a delayed injection of 180 btdc, while 

Figures 4a-4c illustrate the fluctuation of BSFC at conventional injection timing of 230. Figures 5a-c depict the 

influence of EGR on BSFC btdc at advanced injection timing of 280 btdc for different loads. Results indicate 

that the BSFC was lower at 70% loads and 10% EGR than at 40% load, under both normal and advanced 

injection time. This could be attributed to the possibility of unburned fuel particles returning with the exhaust 

gases at 10% EGR. Combustion also improves slightly due to sufficient oxygen and time for mixing, resulting 
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in a decrease in BSFC. However, the BSFC shows an increasing trend with EGR % when injection timing is 

delayed. This may be due to the reduced time available for mixing, as the injection start time is delayed. 
 

Figure 3a. 40% load Figure 3b. 70% load 
 

 
Fig 3c. Full load 

Fig. 3. Effect of EGR, load and blending on BSFC at 

retarded injection timing (18o btdc) 

 

 
Fig. 4a. 40% load Fig. 4b. 70% load 

 
 

Fig. 4c. Full load 

Fig. 4 Effect of EGR, load and blending on BSFC at Normal injection 23o btdc. 
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Fig. 5a. 40% load Fig. 5b. 70% load 

 

 
 

Fig. 5c. Full load 

Fig. 5 Effect of EGR, load and blending on BSFC at Advanced injection (28o btdc). 

Brake Thermal Efficiency (BTE) 

The graphs in Figures 6a-6c illustrate how the Brake Thermal Efficiency (BTE) changes with Exhaust Gas 

Recirculation (EGR) for normal injection timing. At full loads, increasing EGR slightly decreases BTE, but at 

low and mid loads, a 10% EGR can slightly improve efficiency. This is due to the decrease in Brake Specific 

Fuel Consumption (BSFC) caused by the recirculation of unburned fuel particles, which was explained in the 

previous section. EGR has a greater impact on diesel fuel and blends than pure biodiesel. 

The impact of EGR on BTE during delayed injection can be observed in Figures 7a-7c, where EGR reduces 

efficiency at all loads. This is likely due to reduced timing for mixing air and fuel in the combustion chamber. 

At full load, EGR reduces efficiency quickly. 

Finally, the effect of EGR on efficiency at advanced injection can be seen in Figures 8a-8c. For almost all fuels, 

efficiency improves at low loads when EGR is set at 10%. 

 

 

Figure 6 a. 40% load Figure 6 b. 70% load 
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Figure 6 c. Full load 

Figure 6. Effect of EGR, load and blending on BTE at Normal injection 

 
 

 
Figure 7a. 40% load Figure 7b. 70% load 

 

 
Figure 7c. Full load 

Figures 7 (a-c) Effect of EGR, load and blending on BTE at retarded injection. 
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Figure 8 a. 40% Load Figure 8 b. 70% Load 

 
 

Figure 8 c. Full Load 

Figures 8(a-c) Effect of EGR, load and blending on BTE at advanced injection timing (28o btdc) 

Smoke Emissions 

The use of Exhaust Gas Recirculation (EGR) was found to increase smoke opacity, as smoke emissions rose 

with increasing loads and EGR percentages. When EGR was increased from 10% to 20%, the smoke level 

increased more significantly than when it was increased from 0% to 10%. This could be due to the larger 

volume of recirculated exhaust within the combustion chamber, which reduces the available oxygen supply. 

Since biodiesels contain oxygen, the increase in smoke was more prominent in diesel fuel than in biodiesels. 

The impact of increased EGR was more pronounced at full load compared to low and mid loads, likely due to 

higher fuel consumption for combustion. The trends in smoke variation with changing injection timing were 

similar, as shown in Figures 9 (a-c), which depict the changes in smoke opacity with EGR at various loads and 

injection rates. 

 

 

 

 

 

 

 

 

 

Figure 9 a. 40% Load 
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Figure 9 b. 70% Load Figure 9c. Full Load 

Figures 9(a-c) Effect of EGR, load and blending on Smoke emissions at Normal injection timing (230 btdc) 

Unburnt Hydrocarbon (HC) Emissions 

Figures 10 (a-c) demonstrate how Exhaust Gas Recirculation (EGR), load, and blending affect the hydrocarbon 

(HC) emissions for all the fuels tested at normal injection. The results indicate that increasing EGR leads to 

higher Unburned Hydrocarbon (UBHC) emissions. This is due to the dilution of the intake mixture and a 

subsequent decrease in oxygen content. This causes the formation of a locally over-rich mixture, which slows 

down the combustion reactions and leads to incomplete combustion. Furthermore, at a given volume, the 

exhaust gases in the intake mixture lower the temperature and pressure, resulting in a longer ignition delay 

period and increased HC emissions. The increase in HC emissions was found to be greater for diesel than pure 

biodiesels between 10-20% EGR. For most fuels, UBHC emissions increase linearly at full loads. 
 

Figure 10a. 40% Load Figure 10b. 70% Load 
 

 
Figure 10 c. Full Load 

Figures 10(a-c) Effect of EGR, load and blending on HC Emissions at Normal injection timing. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

 

415 

 

 

Exhaust Gas Temperature (EGT) 

The results indicate that exhaust gas temperature (EGT) increases with increasing engine load for all the tested 

fuels. The decreased thermal efficiency of biodiesels and their blends compared to fossil diesel results in 

increased heat loss in exhaust gases and fuel consumption. This increased fuel consumption leads to a rise in 

engine cylinder temperature and subsequently, exhaust temperature. Additionally, greater heat loss occurs in 

exhaust gases with an increase in engine load. Biodiesel blends display higher exhaust gas temperatures than 

fossil diesel across the entire engine load range. EGT decreases as EGR percentage increases for all the fuels 

tested. This could be attributed to the reduced availability of oxygen for fuel burning. However, at 10% EGR, 

where combustion is enhanced and BSFC slightly decreases, EGT still 

decreases, which could be due to the higher specific heat of a mixture of fresh air and exhaust gases. Figures 11 

(a-c) illustrate the impact of load, blending, and EGR at normal injection timing. 
 

Figure 11a. 40% Load Figure 11b. 70% load 

 

 
Figure 11c. Full Load 

Figures 11(a-c) Effect of EGR, load and blending on EGT at Normal injection timing 

NOx emissions 

NOx emissions are a significant environmental concern in diesel engines, as they contribute to the formation of 

smog and acid rain. EGR has become a popular technique for reducing NOx emissions in diesel engines. When 

exhaust gases are recirculated into the engine's intake, the combustion temperature is lowered, resulting in lower 

NOx emissions. The decrease in NOx emissions with increasing EGR is nearly linear. Higher EGR rates have 

been found to result in greater reductions in NOx emissions at high loads than at low loads. 
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The impact of EGR on NOx emissions was more significant with biodiesel than with diesel. This is because 

biodiesel contains oxygen, which leads to greater formation of NOx. The reduction in NOx emissions with 

increasing EGR was more significant with biodiesel than with diesel. The findings suggest that EGR can be an 

effective technique for reducing NOx emissions in diesel engines, especially when using biodiesel. Figures 12 

(a-c) demonstrate the impact of EGR on NOx emissions at normal injection timing. 

 

 
 

Figure 12a. 40% Load Figure 12b. 70% Load 
 

 

 
Figure 12 c. Full Load 

Figure12(a-c) Effect of EGR, load and blending on NOx emissions at Normal injection timing. 

3.2 Statistical analysis and Optimisation 

In this study, the impact of various parameters such as blends, load, injection time, and EGR on BSFC, BTE, 

smoke, UBHC, EGT, and NOx were investigated through statistical analysis. To achieve this, the experimental 

results were analyzed using the Analysis of Variance (ANOVA) method, and a multi-objective problem was 

created. Design Expert 12 software was used for the optimization problem, where models for each parameter 

were created for Jatropha biodiesel, Karanja biodiesel, and their corresponding blends. The multi-objective 

optimization was then performed using these models, and the influence of all the parameters was analyzed 

through response surface plots. These plots showed the combined and individual effects of each parameter. 

Finally, the optimum solutions were determined and presented graphically through the models created. 
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Optimisation of Engine Operating parameters 

The primary aim of this study is to enhance the operational parameters of the engine, which include blends, 

load, injection timing, and EGR, to achieve optimal performance in terms of thermal efficiency, BSFC, smoke, 

HC emissions, EGT, and NOx. Optimization problems can be classified into two categories: single-objective 

and multi-objective. Single-objective problems involve maximizing a single function, whereas multi-objective 

problems require the optimization of multiple objective functions. Since this study involves six output 

parameters, it requires a multi-objective optimization approach, where we need to minimize or maximize several 

objective functions. Generally, multi-objective optimization can be described as the process of minimizing or 

maximizing multiple objective functions simultaneously given by the following equation [44]: 
 

Minimize/Maximize 

Subject to 

fa(x), 

gj(x) ≥ 0, 

a =1,2,.............. ,A; 

j =1, 2, ............. , J ; 

 
(2) 

 hk(x)= 0, k =1, 2, ............. , K ;  

 
(L) 

xi ≤ xi ≤ 
 

(U) 
xi   , i = 1,2, ............... , n . 

A solution vector x comprises n choice variables and is represented as x = (x1, x2, ......xn)T. The decision 

variable space is constrained by variable bounds that limit each decision variable x i to an upper xi(U) and lower 

xi(L) bound. Constraint functions are expressed as gj(x) and hk(x). 

In this study, the multi-objective optimization problem was solved using the Design-Expert 12.0.0 software 

package, which utilizes desirability functions to overcome optimization challenges. Each response Yi is 

transformed into an individual desirability function di that varies across the range. The desirability function di 

takes a value between zero and one, where di is one when the response is at its target, and zero when it falls 

outside the acceptable range. 

The design parameters are then selected to maximise overall desirability: 

D = (d1 * d2*…….*dn)1/n (3) 

Where, n is the number of responses. 

If the goal for the response Yi is a maximum value, the desirability curve is defined as: 

di = [(Yi - Li)/(Hi - Li)]
wt

i (4) 

If the goal for the response Yi is a minimum value, the desirability curve is defined as: 

di = [(Li - Yi)/(Hi - Li)]
wt

i (5) 

Where, Li and Hi are the lower and higher limits for the response Yi and wti is the response's weight. Weights are 

used to highlight the target value or upper/lower bounds. Hence, when wti = 1, the di has a linear range of 0 to 1, 

while wti > 1 and wti < 1 are indicated as having high and low importance in the target's proximity, respectively 

[39] 

Optimization models for Jatropha and Karanja Biodiesel blends 

To solve an optimization problem, it is essential to construct a suitable model that relates the output responses to 

the input parameters. In this study, six models were developed for load, blend ratio, injection timing, and EGR, 

as there were six output variables to consider. The statistical models were built using the response surface 

methodology (RSM) technique, with individual models developed for the Karanja and Jatropha biodiesel blends, 

including a 0% blend (pure diesel) and a 100% blend (pure biodiesel). 

RSM is a powerful approach that employs various mathematical and statistical tools to analyze complex systems 

with multiple inputs and outputs, with the ultimate goal of optimizing the system's response. Typically, RSM 

uses a low-order polynomial to establish a connection between the input parameters and the output response, 

with the polynomial being valid for some regions of the independent variables. The general equation for this 

polynomial can be expressed as: 
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k k 

 

y = 0 + 1x1 + 2x2 + ............... + k xk +  (6) 

If there is a curvature in the system, a polynomial of higher degree is used. The following equation shows a 

second-order model: 
 

y =  +   x +   x x +  x2 +  
 

(7) 
0 i   i 

i=1 

ij   i    j 

i j 

 

i=1 

ii   i 

 

The models created in this study include all of the input parameters' individual terms, quadratic terms, and two- 

way interaction terms. The Jatropha models are shown below. 

 

 
BSFC = +393.74 -79.69*A + 44.63*B - 47.29*C + 12.38*D -8.43*AB +5.48*AC + 2.00*AD - 4.32*BC - 

1.02*BD -6.58*CD +60.54*A2 + 1.25*B2 + 6.25*C2 + 10.08*D2 (8) 

BTE = +23.55 + 3.57*A - 0.79*B +2.30*C - 0.60*D - 0.084*AB + 0.47*AC -0.25*AD -0.078*BC + 0.11* BD 

+ 0.21*CD - 2.51*A2 + 0.14* B2 - 0.098*C2 - 0.51*D2 (9) 

SMOKE = +31.89 + 31.89* A - 7.99* B - 6.16* C + 8.35* D -1.47* AB - 1.43* AC + 4.05*AD + 0.62*BC - 

0.59* BD -0.41*CD + 3.07*A2 + 3.00*B2 +1.08* C2 + 1.81* D2. (10) 

HC = +19.03 - 1.36*A -6.98* B + 2.79* C + 5.03*D - 0.90*AB -1.08*AC -0.69*AD - 0.36*BC - 1.25*BD + 

2.48*CD + 4.55*A2 + 5.24*B2 - 0.56*C2 + 1.92*D2 (11) 

EGT = +337.40 + 56.94*A - 7.56*B + 17.83*C -13.91*D + 1.06*AB + 1.85*AC + 0.54*AD - 0.7*BC + 

0.95*BD - 0.31*CD + 12.14*A2 - 24.58*B2 - 1.24* C2 - 3.28* D2 (12) 

NOx = +1061.34 +309.26* A + 88.68*B +124.29*C - 59.34*D +20.61*AB + 46.42*AC -7.06 * AD + 

19.50*BC - 13.64*BD - 13.77* CD - 22.89*A2 - 41.08*B2 + 29.78*C2 + 4.07* D2 (13) 

Where, A-Load, B-Blend percentage, C-Injection timing before TDC and D- EGR. 

The models for Karanja are shown below. 

BSFC = +414.83 - 79.58*A + 60.91*B - 51.22*C + 12.29*D -10.00*AB + 2.31*AC + 2.04*AD - 7.02*BC - 

0.60*BD - 7.04*CD + 61.17*A2 + 1.18*B2 + 8.25 * C2 + 6.21* D2 (14) 

BTE = +22.75 + 3.36*A - 1.05*B + 2.35*C - 0.56*D - 0.15*AB + 0.60*AC -0.24*AD - 0.057*BC + 0.12*BD + 

0.22*CD - 2.41*A2 + 0.41* B2 - 0.20*C2 - 0.28*D2 (15) 

HC = +21.38 - 1.27*A - 6.57*B + 2.79*C + 5.63*D - 1.47*AB - 0.90*AC -0.98*AD - 0.74*BC - 0.97*BD + 

2.40*CD + 4.65*A2 + 3.45*B2 - 1.05*C2 + 2.67* D2 (16) 

SMOKE= +34.42 + 13.04*A - 6.81*B - 6.59*C + 8.64*D - 1.13*AB - 1.26*AC + 4.30*AD + 0.15*BC - 

0.23*BD - 0.30*CD + 3.02*A2 + 1.77*B2 + 1.01*C2 + 2.08*D2 

(17) 

EGT= +329.43 + 56.10*A - 10.53*B + 17.77*C - 13.84*D + 0.39*AB + 1.31*AC + 0.25*AD - 0.054*BC + 

0.80*BD - 0.67*CD + 11.57*A2 -20.65*B2 - 0.31*C2 - 3.60*D2 (18) 

NOx = +1038.38 + 298.89*A + 75.48*B + 122.38*C - 55.86*D + 8.32*AB + 45.44*AC - 9.52*AD + 

19.38*BC - 16.86*BD - 11.77*CD - 25.08*A2 -36.77*B2 + 43.50*C2 - 3.92*D2 

(19) 

Where, A-Load, B-Blend percentage, C-Injection timing before TDC and D- EGR. 

Multi-objective optimisation is carried out using statistical models. To verify the fitness of the response surface 

models, several output responses were exhibited individually versus the two input parameters. The 3-D response 

surfaces reflect the combined influence of the two factors at any particular moment. These response surfaces 

were drawn for a wide range of combinations, from 0% (pure diesel) to 100% (pure biodiesel). Separate 
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analyses were performed on Jatropha and Karanja biodiesel/blends. Some of the results are seen in Figures 13 – 

28. Table 3 displays the lowest, maximum, and mean values of the measured responses. The R2 value of the 

response surface models is also shown in the table. The R2 value indicates how near the data set is totheitted 

regression line. It's also referred to as the coefficient of determination. It can be calculated using the following 

formula: 

Coefficient of determination, R2 = (Sum of squares due to model)/(total Sum of squares)    (20) 

As the total sum of squares = Sum of squares due to model + sum of squares due to residuals/ errors, therefore 

the equation can also be written as: 

Coefficient of determination, R2 = 1- (Sum of squares due to residuals/errors)/(total Sum of squares)   (21) 

R2 can be calculated using either of the following formulae. R2 = 0 means that the dependent variable cannot be 

predicted using the input variables, but R2 = 1 means that the error-free output response can be predicted using 

the input parameters. R2 = 0.9, on the other hand, shows that the output response is 90% correct and 10% 

unexpected. 

Figures 13–28 illustrate response surface graphs and predicted vs. experimental data graphs for various 

combinations of input parameters to demonstrate the combined effect. 

 

 
Table.3 Important statistical values for biodiesel/ biodiesel blends 

 

 
 

 
BSFC (g/kWh) BTE (%) Smoke (HSU) HC (ppm vol:) Nox (ppm vol:) 

Karanja 

biodiesel 

blends 

Jatropha 

biodiesel 

blends 

Karanja 

biodiesel 

blends 

Jatropha 

biodiesel 

blends 

Karanja 

biodiesel 

blends 

Jatropha 

biodiesel 

blends 

Karanja 

biodiesel 

blends 

Jatropha 

biodiesel 

blends 

Karanja 

biodiesel 

blends 

Jatropha 

biodiesel 

blends 

 
Minimum 

312 312 14.4 14.7 16.1 14.3 14 14 581 581 

 

Maximum 
716 671 27.9 28.6 85 85 54 53 1689 1751 

Mean 456.8 439.02 21.2 21.6 40.5 38.8 28.5 27.1 1015.0 1031.1 

R2 0.98 0.99 0.98 0.98 0.98 0.98 0.94 0.93 0.98 0.99 
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Fig. 18 Response surface of HC emissions for 

KB50 at 20% EGR 
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Fig. 20 Response surface of NOx jatropha for 

JB100 at 10% EGR 
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Fig. 23 Comparison ofAActucatlual and predicted values 
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Fig. 26 Comparison oAcftuAal  ctual and predicted values 

of smoke for Karanja biodiesel 

and blends (R2= 0.98) 
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Optimisation Results 

The objective of the optimization process was to identify the optimal operating parameter values for achieving 

the desired output conditions.  The solutions that met the input parameter values for the specified output 

conditions were obtained by applying various constraints on the output parameters such as BSFC, BTE, smoke, 

HC emissions, EGT, and NOx. EGT did not have a direct impact on any of the six output responses, but it 

affected NOx, emissions, and performance measures. Thus, EGT was not restricted. The aim was to maximize 

the efficiency of the five output responses and minimize the other values. The upper limit for all parameters that 

needed to be minimized was set at the mean value. Design Expert 12.0 software was used to evaluate and 

optimize the models, which can address multi-objective optimization problems. 

The input parameters were chosen during optimization to optimize overall desirability. The optimization process 

involved using each input parameter combination, one at a time, as the starting point for finding the best 

combination. Statistical models were employed to optimize each fuel mix independently. The optimization 

process generated a set of solutions that satisfied the specified output requirements. 

The study applied the following optimization constraints for Jatropha blends and Karanja blends: 

i. Maximizing BTE while minimizing each response one at a time and keeping the values of the remaining 

responses below their mean value. 

ii. Minimizing each response one at a time while keeping all other responses within the limit. 

iii. Maximizing BTE while keeping all other responses below their mean value. 

iv. Minimizing two responses while keeping the others below the mean value. 

 
Tables 4-13 list the limitations and the set of solutions for various diesel and biodiesel blends, loads, and 

injection start times that satisfy the specified constraints. The optimization process yielded output responses that 

were within the specified limits, as shown in these tables. It is important to note that while there may be multiple 

solutions for a given set of constraints, none of them can be deemed superior to others because they all meet the 

necessary requirements in the same zone. Pareto-optimal solutions are examples of this type of solution. 

 
Table 4 Output responses constrains for minimizing NOx and maximizing BTE for Jatropha biodiesel 

/diesel blends 

  
Name 

 
Goal 

Lower 

Limit 

Upper 

Limit 

 LOAD is in range 40 100 

INPUT 

RESPONSES 

BLEND is in range 0 100 

INJECTION TIMING is in range 18 28 

 EGR is in range 0 20 

 SMOKE is in range 14.36 38 

 HC is in range 14 27.1 

OUTPUT 

RESPONSES 

EGT None 228 443 

NOx Minimize 581 1031.1 

 BSFC is in range 312 439 

 BTE Maximize 25 28.6 
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Table 5. Solutions to the response constrains for minimizing NOx and maximizing BTE for diesel/ Jatropha 

biodiesel blends. 

S. No. LOAD BLEND 
INJECTION 

TIMING 
EGR SMOKE HC EGT NOx BSFC BTE 

1 68.8 2.6 25.0 2.2 33.6 27.1 336.9 1016.2 337.3 25.3 

2 68.8 2.6 25.0 2.3 33.6 27.1 336.9 1016.2 337.3 25.3 

3 68.7 2.6 25.0 2.3 33.5 27.1 336.8 1016.2 337.3 25.3 

4 68.7 2.6 25.0 2.2 33.5 27.1 336.8 1016.0 337.4 25.3 

5 68.7 2.4 25.0 2.1 33.5 27.1 336.8 1016.1 337.3 25.3 

6 69.0 2.4 24.9 2.2 33.7 27.1 336.9 1016.1 337.2 25.3 

7 68.9 2.3 24.9 2.1 33.6 27.1 336.9 1016.5 337.1 25.4 

8 68.6 2.5 25.0 2.1 33.4 27.1 336.8 1016.3 337.3 25.3 

9 68.8 2.8 25.0 2.4 33.6 27.1 336.9 1016.3 337.4 25.3 

10 69.0 2.6 24.9 2.3 33.8 27.1 337.0 1015.9 337.3 25.3 

11 68.8 2.2 24.9 2.0 33.6 27.1 336.9 1016.3 337.1 25.3 

 
Table 6 Output responses constrains for minimizing HC emissions and BSFC for Jatropha biodiesel/ diesel 

blends 

 

Name Goal 
Lower 

Limit 

Upper 

Limit 

 LOAD is in range 40 100 

INPUT 

RESPONSES 

BLEND is in range 0 100 

INJECTION TIMING is in range 18 28 

 EGR is in range 0 20 

 SMOKE is in range 14.36 38 

 HC Minimize 14 27.1 

OUTPUT 

RESPONSES 

EGT None 228 443 

NOx is in range 581 1031.1 

 BSFC Minimize 312 439 

 BTE None 25 28.6 

 
Table 7. Solutions to the response constrains for minimizing HC emissions and BSFC for diesel/ jatropha 

biodiesel blends. 

No. LOAD BLEND 
INJECTION 

TIMING 
EGR SMOKE HC EGT NOx BSFC BTE 

1 70.2 11.1 23.7 1.7 33.0 24.1 341.4 1031.1 349.9 24.8 

2 70.1 11.2 23.8 1.7 32.9 24.1 341.4 1031.1 349.9 24.8 
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3 70.1 11.0 23.7 1.6 33.0 24.1 341.4 1031.1 349.9 24.8  

 
4 70.3 11.1 23.7 1.7 33.1 24.1 341.4 1031.1 349.9 24.8 

 

 
5 70.3 11.2 23.7 1.7 33.1 24.1 341.5 1031.1 349.9 24.8 

 

 
6 70.0 11.0 23.8 1.6 32.8 24.1 341.3 1031.1 349.8 24.8 

 

 

Table 8. Output responses constrains for minimizing smoke for Jatropha biodiesel/diesel blends 

  
Name 

 
Goal 

Lower 

Limit 

Upper 

Limit 

 

INPUT 

RESPONSES 

LOAD is in range 40 100 

BLEND is in range 0 100 

INJECTION TIMING is in range 18 28 

EGR is in range 0 20 

 

 
 

OUTPUT 

RESPONSES 

SMOKE minimize 14.3 38 

HC is in range 14 27.1 

EGT none 228 443 

NOx is in range 581 1031.1 

BSFC is in range 312 439 

BTE none 25 28.6 

 
Table 9 Solutions to the response constrains for minimizing smoke for Jatropha biodiesel/diesel blends 

No. LOAD BLEND 
INJECTION 

TIMING 
EGR SMOKE HC EGT NOx BSFC BTE 

1 49.7 56.0 28.0 2.3 17.0 19.4 327.6 1031.1 439.0 21.6 

2 49.6 55.3 28.0 2.0 17.0 19.3 327.9 1031.1 439.0 21.6 

3 49.6 55.0 28.0 1.9 17.0 19.3 328.1 1031.1 439.0 21.6 

4 49.7 56.7 28.0 2.6 17.0 19.4 327.1 1031.1 439.0 21.7 

5 49.7 55.8 28.0 2.2 17.0 19.4 327.7 1031.1 439.0 21.6 

6 49.6 54.8 28.0 1.8 17.0 19.3 328.2 1031.1 439.0 21.6 

7 49.8 57.2 28.0 2.8 17.0 19.5 326.8 1031.1 439.0 21.7 

8 49.5 54.3 28.0 1.6 17.0 19.3 328.5 1031.1 438.9 21.6 

9 49.8 57.8 28.0 3.0 17.0 19.5 326.5 1031.1 439.0 21.7 

10 49.9 57.2 28.0 2.7 17.0 19.4 326.8 1030.9 439.0 21.7 

11 49.4 52.8 28.0 1.0 17.1 19.2 329.2 1031.0 439.0 21.5 

12 49.5 53.2 28.0 1.1 17.1 19.2 329.0 1031.1 439.0 21.5 

13 49.9 57.1 27.9 2.6 17.1 19.3 327.0 1031.1 439.0 21.7 

14 50.0 56.3 27.8 2.2 17.1 19.2 327.5 1031.1 439.0 21.6 

15 50.0 59.4 28.0 3.7 17.1 19.7 325.5 1031.1 439.0 21.7 

16 49.3 51.9 28.0 0.6 17.1 19.1 329.6 1031.1 439.0 21.5 

17 49.3 51.5 28.0 0.5 17.1 19.1 329.8 1031.1 439.0 21.5 
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18 49.9 56.6 28.0 2.8 17.1 19.5 327.2 1031.1 437.9 21.7 

19 49.7 54.0 28.0 1.7 17.1 19.3 328.6 1031.1 437.8 21.6 

 

Table 10 Output responses constrains for minimizing HC emissions and maximizing BTE for Karanja biodiesel/ 

diesel blends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

biodies 

 

Karanja 

 

 

 
 

 
No. 

 
LOAD 

 
BLEND 

INJECTION 

TIMING 

 
EGR 

 
SMOKE 

 
HC 

 
EGT 

 
NOx 

 
BSFC 

 
BTE 

1 67.0 55.0 21.3 3.1 30.0 17.8 324.5 1015.0 440.9 21.8 

2 66.9 55.0 21.4 3.0 29.9 17.8 324.4 1015.0 440.8 21.8 

3 66.9 55.4 21.4 3.1 29.9 17.8 324.2 1015.0 441.5 21.8 

4 67.0 55.0 21.4 3.1 30.0 17.8 324.5 1015.0 440.7 21.8 

5 66.9 54.6 21.4 2.9 29.9 17.9 324.7 1015.0 440.0 21.8 

6 67.2 54.8 21.3 3.1 30.3 17.8 324.6 1015.0 440.8 21.8 

7 67.2 55.6 21.2 3.2 30.2 17.7 324.1 1015.0 442.2 21.8 

8 67.3 53.9 21.3 3.0 30.3 17.9 325.1 1015.0 439.2 21.8 

9 67.2 53.9 21.3 2.9 30.1 17.9 325.1 1015.0 439.3 21.8 

10 67.2 53.8 21.4 3.1 30.2 18.0 325.1 1015.0 438.7 21.8 

11 67.1 56.3 21.2 3.2 30.1 17.7 323.7 1015.0 443.5 21.7 

12 66.9 53.7 21.4 2.8 29.8 18.0 325.2 1015.0 438.5 21.8 

13 67.0 56.2 21.3 3.4 30.0 17.8 323.8 1015.0 442.7 21.8 

14 66.7 56.3 21.4 3.2 29.8 17.8 323.7 1015.0 442.7 21.8 

15 67.2 53.4 21.4 2.9 30.2 18.0 325.4 1015.0 438.0 21.9 

16 67.2 56.3 21.2 3.4 30.2 17.7 323.7 1015.0 443.2 21.7 

17 67.2 54.6 21.2 2.8 30.1 17.8 324.7 1015.0 440.9 21.8 

18 66.7 54.0 21.5 2.7 29.6 18.0 325.0 1015.0 438.9 21.8 

19 66.6 54.7 21.4 2.7 29.6 17.9 324.6 1015.0 440.3 21.8 

20 67.2 56.8 21.2 3.3 30.2 17.6 323.4 1015.0 444.4 21.7 

 

 

 

 

 
INPUT 

RESPONSES 

 
Name 

 
Goal 

Lower 

Limit 

Upper 

Limit 

LOAD is in range 40 100 

BLEND is in range 0 100 

INJECTION TIMING is in range 18 28 

EGR is in range 0 20 

 

 

 
OUTPUT 

RESPONSES 

SMOKE is in range 16.1 40 

HC minimize 14 28 

EGT none 222 436 

NOx is in range 581 1015 

BSFC is in range 312 456 

BTE maximize 14.4 27.9 

 
1 Solutions to the response constrains for minimizing HC emissions 

el/ diesel blends. 

 
and maximizin 

 
g BTE for 
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 21 67.1 55.1 21.4 3.5 30.2 17.9 324.4 1015.0 440.6 21.8 

 22 66.7 53.6 21.6 2.8 29.6 18.0 325.2 1015.0 437.8 21.9 

 23 66.7 57.3 21.4 3.4 29.7 17.7 323.1 1015.0 444.4 21.7 

 24 67.4 56.5 21.1 3.4 30.5 17.6 323.6 1015.0 444.2 21.7 

 25 67.0 52.9 21.4 2.5 29.9 18.0 325.6 1015.0 437.4 21.9 

 

Table 12 Output responses constrains for minimizing smoke maximizing BTE for Karanja biodiesel/ diesel 

blends. 

  
Name 

 
Goal 

Lower 

Limit 

Upper 

Limit 

 LOAD is in range 40 100 

INPUT 

RESPONSES 

BLEND is in range 0 100 

INJECTION TIMING is in range 18 28 

 EGR is in range 0 20 

 SMOKE minimize 16.1 40 

 HC is in range 14 28 

OUTPUT 

RESPONSES 

EGT none 222 436 

NOx is in range 581 1015 

 BSFC is in range 312 456 

 BTE maximize 14.4 27.9 

 
Table 13 Solutions to the response constrains for minimizing smoke emissions and maximizing BTE for 

Karanja biodiesel/diesel blends. 

 
NO. 

 
LOAD 

 
BLEND 

INJECTION 

TIMING 

 
EGR 

 
SMOKE 

 
HC 

 
EGT 

 
NOx 

 
BSFC 

 
BTE 

1 58.0 10.9 28.0 0.0 25.8 25.6 333.2 1015.0 369.5 24.1 

2 57.8 11.4 28.0 0.0 25.7 25.5 333.2 1015.0 370.5 24.0 

3 58.1 10.3 28.0 0.0 25.9 25.7 333.2 1015.0 368.2 24.1 

4 57.7 12.0 28.0 0.0 25.6 25.4 333.1 1015.0 371.8 24.0 

5 58.3 9.6 28.0 0.0 26.1 25.9 333.2 1015.0 366.4 24.2 

6 57.5 12.9 28.0 0.0 25.4 25.2 333.1 1015.0 373.7 23.9 

7 57.8 11.6 28.0 0.1 25.7 25.5 333.1 1015.0 370.7 24.0 

8 57.7 12.1 28.0 0.2 25.6 25.4 333.1 1014.7 371.8 24.0 

9 57.2 13.9 28.0 0.0 25.1 25.0 333.1 1015.0 376.1 23.8 

10 58.2 10.8 28.0 0.0 25.9 25.6 333.2 1015.0 368.8 24.1 

11 58.9 7.5 28.0 0.1 26.6 26.3 333.1 1015.0 361.8 24.4 

12 59.1 7.0 28.0 0.0 26.7 26.4 333.1 1015.0 360.7 24.4 

13 57.9 12.5 27.9 0.0 25.6 25.3 333.3 1015.0 372.1 23.9 

14 57.7 12.8 28.0 0.7 25.6 25.5 332.9 1015.0 372.2 23.9 

15 57.4 12.2 28.0 0.0 25.5 25.4 332.8 1012.2 373.2 23.9 

16 57.3 14.6 27.9 0.0 25.1 24.9 333.2 1015.0 376.7 23.8 

17 58.7 8.8 28.0 0.5 26.5 26.2 333.0 1014.8 363.8 24.3 

18 56.6 16.3 28.0 0.0 24.6 24.6 332.9 1014.8 381.5 23.6 

19 58.1 11.8 28.0 0.9 25.9 25.8 332.9 1015.0 369.4 24.1 

20 56.5 16.9 28.0 0.1 24.5 24.6 332.9 1015.0 382.5 23.5 
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 21 58.3 11.9 27.8 0.0 25.9 25.4 333.4 1015.0 370.1 24.0  

 22 58.7 9.3 28.0 0.7 26.4 26.2 333.0 1015.0 364.4 24.3  

 23 56.5 17.3 28.0 0.0 24.5 24.4 332.9 1015.0 383.3 23.5  

 24 57.2 15.9 28.0 1.6 25.3 25.3 332.5 1015.0 377.0 23.8  

 25 56.0 19.4 28.0 0.6 24.2 24.3 332.5 1015.0 386.7 23.4  

 26 57.3 10.7 28.0 0.0 25.7 25.7 332.0 1005.8 371.9 23.9  

 27 60.3 2.9 28.0 0.0 27.7 27.2 333.0 1015.0 351.7 24.8  

 28 58.8 11.9 27.8 0.9 26.3 25.7 333.2 1015.0 367.9 24.1  

 29 56.5 13.6 28.0 0.0 25.1 25.2 331.9 1005.6 378.5 23.7  

 30 58.0 7.3 28.0 0.0 26.5 26.4 331.7 1003.5 365.1 24.2  

 

4. PREDICTIVE MODELING OF OUTPUT RESPONSES USING ARTIFICIAL NEURAL NETWORK 

(ANN) 

Dr. Robert Hecht-Neilson, who developed the first neurocomputer, defines an artificial neural network (ANN) 

as "a computing system consisting of interconnected processing components that process information based on 

their dynamic state response to external inputs." In practical terms, neural networks are nonlinear statistical 

modeling tools used to model complex input-output relationships or identify patterns in data. They are 

massively parallel distributed processors with a natural ability to store and use experiential data as needed. By 

simulating the functioning of human brain neurons and dendrites using wires and silicon, ANN demonstrates 

similarities to the human brain in two ways: 

(i) acquiring knowledge through a training process or learning, and 

(ii) using inter-neuron connection strength, known as synaptic weights, to store knowledge 

[41,42]. 

 

ANN acquires knowledge by learning from pre-recorded experimental data. When a mechanism's operation is 

excessively complex or expensive, ANN can be a useful tool. In recent years, ANN techniques have been 

employed to predict internal combustion engine (IC) characteristics [41-50]. 

This study employed ANN to predict six output responses using four input parameters. The input parameters 

were Fuel blend, Load, Injection timing, and EGR, and the projected responses were BSFC, BTE, smoke 

opacity, HC emissions, EGT, and NOx. Table 14 presents the various levels and values of the input parameters 

for Jatropha and Karanja diesel/biodiesel blends, and all the fuels evaluated shared the same input parameters. 

The Neuro Intelligence software was used for training, and multilayer perception (MLP) was used for output 

prediction based on the input parameters for the current design and modelling work. 

A sophisticated approach was utilized to train individual MLPs for each engine output response. This allowed 

for each MLP to have a unique network design, which enhanced its ability to focus on its particular task and 

improve the accuracy of approximations. Six MLPs were developed, each corresponding to a specific engine 

output response, with six input neurons in the input layer and one output neuron in the output layer. Figure 29 

illustrates a general schematic of a multilayer neural network used to forecast engine responses. The Levenberg- 

Marquardt algorithm was employed for training, with the hidden layer using a logistic sigmoid activation 

function and the output neuron utilizing a linear activation function. 

To determine the number of hidden layers and neurons in each layer, an architectural search method was 

employed, and only one hidden layer was used for each MLP to avoid falling into undesirable local minima. The 

performance of the artificial neural network (ANN) was evaluated using two metrics: Regression Value (R2) and 

Absolute Relative Error (ARE). The input engine parameters and output responses were standardized to 

maximize the total variance in the data, resulting in faster learning. Specifically, the data was scaled from -1 to 

+1. The absolute relative error (ARE) and regression value (R2) are calculated as follows: 

 

 
Figure 29. Schematic of a Multilayer Neural Network 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

 

428 

 

 
 

 

22 

 

 
23 

 

Where, TV is the target value and OV is the output value. 

Three different data sets were used for ANN modeling: a training data set, a validation data set, and a test data 

set. The training data set was used to adjust the weights of the neural networks during training, while the 

validation data set was utilized to fine-tune network architecture or network parameters other than weights, as 

well as to stop training if the network performance on the validation data set did not improve. The Neuro 

Intelligence software employed the validation set to determine the generalization loss and retain the best 

network, which is the one with the lowest error on the validation set. Table 14 shows that there was a total of 

108 data points available for biodiesel and diesel fuel blends, which were divided into a training set (80 data 

points), a validation set (14 data points), and a test set (14 data points). In all of the networks, the training 

performance mean square error (MSE) was set to 0.0001 to ensure high accuracy. 

Table. 14 Total number of input data set for all the fuels tested. 

DATA POINT LOAD BLEND 
INJECTION 

TIMING 
EGR 

1 40 0 18 0 

2 70 0 18 0 

3 100 0 18 0 

4 40 20 18 0 

5 70 20 18 0 

6 100 20 18 0 

7 40 50 18 0 

8 70 50 18 0 

9 100 50 18 0 

10 40 100 18 0 

11 70 100 18 0 

12 100 100 18 0 

13 40 0 23 0 

14 70 0 23 0 

15 100 0 23 0 

16 40 20 23 0 

17 70 20 23 0 

18 100 20 23 0 

19 40 50 23 0 

20 70 50 23 0 

21 100 50 23 0 

22 40 100 23 0 

23 70 100 23 0 

24 100 100 23 0 

25 40 0 28 0 

26 70 0 28 0 

27 100 0 28 0 

28 40 20 28 0 

29 70 20 28 0 

30 100 20 28 0 

31 40 50 28 0 

32 70 50 28 0 

33 100 50 28 0 
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34 40 100 28 0 

35 70 100 28 0 

36 100 100 28 0 

37 40 0 18 10 

38 70 0 18 10 

39 100 0 18 10 

40 40 20 18 10 

41 70 20 18 10 

42 100 20 18 10 

43 40 50 18 10 

44 70 50 18 10 

45 100 50 18 10 

46 40 100 18 10 

47 70 100 18 10 

48 100 100 18 10 

49 40 0 23 10 

50 70 0 23 10 

51 100 0 23 10 

52 40 20 23 10 

53 70 20 23 10 

54 100 20 23 10 

55 40 50 23 10 

56 70 50 23 10 

57 100 50 23 10 

58 40 100 23 10 

59 70 100 23 10 

60 100 100 23 10 

61 40 0 28 10 

62 70 0 28 10 

63 100 0 28 10 

64 40 20 28 10 

65 70 20 28 10 

66 100 20 28 10 

67 40 50 28 10 

68 70 50 28 10 

69 100 50 28 10 

70 40 100 28 10 

71 70 100 28 10 

72 100 100 28 10 

73 40 0 18 20 

74 70 0 18 20 

75 100 0 18 20 

76 40 20 18 20 

77 70 20 18 20 

78 100 20 18 20 

79 40 50 18 20 

80 70 50 18 20 

81 100 50 18 20 

82 40 100 18 20 

83 70 100 18 20 

84 100 100 18 20 
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85 40 0 23 20 

86 70 0 23 20 

87 100 0 23 20 

88 40 20 23 20 

89 70 20 23 20 

90 100 20 23 20 

91 40 50 23 20 

92 70 50 23 20 

93 100 50 23 20 

94 40 100 23 20 

95 70 100 23 20 

96 100 100 23 20 

97 40 0 28 20 

98 70 0 28 20 

99 100 0 28 20 

100 40 20 28 20 

101 70 20 28 20 

102 100 20 28 20 

103 40 50 28 20 

104 70 50 28 20 

105 100 50 28 20 

106 40 100 28 20 

107 70 100 28 20 

108 100 100 28 20 

 

The ANN network was used to analyze the performance of Jatropha biodiesel, Karanja biodiesel and their 

blends with petroleum diesel. The network was trained, validated, and tested on all six output responses. Figures 

30-47 show the findings for Jatropha biodiesel/diesel blends, with the BSFC, BTE, Smoke emissions, Unburnt 

HC emissions, EGT, and NOx emissions training, validation, and testing plots depicted. The MLP's hidden layer 

had 11 neurons for BSFC and 14 neurons for BTE. The regression values were 0.997 for BSFC, 0.981 for BTE, 

0.976 for smoke emissions, 0.966 for unburnt HC emissions, 0.976 for EGT, and 0.996 for NOx emissions, 

indicating high training and prediction skills. The analysis for Karanja is identical, and the results can be plotted 

similarly and has not been described because it would be redundant, with the only variation being the regression 

values. 

Figure 30. Network s plot of BSFC for Jatropha 

biodiesel and its blends 

Figure 31. Network validation plot of BSFC for 

Jatropha biodiesel and its blends. 
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Figure 32. Network Testing plot of BSFC for 

Jatropha biodiesel and its blends. 

Figure 33. Network Training plot of BTE for 

Jatropha biodiesel and its blends 

 

\ 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 34. Network Validation plot of BTE for 

Jatropha biodiesel and its blends 

 

 
Figure 36. Network Training plot of Smoke opacity 

for Jatropha biodiesel and its blends 

 
Figure 37. Network Validation plot of Smoke 

opacity for Jatropha biodiesel and its blends 

 

Figure 35. Network Testing plot of BTE for 

Jatropha biodiesel and its blends 
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Figure 38. Network Testing plot of Smoke Figure 39. Network Training plot of UBHC 

opacity for Jatropha biodiesel and its blends  for Jatropha biodiesel and its blends 

 

 

Figure 40. Network Validation plot of UBHC for 

Jatropha biodiesel and its blends 

 

Figure 42. Network Training plot of EGT for 

Jatropha biodiesel and its blends 

Figure 41. Network Testing plot of UBHC for 

Jatropha biodiesel and its blends 

 

Figure 43. Network Validation plot of EGT for 

Jatropha biodiesel and its blends 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

 

433 

 

 
 

  
 

Figure 44. Network Testing plot of EGT for 

Jatropha biodiesel and its blends 

Figure 45. Network Training plot of NOx for 

Jatropha biodiesel and its blends 

 

 

 
 

 

Figure 46. Network Training plot of NOx for 

Jatropha biodiesel and its blends 

Figure 47. Network Testing plot of NOx for 

Jatropha biodiesel and its blends 

 

The ANN models utilized in this study exhibited exceptional performance across all three data sets: training, 

validation, and testing. Their regression values indicate that the MLPs were able to effectively predict and train 

with a high degree of accuracy, demonstrating strong training and prediction capabilities. While there was a 

slight decrease in performance for HC emissions in both biodiesel fuels, the overall results were highly 

satisfactory. In fact, the ANN modelling approach successfully predicted engine output responses for both fuels, 

based on six different engine control parameters. These impressive findings demonstrate the potential of ANN 

models to accurately forecast and optimize engine performance, making them a valuable tool in the field of 

engineering. 

6. CONCLUSIONS 

This study examines the fuel economy, performance, and emissions of biodiesel and its blends on a small diesel 

engine. Using Jatropha Curcas and Pongamia Pinnata as sources, the performance and emissions analysis was 

done on Kirloskar make CAF1 constant speed (1500 rpm), single cylinder DI engine having rated power of 4.5 

kW. 

• The study found that diesel has better thermal efficiency at low loads, but the 20% blend of Jatropha (JB20) 

performed slightly better at high loads. The results suggest that biodiesel blends have the potential to outperform 

diesel in certain conditions in terms of the efficiency. 
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• The study found the decrease in BSFC was more significant when increasing the load from 40% to 70% due to 

increased efficiency and reduced friction to brake power. However, at higher loads, the reduction in BSFC was 

minimal due to a decrease in fuel conversion efficiency. The study also found that injection timing had a 

significant impact on BSFC, with early combustion resulting in a 7-12% reduction in BSFC, while retarding 

injection caused a 7-14% increase in BSFC due to lower effective pressure during the working stroke. 

• Adding biodiesel to diesel reduces smoke emissions due to the presence of oxygen. Jatropha biodiesel 

outperforms Karanja biodiesel in reducing smoke emissions due to its lower viscosity and smaller droplet size. 

Increased load results in higher smoke opacity due to the formation of a rich fuel-air mixture at high loads. 

Advancing injection start by 50 lowers smoke by 6-18%, while retarding it by 50 increases smoke opacity by 

10-22%. 

• Biodiesel use increases NOx emissions due to its high cetane number and free oxygen content. JB100 and 

KB100 had 24% and 19% higher NOx emissions than diesel at full load and adding 20% biodiesel increases 

NOx by 4-6% at 40% load and 8-12% at full load. Jatropha biodiesel produces higher NOx due to higher 

combustion temperatures than Karanja biodiesel. All fuels exhibit increased NOx emissions when load is 

increased from 40% to 100% and advancing injection timing from 230 btdc to 280 btdc increases NOx by 14%- 

17.8%, while retarding it reduces NOx emissions by 5-15%. 

• HC emissions decrease as the biodiesel concentration in a blend is increased. Karanja biodiesel and blends 

have higher HC emissions due to higher viscosity. HC emissions for all fuels decrease when load increases from 

40% to 70%, and injection timing advanced by 5o decreases HC emissions up to 41%, while retarding it 

increases HC emissions up to 23%. 

• Smoke level increases with increased exhaust gas in the intake as exhaust gas recirculation dilutes the inlet air, 

decreasing oxygen concentration. Reduced oxygen concentration leads to fuel burning in fuel-rich regions, 

resulting in smoke formation. The impact of exhaust gas recirculation on smoke levels is smaller for biodiesel 

and their blends than diesel, as JME contains oxygen, which aids in soot oxidation. 

• HC emissions increase with increased exhaust gas recirculation for both fuels, as intake mixture dilution leads 

to a locally rich mixture, resulting in slower reactions and incomplete combustion products. CO2 in the intake 

mixture lowers temperature and pressure at a given volume, leading to longer ignition delay periods and higher 

HC emissions. At full load, the variation in HC emissions with exhaust gas recirculation is linear for all fuels. 

• Increasing the percentage of exhaust gas recirculation (EGR) in the inlet was found to significantly reduce 

NOx emissions. This is because EGR dilutes the inlet air, decreasing oxygen concentration and increasing heat 

capacity of the inlet charge, ultimately leading to a reduction in NOx formation. However, it was observed that 

the reduction in NOx emissions was more significant at low load (40% of rated load) than at high load (100% of 

rated load). On the other hand, increasing EGR from 0% to 20% resulted in increased brake specific fuel 

consumption (BSFC) for all fuels due to decreased oxygen concentration in the inlet mixture, which limits 

complete fuel combustion. The effect of EGR on BSFC was less pronounced at 40% load for all fuels, and the 

impact on diesel was greater than on biodiesel or their blends due to the presence of oxygen content in the latter. 

• Response surface methodology (RSM) was found to be a useful technique for modelling engine responses 

using four input parameters viz. blend percentage, load, injection timing and EGR. For Jatropha biodiesel and 

blends, R2 values of the fitted RSM models for BSFC, BTE, smoke, HC and NOx were 0.99, 0.98, 0.98, 0.93 

and 0.99 respectively, whereas for Karanja biodiesel and blends, the corresponding R2 values were found to be 

0.98, 0.98, 0.98, 0.94 and 0.98. 

• Based on multi objective optimization and contour plots, various pareto-optimal solutions were 

obtained for various required input values for the desired output constraints. 

• Prediction of engine responses as a function of operating, injection system parameters and exhaust gas 

recirculation using neural network approach was found to be meaningful. For testing, good approximation were 

obtained for all responses for both the fuels. 
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