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Abstract 

Early detection and treating the disease are the major need to enhance the growth and yield of agricultural 

plants. In general, manual monitoring of plant diseases will not provide exact outcomes. Thus, it is crucial for 

developing an automated system for detecting and classifying varied types of plant diseases. In recent studies, 

several models were utilized for classifying the varied categories of plant diseases in different species. However, 

the existing studies faced various limitations such as higher over fitting issues, computational complexity, 

reduced learning ability, etc. Therefore, the proposed study aims to develop an efficient hybrid deep learning 

model for enabling plant disease classification. 

The steps that involved in this study are image acquisition, pre-processing, feature extraction, and classification. 

Initially, the input samples are gathered from the publicly available dataset containing images of diseased plants 

from various species including Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, 

Raspberry, Soybean, Squash, Strawberry, and Tomato. Then, pre-processing is done to eliminate the noises and 

enhances the quality of inputs using Upgraded Gradient-based Guided Filtering (UG_GFil) method. For 

segmenting the affected portions in the diseased plant, Upgraded k-means clustering is used. From the 

segmentation samples, the needed features are extracted by introducing a novel Feature Attentional 

EfficientNetB0 model. After feature extraction, the relevant features are selected using Tuna Swarm 

Optimization. Then the types of diseases from varied species of plants are categorized by proposing a new Deep 

Convolution Self-Attention based Cascaded Autoencoder Network (DCSA_CAEN) model. Also, the parameters 

of proposed classifier are optimally tuned by using Binary Kookaburra Optimization (BKO) approach. Thus, the 

proposed study effectively classifies the presented plant diseases from the given input dataset. 

Keyword - Hybrid deep learning, Gradient-based guided filtering, K-means clustering, EfficientNetB0, Tuna 

Swarm Optimization, Deep Convolutional Self-Attention, Cascaded Autoencoder Network and Binary 

Kookaburra Optimization. 

Introduction 

The agricultural sector plays a pivotal role in ensuring food security and sustaining livelihoods worldwide. 

However, one of the primary challenges faced by farmers and agriculturalists is the persistent threat posed by 

plant diseases. Various species of plants, including Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, 

Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, and others, are susceptible to a range of diseases that 

can severely impact their growth, yield, and overall health. These diseases, caused by bacteria, fungi, viruses, 

and other pathogens, manifest in diverse symptoms such as leaf spots, wilting, discoloration, necrosis, and 

deformities, ultimately leading to reduced crop quality and economic losses. 
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For instance, the Tomato Yellow Leaf Curl Virus (TYLCV) affects tomatoes, leading to stunted growth, curling 

of leaves, and reduced fruit yield. Similarly, the Potato Late Blight caused by the fungus Phytophthora infestans 

results in dark lesions on potato foliage, tuber rot, and significant yield losses if left untreated. Moreover, 

diseases like Powdery Mildew, Downy Mildew, Anthracnose, and Rust commonly afflict crops such as grapes, 

cucurbits, and citrus fruits, causing defoliation, fruit rot, and decreased market value. 

Identifying and managing these diseases in a timely manner is crucial for minimizing crop losses and ensuring 

sustainable agricultural production. Early detection of symptoms enables farmers to implement preventive 

measures such as applying fungicides, adopting resistant cultivars, and implementing cultural practices like crop 

rotation and sanitation. However, manual inspection of plants for disease symptoms is labor-intensive, 

subjective, and often prone to human error. Traditional methods of disease identification are time-consuming. 

With the advent of advanced technologies, there has been a growing interest in developing automated systems 

capable of efficiently detecting and classifying plant diseases. However, in recent years, deep learning-based 

approaches have shown promising results in various domains, including computer vision and pattern 

recognition. These techniques leverage the power of artificial neural networks to automatically learn and extract 

relevant features from raw data, making them well-suited for complex tasks such as plant disease detection. 

Despite the progress made in the field, several challenges persist. One such challenge is the high dimensionality 

of image data, which can lead to computational inefficiencies and over fitting. Additionally, accurately 

identifying diseased regions within plant images and distinguishing between different types of diseases pose 

significant challenges due to variations in appearance and environmental conditions. 

To address these challenges, automated systems for plant disease detection and classification have emerged as 

promising solutions. Leveraging advancements in computer vision, machine learning, and deep learning, these 

systems enable rapid and accurate identification of disease symptoms from digital images of plant leaves. By 

analyzing the spatial patterns, textures, and color variations in the images, these systems can distinguish 

between healthy and diseased plants, facilitating timely intervention and management strategies. In this context, 

the proposed study aims to develop a sophisticated deep learning framework tailored for the detection and 

classification of plant diseases across a diverse range of species. By integrating cutting-edge techniques in 

image preprocessing, feature extraction, feature selection, and classification, the framework seeks to overcome 

the challenges associated with variability in plant diseases and environmental conditions. Through the utilization 

of advanced algorithms such as upgraded gradient-based guided filtering, upgraded K-means clustering, and 

feature attentional EfficientNetB0 model, the framework aims to enhance the accuracy, efficiency, and 

scalability of plant disease diagnosis. 

In this paper, we present the methodology employed in our approach, including details of the datasets used, 

preprocessing techniques applied, and the architecture of the proposed deep learning model. We also discuss the 

expected outcomes of our study and highlight the potential impact of our research on agriculture and food 

security. 

By focusing on a comprehensive set of plant species commonly affected by diseases, including apples, 

blueberries, cherries, corn, grapes, oranges, peaches, peppers, potatoes, raspberries, soybeans, squash, 

strawberries, and others, the proposed framework aims to provide a holistic solution for agricultural disease 

management. By empowering farmers and agriculturalists with automated tools for disease detection, the 

framework seeks to contribute to sustainable agriculture, food security, and economic prosperity in farming 

communities worldwide. 

Related Works 

A self-attention convolutional neural network for crop leaf disease recognition, leveraging attention mechanisms 

to enhance feature extraction and classification was discussed by Weihui Zeng and Miao Li. A neural machine 

translation model that learns to align and translate input sequences simultaneously; introducing the concept of 

attention mechanisms in neural networks was implemented by Dzmitry Bahdanau., et al. The limited 

applicability of machine translation concepts to the domain of plant disease recognition, required adaptation and 
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customization for their specific task. Grinblat G.L., et al discussed about the use of deep learning for plant 

identification based on vein morphological patterns, demonstrating the effectiveness of CNNs in capturing and 

analyzing these patterns.Deep-plant, a system for plant identification using CNNs, highlighting the effectiveness 

of deep learning techniques in this domain was discussed by Lee S.H., et al. Sadasivam G.S., et al discusses the 

application of parallel machine learning approaches for crop disease protection, emphasizing the importance of 

optimization techniques in model training.The limited generalizability of parallel machine learning approaches 

to their specific task of plant disease classification, required careful consideration of scalability and 

efficiency.Yangyang X., et al. proposed an ensemble approach using one-dimensional CNNs for action 

recognition, suggesting the effectiveness of combining multiple models for improved performance.The 

complexity and computational overhead associated with training and deploying ensemble models, required 

careful consideration of resource constraints and model efficiency in their context.C. Kalyoncu and Toygar 

onsenproposed a geometric leaf classification method. It presents a framework for extracting shape features 

from leaf images for classification purposes. These features include geometric descriptors like aspect ratio, 

circularity, eccentricity, and solidity. The study demonstrates the effectiveness of geometric features in 

classifying leaves based on their shapes.The reliance solely on geometric features may limit the classification 

performance, especially in cases where leaves of different species exhibit similar geometric shapes. 

Additionally, the method may not be robust to variations in leaf appearance due to factors like lighting 

conditions and leaf damage.Jun Yang., et al has discussed a method for image classification based on linear 

spatial pyramid matching using sparse coding. It presents a framework that combines spatial pyramid matching 

and sparse coding to capture both local and global image features efficiently. The method achieves competitive 

performance on various image classification tasks, demonstrating the effectiveness of sparse coding for feature 

representation. The computational complexity of sparse coding limits its scalability to large-scale datasets or 

real-time applications. Additionally, the method requires careful parameter tuning to achieve optimal 

performance, which can be time-consuming and tedious. James Charters., et al has proposed a novel descriptor 

called EAGLE for identifying plant species using leaf lamina vascular features. It presents a framework that 

extracts vascular features from leaf images and constructs a descriptor based on these features. The approach 

achieves high accuracy in plant species identification, even in the presence of variations in leaf appearance and 

imaging conditions. The effectiveness of the EAGLE descriptor depend on the quality of the input leaf images 

and the robustness of the feature extraction process. Additionally, the descriptor does not generalize well to 

plant species with significantly different vascular patterns or leaf structures. Mingguo Du., et al discussed 

proposed a method for crop disease leaf image segmentation based on a combination of genetic algorithm and 

maximum entropy. It presents a framework that utilizes genetic algorithm to optimize the segmentation 

parameters and maximum entropy to model the spatial distribution of pixel intensities. The approach achieves 

accurate segmentation results for crop disease leaf images, even in the presence of complex backgrounds and 

lighting conditions.The segmentation performance of the proposed method is sensitive to the choice of 

segmentation parameters and the initialization of genetic algorithm. Additionally, the computational complexity 

of the approach limits its scalability to large-scale datasets or real-time applications.Guillermo L. Grinblat, et al. 

explored the use of deep learning for plant identification based on vein morphological patterns. They proposed a 

convolutional neural network (CNN) architecture that learns to extract discriminative features from leaf vein 

images for plant species identification. Their approach achieves high accuracy in plant identification tasks, 

outperforming traditional feature-based methods. The performance of the deep learning approach depends on 

the availability of large-scale labeled datasets for training. Additionally, the generalization ability of the CNN 

model is limited when applied to plant species with significantly different vein morphological patterns or leaf 

structures. David Hall., et al has evaluated various features for leaf classification in challenging conditions. It 

presents a comparative study of different feature descriptors, including shape, texture, and color features, under 

varying imaging conditions such as occlusion, blur, and illumination changes. The study provides insights into 

the robustness of different features for leaf classification tasks. The evaluation does not cover all possible 

challenging conditions that affect the leaf classification performance, leading to potential biases in the 

conclusions drawn. Additionally, the study may overlook the interactions between different feature descriptors 

and their combined effect on classification accuracy. 
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Upgraded Gradient-based Guided Filtering: 

Gradient Filtering: Gradient filtering is a technique used in image processing to enhance edges and highlight 

changes in intensity within an image. It works by computing the gradient of the image, which represents the rate 

of change of pixel intensities. Mathematically, the gradient of an image I at each pixel (𝑥, 𝑦)can be expressed 

as: 

∇𝐼(𝑥, 𝑦) = [
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦
] … … … … … … … … . . (1) 

Where 
𝜕𝐼

𝜕𝑥
 and

𝜕𝐼

𝜕𝑦
 denote the partial derivatives of the image intensity function with respect to the horizontal and 

vertical axes, respectively. 

Guided Filtering:  

Guided filtering is a nonlinear filtering technique used for edge-preserving smoothing and detail enhancement in 

images. It works by filtering an input image I using a guidance image p, which shares similar structures with I. 

The guided filter output  

q at each pixel (𝑥, 𝑦) is computed as a weighted sum of the pixels in a local neighborhood, with the weights 

determined by the guidance image. The guided filter can be formulated as follows: 

𝑞(𝑥, 𝑦) = 𝑎(𝑥, 𝑦). 𝐼(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) … … … … … … … … … . (2) 

Where 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) are linear coefficients determined by the guidance image p. 

In the context of image preprocessing, the hybridization of gradient-based filtering and guided filtering involves 

combining the strengths of both techniques to achieve better results. Gradient filtering helps enhance edges and 

sharp transitions in the image, while guided filtering preserves important image details and reduces noise. By 

integrating these two techniques, the hybrid filter can effectively smooth edges, reduce noise, and enhance 

image quality simultaneously. The hybrid filter first applies gradient-based filtering to the input image to 

enhance edges and transitions. Subsequently, guided filtering is employed to refine the filtered image, 

preserving important details and suppressing noise. By iteratively adjusting the parameters of both filters, the 

hybridized approach ensures optimal balance between edge enhancement and detail preservation. The 

hybridization of gradient-based and guided filtering offers several advantages over using each technique 

individually. It enables comprehensive image enhancement by addressing different aspects of image quality 

simultaneously. Moreover, the hybrid filter can adapt to various image characteristics and noise levels, resulting 

in improved performance across different types of images. Upgraded gradient-based guided filtering combines 

the edge-enhancing properties of gradient filtering with the detail-preserving capabilities of guided filtering to 

achieve superior image preprocessing results. By leveraging the strengths of both techniques and optimizing 

their parameters, the hybridized approach ensures effective noise reduction, edge enhancement, and detail 

preservation, thereby enhancing the overall quality of the input images for subsequent analysis. 

K-Means Clustering: 

K-Means clustering is a popular unsupervised machine learning algorithm used for partitioning a dataset into K 

distinct clusters based on their feature similarity. The algorithm aims to minimize the sum of squared distances 

between data points and their respective cluster centroids. Mathematically, the objective function of K-Means 

clustering can be expressed as: 

                     Minimize S ∑ ∑ ‖𝑥 − 𝜇𝑖‖
2 … … … … … … … … … … … … . . (3)𝑥∈𝑆𝑖

𝑘
𝑖=1   

Where S represents the set of K clusters, Si denotes the i th cluster, x is a data point and 𝜇𝑖 is the centroid of the 

cluster Si 
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The K-Means algorithm iteratively assigns data points to the nearest cluster centroid and updates the centroids 

based on the mean of the data points assigned to each cluster. The steps involved in the K-Means clustering 

process are as follows: 

1. Initialization: Randomly initialize K cluster centroids. 

2. Assignment: Assign each data point to the nearest centroid, forming K clusters. 

3. Update Centroids: Update the centroids of the clusters by computing the mean of the data points 

assigned to each cluster. 

4. Iteration: Repeat steps 2 and 3 until convergence, i.e., when the centroids no longer change 

significantly or a specified number of iterations is reached. 

The upgraded version of K-Means clustering enhances the algorithm's capability to handle non-spherical 

clusters present in the dataset. Unlike the traditional K-Means algorithm, which assumes spherical clusters and 

may struggle with irregularly shaped clusters, the upgraded version adapts to the data's inherent structure more 

effectively.Upgraded K-Means Clustering is employed as part of the preprocessing pipeline to segment the 

preprocessed images into distinct regions corresponding to different parts of the plants or different types of 

diseases. By partitioning the images into meaningful segments, the clustering algorithm facilitates subsequent 

feature extraction and classification tasks, ultimately contributing to the accurate identification and classification 

of plant diseases.The purpose of employing Upgraded K-Means Clustering in this work is to improve the 

segmentation of the preprocessed images, particularly in cases where the traditional K-Means algorithm may 

struggle due to the presence of non-spherical clusters. By upgrading the clustering approach, the algorithm can 

better capture the underlying structure of the data, leading to more accurate and reliable segmentation results. 

This, in turn, enhances the performance of subsequent analysis steps, such as feature extraction and disease 

classification, ultimately contributing to the overall effectiveness of the proposed hybrid deep learning model for 

plant disease classification. 

EfficientNetB0: 

EfficientNetB0 is a convolutional neural network (CNN) architecture that aims to achieve state-of-the-art 

performance with better efficiency in terms of model size and computational cost. It was developed as part of 

the EfficientNet family of models, which are scaled versions of the base architecture to balance accuracy and 

efficiency across a range of computational resources. EfficientNetB0 employs a compound scaling method that 

uniformly scales the network depth, width, and resolution to find the optimal balance between model size and 

accuracy. The architecture consists of a stack of convolutional layers, followed by global average pooling and a 

fully connected layer for classification. Key components of EfficientNetB0 include depth wise separable 

convolutions, squeeze-and-excitation blocks, and efficient use of skip connections. EfficientNetB0 is employed 

in this work for feature extraction from preprocessed plant images. By leveraging the learned representations 

from the EfficientNetB0 model, the features extracted from the images capture meaningful patterns and 

characteristics relevant to plant diseases. The use of EfficientNetB0 contributes to the effectiveness and 

efficiency of the proposed hybrid deep learning model by providing a powerful feature extractor that enhances 

the discriminative capability of the model. 

Tuna Swarm Optimization: 

Tuna Swarm Optimization (TSO) is a metaheuristic optimization algorithm inspired by the behavior of tuna fish 

in searching for food in the ocean. It was proposed as a population-based optimization technique for solving 

complex optimization problems. Tuna Swarm Optimization simulates the behavior of tuna fish in a swarm, 

where each tuna represents a potential solution to the optimization problem. The algorithm iteratively updates 

the position of each tuna in the search space based on its own movement strategy and the collective behavior of 

the swarm. Tuna fish exhibit behaviors such as following food gradients, avoiding predators, and exploring new 

areas, which are mimicked in the optimization process through various search operators. Tuna Swarm 

Optimization is employed in this work for feature selection, aiming to identify the most relevant and 
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discriminative features extracted by the EfficientNetB0 model. By optimizing the subset of features used for 

classification, TSO helps improve the model's performance by reducing redundancy and noise in the feature 

space, thereby enhancing the classification accuracy and generalization ability of the hybrid deep learning model 

for plant disease classification. 

Deep Convolutional Self-Attention based Cascaded Autoencoder Network (DCSA_CAEN): 

Deep Convolutional Self-Attention based Cascaded Autoencoder Network (DCSA_CAEN) is a deep learning 

architecture specifically designed for feature representation learning and reconstruction. It integrates 

convolutional neural network (CNN) layers with self-attention mechanisms and cascaded autoencoder structures 

to capture hierarchical features and learn robust representations from input data. DCSA_CAEN consists of 

multiple layers of convolutional and self-attention modules arranged in a cascaded autoencoder fashion. The 

convolutional layers extract local features from the input data, while the self-attention mechanisms capture long-

range dependencies and relationships between features across different spatial locations. The cascaded 

autoencoder structure enables the model to learn hierarchical representations by progressively reconstructing the 

input data at each layer. This process helps in capturing both low-level and high-level features, leading to more 

discriminative representations. The self-attention mechanism calculates attention scores for each feature vector 

in the input sequence, allowing the model to focus on relevant information while filtering out noise. The 

attention score 𝑒𝑖,𝑗 between feature vectorsℎ𝑖 and ℎ𝑗 is computed using the scaled dot-product attention 

mechanism: 

𝑒𝑖𝑗 =
(ℎ𝑖 , ℎ𝑗)

√𝑑𝑘
… … … … … … … … … … … … … … . (4) 

Where d𝑘 is the dimensionality of the feature vectors, and the dot product (ℎi , ℎj) measures the similarity 

between the feature vectors. 

The cascaded autoencoder network reconstructs the input data by minimizing the reconstruction loss, typically 

measured using mean squared error (MSE) between the input data x and the reconstructed output 𝑥̂: 

                        𝐿𝑟𝑒𝑐𝑜𝑛=
1

𝑁
∑ ‖𝑥𝑖 − 𝑥̂𝑖‖2

2𝑁

𝑖=1
… … … … … … … … … … … … . . (5) 

where N is the number of input samples. 

DCSA_CAEN is employed in this work for classification of plant diseases based on the features extracted from 

preprocessed images. By leveraging the deep hierarchical representations learned by DCSA_CAEN, the model 

can effectively capture complex patterns and variations present in the input images, enhancing its ability to 

discriminate between different types of plant diseases. Additionally, the self-attention mechanism in 

DCSA_CAEN allows the model to focus on relevant parts of the input image while suppressing irrelevant 

information, thereby improving its robustness and interpretability. 

Binary Kookaburra Optimization (BKO): 

Binary Kookaburra Optimization (BKO) is a nature-inspired metaheuristic optimization algorithm inspired by 

the behavior of kookaburra birds in searching for prey. It was proposed as a population-based optimization 

technique for solving binary optimization problems. Binary Kookaburra Optimization simulates the foraging 

behavior of kookaburra birds in a population-based search process. Each candidate solution in the population is 

represented as a binary string, with each bit corresponding to a decision variable in the optimization problem. 

The algorithm iteratively updates the position of each solution based on its fitness value and the collective 

behavior of the population. The search process is guided by various operators inspired by the hunting strategies 

of kookaburra birds, such as scanning for prey, swooping in for capture, and sharing information with other 

birds in the flock. The position update rule in Binary Kookaburra Optimization is inspired by the movement of 

kookaburra birds searching for prey. It can be expressed as follows: 

𝑥ⅈ𝑗
𝑡+1 = 𝑥ⅈ𝑗

𝑡 + 𝛥𝑥ⅈ𝑗
𝑡

,
… … … … … … … … … … … … … . (6) 
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Where 𝑥ⅈ𝑗
𝑡  represents the position of the jth bit in the ith candidate solution at iteration t , and 𝛥𝑥ⅈ𝑗

𝑡

,
 denotes the 

change in position determined by the optimization process. 

Binary Kookaburra Optimization is employed in this work for fine-tuning the parameters of the DCSA_CAEN 

model and optimizing its performance for plant disease classification. By searching for the optimal 

configuration of model parameters, BKO helps improve the generalization ability and convergence speed of the 

model, leading to better classification accuracy and robustness. Additionally, the population-based nature of 

BKO allows for efficient exploration of the solution space and facilitates the discovery of diverse and high-

quality solutions for the optimization problem at hand. The optimization algorithms like Binary Kookaburra 

Optimization (BKO), the fitness value serves as a measure of how well a candidate solution performs with 

respect to the problem being solved. In machine learning tasks such as classification, the loss function quantifies 

the discrepancy between the predicted outputs of a model and the actual ground truth labels. The goal of fine-

tuning and optimization is to minimize this loss function, thereby improving the performance of the model. The 

fitness value is computed based on the performance of a candidate solution. In the context of classification tasks, 

it could be derived from metrics such as accuracy, precision, recall, or F1-score, depending on the specific 

requirements of the problem. For instance, in a binary classification scenario, the fitness value might be the 

accuracy of the model on a validation set. The loss function measures the discrepancy between the predicted 

outputs of the model and the actual ground truth labels in the training data. During the training process, the 

model iteratively adjusts its parameters to minimize this loss. Techniques like stochastic gradient descent (SGD) 

or its variants are commonly used to optimize the model parameters with respect to the loss function. Fine-

tuning involves adjusting the hyper parameters of the optimization algorithm or the model architecture to further 

improve performance. This process often involves experimentation and tuning based on insights gained from 

model evaluation on validation data. Fine-tuning aims to strike a balance between model complexity and 

generalization ability to achieve optimal performance on unseen data. In the context of optimization algorithms 

like BKO, the optimization process focuses on minimizing the loss function indirectly by optimizing the fitness 

value. By iteratively updating candidate solutions based on their fitness values, the algorithm aims to find the set 

of parameters or configurations that result in the lowest loss, thus improving the overall performance of the 

model. The fitness value serves as a proxy for the model's performance, and optimization algorithms like BKO 

aim to minimize the loss function by iteratively adjusting candidate solutions based on their fitness values. Fine-

tuning further refines the model's parameters and hyper parameters to achieve better performance. 

Methodology 

Image Acquisition 

The dataset used in this study comprises images of diseased plants from diverse species, including Apple, 

Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, and 

Tomato. These images were sourced from a Kaggle dataset and were subjected to further analysis after 

acquisition. 

Preprocessing 

Prior to analysis, the acquired images underwent preprocessing to enhance their quality and suitability for 

subsequent tasks. This involved the application of Upgraded Gradient-based Guided Filtering (UG_GFil) to 

smooth edges and reduces noise in the images. 

 The hybridization of gradient filtering and guided filtering techniques facilitated the refinement of image details 

while minimizing the presence of artifacts. 

Segmentation 

Segmentation of the preprocessed images was carried out using Upgraded K-Means Clustering. Unlike 

traditional K-Means clustering methods, the upgraded version employed in this study was adept at handling 

non-spherical clusters present in the input images. By iteratively assigning data points to the closest cluster 
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centers and recalculating centroids based on assigned points, the algorithm effectively delineated regions of 

interest within the images, facilitating subsequent analysis. 

Feature Extraction  

Feature extraction was performed to identify relevant characteristics from the segmented images. Feature 

Attentional EfficientNetB0 was utilized to extract discriminative features from the images, leveraging attention 

mechanisms to focus on salient regions. Additionally, feature selection was carried out using Tuna Swarm 

Optimization, which optimized the selection of features for classification, enhancing the model's performance 

by retaining the most informative attributes. 

Classification  

For disease classification, a Deep Convolutional Self-Attention based Cascaded Autoencoder Network 

(DCSA_CAEN) was employed. This network architecture leverages deep convolutional layers for feature 

extraction, followed by self-attention mechanisms to capture contextual dependencies within the extracted 

features. The cascaded autoencoder structure facilitated the reconstruction of input images while preserving 

relevant information for classification tasks. Additionally, fine-tuning of the classification model was performed 

using Binary Kookaburra Optimization, which optimized model parameters to improve classification accuracy. 

Evaluation  

The performance of the proposed hybrid deep learning model was evaluated using standard evaluation metrics 

such as accuracy, precision, recall, and F1-score. The model's performance was validated using cross-validation 

techniques to ensure robustness and generalization to unseen data. 

 

Figure 1. Block Diagram of the Proposed Methodology 

Plant diseases detected by the proposed methodology 

1. Apple: 

• Black Rot: Fungal disease causing circular lesions on leaves and fruit. 

• Leaf Rust: Fungal infection leading to orange or rust-colored spots on leaves. 

• Leaf Scab: Fungal disease causing dark, scabby lesions on leaves and fruit. 
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2. Cherry: 

• Powdery Mildew: Fungal infection resulting in white powdery growth on leaves and fruit. 

3. Corn: 

• Northern Leaf Blight: Fungal disease causing elliptical lesions on leaves. 

• Leaf Spot: Fungal infection leading to small, circular lesions on leaves. 

• Common Rust: Fungal infection characterized by orange pustules on leaves. 

4. Grape: 

• Black Measles: Fungal disease causing black, raised spots on leaves. 

• Black Rot: Fungal infection resulting in brown, shriveled grapes. 

• Leaf Blight: Fungal disease leading to brown spots and premature leaf drop. 

5. Orange: 

• Citrus Greening: Bacterial disease causing yellow shoots and bitter, misshapen fruit. 

6. Peach: 

• Bacterial Spot: Bacterial infection leading to dark lesions on leaves and fruit. 

7. Pepper: 

• Bacterial Spot: Bacterial infection causing dark, water-soaked spots on leaves and fruit. 

8. Potato: 

• Early Blight: Fungal disease causing dark lesions on leaves and stems. 

• Late Blight: Fungal infection resulting in dark lesions and decay of foliage. 

9. Squash: 

• Powdery Mildew: Fungal infection leading to white powdery growth on leaves. 

10. Strawberry: 

• Leaf Scorch: Fungal disease causing browning and drying of leaf margins. 

11. Tomato: 

• Bacterial Spot: Bacterial infection leading to dark, water-soaked lesions on leaves and fruit. 

• Early Blight: Fungal disease causing dark lesions on lower leaves. 

• Late Blight: Fungal infection resulting in dark, water-soaked lesions on leaves and stems. 

• Leaf Mold: Fungal disease causing yellowing and wilting of leaves. 

• Leaf Spot: Fungal infection leading to small, dark lesions on leaves. 

• Mosaic Virus: Viral infection causing mottled discoloration of leaves. 

• Spider Mite: Infestation of tiny arachnids causing stippling and webbing on leaves. 

• Target Spot: Fungal infection resulting in concentric rings on leaves. 

• Yellow Leaf Curl Virus: Viral infection causing yellowing and curling of leaves. 
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Table 1. Plant diseases detected by the proposed methodology 

PLANT DISEASE IDENTIFIED  INPUT IMAGE 

APPLE 

BLACK ROT 

 

LEAF RUST  

 

 

 

 

LEAF SCAB 

 

CHERRY 

POWDERY MILDEW 
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CORN 

NORTHERN LEAF BLIGHT 

 

LEAF SPOT 

 

COMMON RUST 

 

GRAPE 

BLACK MEASLES 

 

BLACK ROT 
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LEAF BLIGHT 

 

ORANGE 

CITRUS_GREENING 

 

PEACH 

BACTERIAL SPOT 

 

PEPPER 

BACTERIAL SPOT 
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POTATO 

EARLY BLIGHT 

 

LATE BLIGHT 

 

SQUASH 

POWDERY MILDEW 

 

Strawberry 

LEAF SCORCH 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055  

Vol. 45 No. 1 (2024) 

 
 

5470 
 

TOMATO 

BACTERIAL SPOT 

 

EARLY BLIGHT 

 

LATE BLIGHT 

 

LEAF MOLD 
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LEAF SPOT 

 

MOSAIC VIRUS 

 

SPIDER MITE 

 

TARGET SPOT 
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YELLOW LEAF CURL VIRUS 

 

 

Results and Discussion 

The performance evaluation of the proposed hybrid deep learning model was conducted using various standard 

evaluation metrics, including accuracy, Dice score, F1-score, precision, recall, specificity, processing time, 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The 

methodology was compared against existing techniques, including Deep Neural Network (DNN), Cascaded 

Autoencoder (CAS-AE), Self-Attention-Autoencoder (SA-AE), Self-Attention-Convolutional neural network 

(SA-CNN), and Deep-Convolutional neural network (DCNN).The proposed hybrid model achieved an accuracy 

of 98.85%, outperforming all other compared techniques, including DNN, CAS-AE, SA-AE, SA-CNN, and 

DCNN.The proposed model consistently outperformed other techniques in terms of Dice score, F1-score, 

precision, recall, and specificity. It achieved a Dice score of 94.67%, F1-score of 97.7%, precision of 97.93%, 

recall of 97.65%, and specificity of 98.37%.Interms of processing time, the proposed model demonstrated 

superior efficiency compared to other techniques. It exhibited a processing time of 14.2 seconds, significantly 

lower than DNN (23.6s), CAS-AE (36.2s), SA-AE (48.9s), SA-CNN (63.9s), andDCNN (82s). 

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) 

The proposed model showed lower MAE, MSE, and RMSE values compared to other techniques, indicating 

better error minimization. It achieved an MAE of 0.2097, MSE of 0.0139, and RMSE of 0.1182, demonstrating 

its superior performance in error reduction. 

ROC (Receiver Operating Characteristic): It is a graphical representation used to evaluate the performance of 

a classification model at various threshold settings. It illustrates the trade-off between the true positive rate 

(sensitivity) and the false positive rate (1 - specificity) across different threshold values.In a ROC curve, the x-

axis represents the false positive rate (FPR), which is calculated as the ratio of false positives to the total number 

of actual negative instances. The y-axis represents the true positive rate (TPR), also known as sensitivity, which 

is calculated as the ratio of true positives to the total number of actual positive instances.A perfect classifier 

would have a ROC curve that passes through the upper left corner of the plot, indicating a high true positive rate 

and a low false positive rate across all threshold values. The area under the ROC curve (AUC) is often used as a 

summary statistic to quantify the overall performance of the classifier, with higher AUC values indicating better 

performance. 

Table 2. Performance evaluation for accuracy 

 

 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.9885 0.974 0.966 0.953 0.938 0.92 
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Figure 2. Performance evaluation graph for accuracy 

Table 3. Performance evaluation for Dice Score 

 

 

 

Figure 3. Performance evaluation graph for dice score 

 

Table 4.Performance evaluation for F1 score 

 

  

 

Figure 4. Performance evaluation graph for F1 score 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.946704 0.92832 0.87224868 0.8596717 0.833355 0.82744126 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.977 0.9885 0.9552 0.9471 0.9262 0.9117 
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                                              Table 5. Performance evaluation for Precision 

 

 

 

Figure 5. Performance evaluation graph for Precision 

 

Table 6. Performance evaluation for Recall 

 

 

 

Figure 6. Performance evaluation graph for Recall 

Table 7. Performance evaluation for Specificity 

 

 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.9793 0.9698 0.9574 0.9449 0.9274 0.9159 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.9765 0.9672 0.9531 0.9492 0.9250 0.9074 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

0.9837 0.9739 0.9616 0.9544 0.9364 0.9171 
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Figure 7. Performance evaluation graph for Specificity 

Table 8. Performance evaluation for Processing Time 

PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

14.2 23.6 36.2 48.9 63.9 82 

 

 

Figure 8. Performance evaluation graph for Processing Time 

Table 9.  Performance evaluation for Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) 

 

 

 

ERROR PROPOSED DNN CAS-AE SA-AE SA-CNN DCNN 

MAE 0.2097 0.3951 0.4590 0.5310 0.6490 0.7051 

MSE 0.0139 0.0389 0.0408 0.0619 0.0881 0.1014 

RMSE 0.1182 0.1573 0.2021 0.2489 0.2968 0.3185 
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Figure 9.Performance evaluation graph – Error Matrix 

 

Figure 10. Graphical Representation of Test Loss 

 

Figure 11.  Graphical Representation of                    Figure 12.  Graphical Representation of 

Test Accuracy                                           Receiver Operating Characteristic 
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Figure 13.  Graphical representation of      Figure 14. Graphical representation of 

Loss curve                                                Learning Rate 

 

Figure 15. Graphical representation of                       Figure 16. Graphical representation of 

Accuracy (%) vs Batch-Size                                      Training Accuracy vs Epoch 
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Figure 17. Confusion Matrix 

Training Loss vs. Epoch: This graph shows how the training loss (or error) changes over training epochs.The 

x-axis represents the number of training epochs, while the y-axis represents the training loss.A decreasing trend 

in training loss indicates that the model is learning and improving its performance on the training data over 

epochs. 

Test Loss vs. Epoch: Similar to the training loss vs. epoch graph, this plot shows how the test loss (or error) 

changes over training epochs.The x-axis represents the number of training epochs, while the y-axis represents 

the test loss.Ideally, a decreasing trend in test loss, indicates that the model is generalizing well to unseen data. 

Test Accuracy vs. Epoch: This graph illustrates how the test accuracy of the model changes over training 

epochs.The x-axis represents the number of training epochs, while the y-axis represents the test accuracy 

(usually as a percentage).An increasing trend in test accuracy indicates that the model is improving its 

performance on unseen data as training progresses. 

Accuracy (%) vs. Learning Rate (%): This graph depicts how the model's accuracy varies with different 

learning rates during training.The x-axis typically represents the learning rate used during training, while the y-

axis represents the corresponding accuracy achieved by the model.It helps in selecting an optimal learning rate 

that achieves the highest accuracy without causing overfitting or underfitting. 

Accuracy (%) vs. Batch Size: This plot shows how the model's accuracy changes with different batch sizes 

during training.The x-axis represents the batch size used during training, while the y-axis represents the 

corresponding accuracy achieved by the model.It helps in determining the optimal batch size for training the 

model efficiently and effectively. 

Training Accuracy vs. Epoch: Similar to the test accuracy vs. epoch graph, this plot illustrates how the 

training accuracy of the model changes over training epochs.The x-axis represents the number of training 

epochs, while the y-axis represents the training accuracy (usually as a percentage).An increasing trend in 

training accuracy indicates that the model is learning well and improving its performance on the training data 

over epochs. 
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Confusion Matrix: The confusion matrix provides a visual representation of the performance of a classification 

model. In this specific case, where the y-axis represents the output class and the x-axis represents the target 

class, each cell in the matrix indicates the number of instances where a sample from the target class was 

predicted to belong to the output class. 

Diagonal Values (True Positives): The diagonal elements of the confusion matrix represent the number of 

correctly classified instances for each class. Higher values along the diagonal indicate that the model is 

performing well in correctly predicting those classes. 

Off-Diagonal Values (False Positives and False Negatives): Off-diagonal elements represent misclassifications. 

These values indicate instances where the model predicted a sample from one class to belong to another class. 

Analyzing these values can help identify which classes are commonly confused with each other. 

Conclusion 

In this study, a hybrid deep learning model was proposed for the classification of crop leaf diseases. Leveraging 

a combination of advanced techniques including Upgraded Gradient-based Guided Filtering, Upgraded K-

Means Clustering, Feature Attentional EfficientNetB0, Tuna Swarm Optimization, Deep Convolutional Self-

Attention based Cascaded Autoencoder Network, and Binary Kookaburra Optimization, the model aimed to 

accurately identify diseases across a variety of plant species.Through extensive experimentation and evaluation 

on a diverse dataset sourced from Kaggle, the proposed model demonstrated superior performance compared to 

existing techniques. Evaluation metrics such as accuracy, Dice score, F1-score, precision, recall, specificity, 

processing time, Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error showcased the 

model's effectiveness in disease recognition.Graphical representations of loss curves, performance evaluation 

metrics, and confusion matrices provided comprehensive insights into the model's training dynamics, processing 

time, and class-wise classification performance. 

Overall, the success of the proposed model underscores the efficacy of leveraging hybrid deep learning 

approaches for crop leaf disease recognition. By accurately identifying and diagnosing diseases, the model has 

the potential to significantly contribute to agricultural practices, enabling timely interventions and improving 

crop yield and quality. Future research directions may involve further optimization of the model architecture, 

exploration of additional feature extraction techniques, and validation on larger and more diverse datasets to 

enhance the model's generalization capabilities. 
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