ISSN: 1001-4055 Vol. 44 No. 6 (2023)

Centralizing and Commuting Jordan Generalized Reverse Derivations on Prime Rings

M. Sri Kameswara Rao¹, C. Jaya Subba Reddy², A. Sivakameshwara Kumar³, Chennupalle Divya⁴

¹ Research Scholar, Department of Mathematics, S.V.University, Tirupati, Andhra Pradesh, India ² Department of Mathematics, S.V.University, Tirupati, Andhra Pradesh, India ³ Department of Mathematics, Santhiram Engineering College, Nandyal, Andhra Pradesh, India ⁴ Department of CSE, Amrita School of Engineering, Bangalore, India

Abstract:- Let R be a prime ring and d a derivation on R. If f is a Jordan generalized reverse derivation on R such that f is centralizing on left ideal U of R, then R is commutative.

Keywords: Derivations, Jordan generalized derivation, Jordan generalized reverse derivations, Prime ring, centralizing and commuting.

1. Introduction

H. E. Bell and W. S. Martindale III, [2] proved that a semiprime ring R must have a nontrivial central ideal, if it admits an appropriate endomorphism or derivation which is centralizing on U. Then R is commutative. M.Bresar [3] proved that some concrete additive mappings cannot be centralizing on certain subsets of noncommutative prime rings. He also described the structure of an arbitrary additive mapping which is centralizing on a prime ring. J. H. Mayne [8] had discussed about the existence of a non-trivial automorphism or derivation which is centralizing on a non-zero ideal in a prime ring and then shown that the ring is commutative. Asif Ali and Tariq Shah [1] has considered f as a generalized derivation on such that f is centralizing on a left ideal U of R. Jaya Subba Reddy et.al. [5-7], studied some results on centralizing and commutating left generalized derivations, $(\alpha, 1)$ -reverse and generalized $(\alpha, 1)$ -reverse derivations in rings. In this paper we extended some results on Jordan generalized reverse derivation on prime rings.

2. Preliminaries

Throughout this paper R will denote a prime ring and Z its center. A ring R is said to be a prime if aRb = 0 implies that either a = 0 or b = 0. An additive mapping $d: R \to R$ is said to be derivation if d(xy) = d(x)y + xd(y), for all $x, y \in R$. A mapping f is said to be Jordan generalized reverse derivation if there exists a derivation d from R to R such that $f(x^2) = f(x)x + xd(x)$, for all x in R. A mapping f is said to be commuting on a left ideal G of G if G i

Remark 2.1: For a nonzero element $a \in Z(R)$, $ab \in Z(R)$, then $b \in Z(R)$.

To prove the main results, we find it necessary to establish the following lemma.

Lemma 2.1: If f is an additive mapping from R to R such that f is centralizing on a left ideal U of R then for all $x \in U \cap Z(R)$, $f(x) \in Z(R)$.

Proof: Since f is centralizing on U, we have $x, y \in U \Rightarrow y + x \in U$.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 44 No. 6 (2023)

For all $y + x \in U \Longrightarrow [f(y + x), y + x] \in Z(R)$.

f is additive then $[f(y) + f(x), y + x] \in Z(R)$, for all $x, y \in U$.

 $[f(y), y] + [f(y), x] + [f(x), y] + [f(x), x] \in Z(R)$, for all $x, y \in U$.

Since f is centralizing, we have
$$[f(x), y] + [f(y), x] \in Z(R)$$
.

Now if $x \in Z(R)$, then equation (2.1) becomes $[f(x), y] \in Z(R)$.

Replacing y by f(x)y in above equation, we get $[f(x), f(x)y] \in Z(R)$, for all $x, y \in U$.

 $\Rightarrow f(x)[f(x), y] \in Z(R)$, for all $x, y \in U$.

Case 1: [f(x), y] = 0 for all $x, y \in U$ we have $(x)y - yf(x) = 0 \Longrightarrow f(x) \in C_R(U)$.

The centralizer of *U* in *R* and hence $\{[1, identity IV]\}$ $f(x) \in Z(R)$.

Case 2: $[f(x), y] \neq 0$. It again follows from remark 1, we have

 $x \in Z(R), f(x)[f(x), y] \in Z(R) \Longrightarrow f(x) \in Z(R)$. Hence the lemma.

3. Main Results

Theorem 3.1: Let R be a prime ring. Let $d: R \to R$ be a non zero derivation and f be a Jordan generalized reverse derivation on a left ideal U of R. If f is commuting on U then R is commutative.

Proof: Since f is commuting on U, we have [f(x), x] = 0 for all $x \in U$.

Replacing x by y + x in above equation, we get [f(y + x), y + x] = 0, for all $x, y \in U$.

$$[f(y), x] + [f(x), y] = 0$$
, for all $x, y \in U$. (3.1)

We replace x by x^2 in (3.1), we get $[f(y), x^2] + [f(x^2), y] = 0$, for all $x, y \in U$.

$$x[f(y), x] + [f(y), x]x + [f(x)x + xd(x), y] = 0$$
, for all $x, y \in U$.

$$x[f(y), x] + [f(y), x]x + f(x)[x, y] + [f(x), y]x + [x, y]d(x) + x[d(x), y] = 0$$
, for all $x, y \in U$.

Using equation (3.1) and replacing x by y in the above relation, we get y[d(y), y] = 0, for all $y \in U$.

Replace d(y) by d(y)xr, for all $r \in R$ in the above relation, we get yd(y)x[r,y] = 0, for all $x \in U$. Finally, we generalized d(y)U[r,y] = 0.

By the primeness of R, we have either d(y) = 0 or [r, y] = 0, for all $y \in U$ and $r \in R$.

So for any element $y \in U$, either $y \in Z(R)$ or d(y) = 0, for all $y \in U$. Since d is nonzero on R, by [4, Lemma 2] d is nonzero on U.

Suppose $d(y) \neq 0$, for $y \in U$, $y \in Z(R)$.

Suppose $z \in U$ is such that $z \notin Z(R)$, then d(z) = 0 and $y + z \notin Z(R)$.

This implies that d(y + z) = 0 and so d(y) = 0, a contradiction.

This implies that $z \in Z(R)$ for all $z \in U$.

Thus *U* is commutative and hence by [6, Lemma 3], R is commutative.

Theorem 3.2: Let U be a left ideal of a prime ring R such that $U \cap Z(R) \neq 0$. Let d be a nonzero derivation and f be a Jordan generalized reverse derivation on R such that f is centralizing on U. Then R is commutative.

Proof: We assume that $Z(R) \neq 0$, otherwise f is a commutating on U and there is nothing to prove. We replace y by z^2 in equation (2.1), we get

$$z[f(x), z] + [f(x), z]z + [f(z)z + zd(z), x] \in Z(R).$$

(2.1)

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 44 No. 6 (2023)

$$z[f(x),z] + [f(x),z]z + f(z)[z,x] + [f(z),x]z + z[d(z),x] + [z,x]d(z) \in Z(R).$$
(3.2)

Since $z \in Z(R)$ and f is centralizer, we have [z, x] = 0 and [f(z), x] = 0 = [f(x), z], for all $x \in R$.

Equation (3.2) becomes, $[d(z), x] \in Z(R)$, since z is non zero and replacing z by x, we get $[d(x), x] \in Z(R)$.

This implies that d is centralizing on U and hence by [1, Theorem 4] we conclude that R is commutative.

References

- [1] Asif Ali and Tariq shah, centralizing generalized derivation on prime rings, MATHYKM BECHNK, 60(2008), 1-2.
- [2] Bell H.E and Martindale III.W.S, Centralizing mappings of semiprime rings, Cand. Math. Bull., 30(1) (1987), 92-101.
- [3] Bresar.M, Centralizing mappings and derivations in prime rings, J. Algebra, 156(1993), 35-394.
- [4] Hvala.B, Generalized derevations in rings, Comm. Algebra, 26(4) (1998), 1147-1166.
- [5] Jaya Subba Reddy.C et.al., Centralizing and Commuting Left Generalized Derivations on Prime Rings, Bulletin of Mathematical Sciences and applications, 11(2015), 1-3.
- [6] Jaya Subba Reddy.C, Haseena.Sk and Chennupalle Divya, Centralizing properties of $(\alpha, 1)$ -Reverse derivations in semiprime rings, Journal of Emerging Technologies and Innovative Research, 8(12)(2021), 45- 50.
- [7] Jaya Subba Reddy.C, Haseena.Sk and Venkata Sai Raghavendra Reddy, Some centralizing theorems on Generalized $(\alpha, 1)$ -Reverse derivations in semiprime rings, International Journal of Engineering, Science and Mathematics, 12(10)(2023), 20-30.
- [8] Mayne.J.H, Centralizing mapping of prime rings, Cand. Math. Bull., 27(1) (1984), 122-126.