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Abstract 

In this paper, mainly we have proved some important properties of semi residuation ‘ ⊕ ’ and multiplication  ‘ .  ’ 

in a Semi Residuated Almost Distributive Lattice(SRADL) P and given an example of  a semi residuated ADL P. 

For  r, s 𝜖 P, we have proved that the characterization of r ⊕ s  and r.s  when  s is a complemented element of a 

semi residuated ADL P. 
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1.1 INTRODUCTION 

A Boolean algebra known as the Almost Distributive Lattice (ADL) had a considerable generalization in 1981 because 

of the work of Swamy, U. M., and Rao, G. C. [5]. With the possible exception of commutativity of ∨, commutativity 

of ∧ and right distributivity of ∨ over ∧, an ADL satisfies nearly all of the conditions of a distributive lattice. 

Additionally, the class of ADLs can extend several concepts from the class of distributive lattices through the 

distributive lattice formed by its principal ideals. The idea of residuation goes back to Dedikind, who introduced it 

into ideal theory and the idea of an abstract study of residuation in multiplicative structures was initiated by Ward [6, 

7]. Ward, M., and Dilworth, R.P., explored residuated lattices in [8, 9]. The concepts of Residuation and Multiplication 

in an Almost Distributive Lattice and the definition of a Residuated Almost Distributive Lattice were first described 

in [3] by Rao, G.C., and Raju, S.S. In the major body of this article, we have proved that the main important properties 

of semi residuation ‘⊕ ’ and multiplication  ‘ .  ’ in a Semi Residuated Almost Distributive Lattice(SRADL) P and 

also given an example of  a semi residuated ADL P.  For r, s 𝜖 P, we have proved that the characterization of r ⊕ s  

and r.s  when  s is a complemented element of a semi residuated ADL P. We reviewed the definition of an Almost 

Distributive Lattice (ADL) and some of its fundamental characteristics in section 2.1. These are from Rao, G.C. [2], 

Swamy, U.M., and Rao, G.C.[5]. We presented the idea of semi-residuation in an ADL P and defined a Semi 

Residuated ADL in section 3.1 by Rao, G.C., and Raju, S.S. In this section we have proved that the main important 

properties of semi residuation ‘ ⊕ ’ and multiplication  ‘ .  ’  in a Semi Residuated Almost Distributive 
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Lattice(SRADL) P and also given an example of  a semi residuated ADL P. For  r, s 𝜖 P, we have proved that the 

characterization of r ⊕ s  and r.s  when s is a complemented element of a semi residuated ADL P. 

_________________________________________________________________________________ 

2.1 PRELIMINARIES 

We have compiled a few important definitions and results which are well-known and shall be implemented 

extensively in the present work. 

 

Definition 2.1.1 [2]: A relation R on P is said to as a partial order relation on P if it satisfies the conditions 

reflexive, antisymmetric and transitive. In general, partial orders are denoted with "≤" 

We define (P, ≤) as a partly ordered set (Poset) if "≤" is a partial order on P. 

 

Definition 2.1.2 [2]: A lattice is a poset (P, ≤) in which every subset of P with exactly two elements has supremum 

and infimum in P. (P, ≤) is a lattice r, s ∈ P ⟺{r, s} has supremum and infimum in P. If (P, ∨, ∧) be any lattice. 

Then  

 (i) A non-void set H of P is said to be a sub lattice of P, if r ∧ s, r∨ s∈ H, for all r, s ∈ H. 

(ii) A sublattice H of P is said to be convex if r, s ∈ H, t ∈ P, r ≤ s, r ≤ t ≤  s ⇒ t ∈ H. 

 

Definition 2.1.3 [2]: In a Poset (P, ≤) if for every r, s ∈ P, either r ≤ s or s ≤ r hold, then (P, ≤) is said to be a chain 

or simply it is said to be an ordered set. We observe that every chain is a lattice but not vice versa. 

 

Definition 2.1.4 [2]: Lattice is an algebra (P, ∨, ∧) of type (2, 2), if it satisfies the following axioms:  

1) a) r ∨ r = r, b) r ∧ r = r 

 2) a) r ∨ s = s∨ r,  b) r ∧ s = s ∧ r 

3) a) (r ∨ s) ∨ t = r ∨ (s ∨ t),   b) (r ∧ s) ∧ t = r ∧ (s ∧ t) 

4) a) (r ∨ s) ∧ s = s, b) (r ∧ s) ∨ s = s. 

 

In any lattice (P, ∨, ∧) the following are equivalent: 

r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t) 

(r ∨ s) ∧ t = (r ∧ t) ∨ (s ∧ t) 

r ∨ (s∧ t) = (r ∨ s) ∧ (r ∨ s) 

(r ∧ s) ∨ t = (r ∨ t) ∧ (s ∨ t), for all r, s, t ∈ P. 

 

Definition 2.1.5 [2]: A Lattice (P, ∨, ∧) is said to be a distributive lattice if it satisfies any of the above four 

inequalities. 

 

Definition 2.1.6 [2]: In a lattice (P, ∨, ∧) an element 0∈L issaid to be a zero element or least element of P, if it 

satisfies 0 ∧ r = 0 ∀ r ∈ P and an element 1 of P is said to be 1 element or greatest element of P,  if it satisfies r ∨ 

1 = 1 ∀ r ∈ P. If suppose P has both 0 and 1, then P is said to be a bounded lattice. 

 

Definition 2.1.7 [2]: A lattice P is said to be a complemented bounded lattice, if for any r∈ P there is an element 

s ∈ P such that r ∨ s = 1 and r ∧ s = 0. A lattice P is said to be relatively complemented lattice, if for any u, v ∈ P 

such that u ≤ v and the bounded lattice [u, v] = {w ∈ P / u ≤ w ≤ v} is a complemented lattice. 

 

A lattice P is known to be distributive if and only if the relative compliments of every element in every interval 

[u, v], u ≤ v are unique 

Definition 2.1.8 [2]: A Boolean algebra is defined as a bounded distributive and complemented lattice. 
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Definition 2.1.9 [2]: A sub lattice I of P is said to be an ideal of P if i ∈ I, r ∈ P imply r ∧ i ∈ I.  

If I = P, then an ideal I of P is said to be proper. 

If an ideal I of P satisfies the following two properties: 

1)  r ∧ s ∈ I, r, s ∈ P ⇒ either r ∈ I or s ∈ I 

2)  I ≠ P,  

then I is said to be a prime ideal of P. 

         If an ideal N of P satisfies the following two properties: 

(i) N ≠ P      (ii)     If V is an ideal of P such that N ⊆ V ⊆ P ⇒ either N = V or V = P, then N is said to be 

maximal of P. 

 

In the following, we have defined an ADL. 

Definition 2.1.10 [2]: An algebra (P, ∨, ∧) of type (2, 2) is said to be an Almost Distributive Lattice (ADL) if it 

satisfies the following axioms: 

(1) (l ∨ m) ∧ n = (l ∧ n) ∨ (m ∧ n) 

 (2) l ∧ (m ∨ n) = (l ∧ m) ∨ (l ∧ n) 

(3) (l ∨ m) ∧ m = m 

(4) (l ∨ m) ∧ l = l 

(5) l ∨ (l∧ m) = l, for all l, m, n ∈ P. 

From the above Definition, we have every distributive lattice is an ADL.  

If suppose there exists an element 0 ∈ P such that 0 ∧ l = 0 for every l ∈ P, then (P, ∨, ∧, 0) of type (2, 2, 0) is said to 

be an Almost Distributive Lattice with an element 0 or simply it is said to be an ADL with 0. 

 

Example 2.1.1 [2]: Suppose Z is a non-void set. We fix an element z0∈ Z. For all p, q ∈ P, 

                               z0, if p = z0                                                               q, if p = z0 

define p ∧ q = {    q, if p ≠ z0                             p ∨ q = {       p, if p ≠ z0. 

 Then (Z, ∨, ∧, z0) is an Almost Distributive Lattice(ADL) with z0 as its zero element. This ADL is said to be a discrete 

ADL. 

 

For any two elements r, s ∈ P, r is said to be less than or equals to s and denote r ≤ s, if r ∧ s = r. Then binary relation 

“≤“ is said to be a partial ordering relation(or simply partial ordering) on P. 

 

In any ADL P, the following results hold. 

 

From here onwards by P we mean an ADL (P, ∨, ∧, 0). 

 

Theorem 2.1.1 [2]: For any l, m, n ∈ P, we have 

 (1) l ∧ 0 = 0 and 0 ∨ l = l 

(2) l ∧ l = l = l ∨ l 

(3) (l ∧ m) ∨ m = m, l ∨ (m ∧ l) = l and l ∧ (l ∨ m) = l 

(4) l ∧ m = l ⟺ l ∨ m = m and l ∧ m = m ⟺ l ∨ m = l 

(5) l ∧ m = l ∧ m and l ∨ m = m ∨ l whenever l ≤ m 

(6) l ∧ m ≤ m and l ≤ l ∨ m 

(7) ∧ is associative in P 

(8) l ∧ m ∧ n = m ∧ l ∧ n 

(9) (l ∨ m) ∧ n = (m ∨ l) ∧ n 
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(10) l ∧ m = 0 ⟺ m ∧ l = 0 

(11) l ∨ (m ∨ l) = l ∨ m. 

 

We have seen that an ADL P meets almost all of the characteristics of a distributive lattice, possibly with the exception 

of the right distributivity of ∨ over ∧, the commutativity of ∨, the commutativity of ∧ and the absorption law (r ∧ s) ∨ 

r = r. Here an ADL P forms a distributive lattice by means of any one of these properties. 

 

Theorem 2.1.2 [2]: Suppose (P, ∨, ∧, 0) is an ADL with an element 0. Then the following conditions are equivalent: 

(i) (l ∧ m) ∨ n = (l ∨ n) ∧ (m ∨ l) for all l, m, n ∈ P (ii) l ∧ m = m ∧ l for all l, m ∈ P (iii) l ∨ m = m ∨ l for all l, m ∈ P 

(iv) (P, ∨, ∧, 0) is distributive. 

 

Proposition 2.1.1 [2]: Suppose (P, ∨, ∧, 0) is an Almost Distributive Lattice. Then for any l, m, n ∈ P with l ≤ m, we 

have the following properties: 

 (1) l ∧ n ≤ m ∧ n 

(2) n ∧ l ≤ n ∧ m 

(3) n ∨ l ≤ n ∨ m. 

 

Definition 2.1.11 [2]: An element m ∈ P is said to be a maximal element (or maximal), if it is maximal as in the 

partially ordered set (or simply poset)(P, ≤). That is, for any n ∈ P, m ≤ n implies m = n. 

 

Theorem 2.1.3 [2]: Suppose P is an ADL and m ∈ P. Then the following conditions are equivalent: 

(i) m is maximal with respect to a binary relation ≤  

(ii) m ∧ r = r, for any r ∈ P 

(iii) m ∨ r = m, for any r ∈ P. 

 

Lemma 2.1.1 [2]: Suppose P is an ADL with maximal m and s, t ∈ P. If s ∧ t = t and t ∧ s = s then s is a maximal ⟺ 

if t is maximal. Also we have the following equivalent conditions: (i) s ∧ t = t and t ∧ s = s (ii) s ∧ m = t ∧ m. 

 

Proposition 2.1.1 [2]: If (P, ∨, ∧, 0, m) is an ADL, then the set I(P) of all ideals of P is a complete lattice under set 

inclusion. In this lattice, for any I, J ∈ I(P), the l.u.b. and g.l.b. of I, J are given by the following 

                           (i) I ∨ J = {(i ∨ j) ∧ m/i ∈ I, j ∈ J} 

                           (ii) I ∧ J = I ∩ J. 

 

We have the set PI(P) = {(u] /u ∈ P} of all principal ideals of P forms a sublattice of I(P). (Since (u] ∨ (v] = (u ∨ v] 

and (u] ∩ (v] = (u ∧ v]). 

 

Definition 2.1.13 [2]: An ADL P = (P, ∨, ∧, 0, m) with maximal m is said to be a complete ADL, if it satisfies the 

property that PI(P) is a complete sub lattice of the lattice I(P). 

 

Theorem 2.1.4 [2]: Suppose P = (P, ∨, ∧, 0, m) is an ADL with maximal m. Then the lattice  

([0, m], ∨, ∧) is a complete lattice ⟺ P is a complete ADL. 

 

3.1 PROPERTIES OF SEMI RESIDUATED ALMOST DISTRIBUTIVE LATTICES(SRADL’s) 

In this section, we have given an example of a semi residuated ADL P. we have proved some important properties of 

semi residuation ‘ ⊕ ’ and multiplication  ‘ .  ’ in a Semi Residuated Almost Distributive Lattice(SRADL) P. For r, s 
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𝜖 P, we have proved that the characterization of r ⊕ s and r.s when  s is a complemented element of a semi residuated 

ADL P. 

 

Initially, we start with the definition of Semi Residuation. It has taken from [4]. 

Definition 3.1.1:[4] Suppose P be an ADL with maximal m.   A binary operation   ‘⊕’ on an ADL P is said to be a 

Semi Residuation over P if, for r, s, t 𝜖 P the following conditions are satisfied. 

(R1)  r ˄ s = s if and only if r ⊕ s is maximal 

(R2) r ˄ s = s ⇒ (i) (r ⊕ t) ˄ (s ⊕ t) = s ⊕ t and (ii) (t ⊕ s) ˄ (t ⊕ r) = t ⊕ r 

(R3) [(r ⊕  s) ⊕ t] ˄ m = [(r ⊕ t) ⊕ s] ˄ m 

(R4) [(r ˄ s) ⊕ t] ˄ m = (r ⊕ t)˄ (s ⊕ t) ˄ m 

 

Definition 3.1.2:[3]  Suppose P be an ADL with maximal m.  A binary operation ‘ . ’ on an  ADL P is said to be a 

Multiplication over  P if,  for   r, s, t 𝜖 P  the following conditions are satisfied. 

(M1) (r.s) ˄ m = (s.r) ˄ m 

(M2) [(r.s).t] ˄ m = [r.(s.t)] ˄ m 

(M3) (r.m) ˄ m = r ˄ m 

(M4) [r.(s ˅ t)] ˄ m = [(r.s)˅ (r.t)] ˄ m. 

 

In the following, we have given the definition of a Semi Residuated Almost Distributive Lattice. It has taken from 

[3]. 

Definition 3.1.3:[3] An ADL P with maximal m is said  to be a Semi Residuated Almost Distributive Lattice (or 

Semi Residuated ADL)(or SR ADL), if there exists a semi residuation “⊕” and a multiplication ‘‘•’’ on P satisfying 

the following condition (K). 

(K) (x ⊕ r) ˄ s = s if and only if x ˄ (r.s) = r.s, for any x, r, s 𝜖 P.  

In the following, we have given an example of a Semi Residuated Almost Distributive Lattice (SRADL). 

Example 3.1.1: Let P be a discrete ADL with 0.   

Fix  m(≠0) 𝜖 P. Define two binary operations ‘⊕’ and ‘•’ on P by 

x ⊕ y  =  x, for all x, y 𝜖 P, 

x.y = m, for all x, y 𝜖 P-{0} 

and  x.y = 0, if either x = 0 or y = 0 or both. 

Then L is a semi resituated ADL. 

 

First we have given the following Lemma, whose proof can be obtained from the definition of Semi Residuated ADL. 

Lemma 3.1.1: Let P be a semi residuated ADL. Then 

(1) (r ⊕  r) ⊕  s is maximal, for all r, s ϵ P 

(2) If an element m of P is maximal then m ⊕ r is maximal, for all r ϵ P. 

 

Lemma 3.1.2: Let P be a semi  residuated  ADL  with maximal m. For r, s, t, u ϵ P, the following hold in P. 

(1)   r ᴧ [r.(r ⊕  s)] = r.(r ⊕ s) 

(2)   r  ᴧ [s.(r ⊕ s)] = s.(r ⊕ s) 

(3)   (r ⊕  s)] ᴧ r = r 

(4)  [r ⊕ (r ⊕ s)] ᴧ (r V s) = r V s 
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(5)  [(r ⊕ s) ⊕ t)] ᴧ [r ⊕ (s.t)] = r ⊕ (s.t) 

(6)  [r ⊕ (s.t)] ᴧ [(r ⊕ s) ⊕ t)] = (r ⊕ s)⊕ t 

(7)  [(r ᴧ s) ⊕ s] ᴧ(r ⊕ s) = r ⊕ s 

(8)  (r ⊕ s) ᴧ [(r ᴧ s) ⊕ s = (r ᴧ s) ⊕ s 

(9)   [(r ᴧ s) ⊕ r] ᴧ m = (s ⊕ r) ᴧ m 

(10) [t ⊕ (r ᴧ s)] ᴧ [t ⊕ r) V (t ⊕ s)] = (t ⊕ r) V (t ⊕ s) 

(11) If  r ⊕ s = r  then r  ᴧ (s.u) = s.u ⇨ r ᴧ u = u 

(12) {r ⊕ [r ⊕ (r ⊕ s)]} ᴧ (r ⊕ s) = r ⊕ s 

(13) [(a V b) ⊕ c] ᴧ [(a ⊕ c) V (b ⊕ c)] = (a ⊕ c) V (b ⊕ c) 

(14) r ᴧ m  ≥  s ᴧ m  ⇨  (r ⊕ t) ᴧ m  ≥  (s ⊕ t) ᴧ m 

(15) (r ⊕ s) ᴧ {r ⊕ [r ⊕ (r ⊕ s)]}  = r ⊕ [r ⊕ (r ⊕ s)] 

(16) r ᴧ s = s   ⇨  (r.t) ᴧ (s.t) = s.t 

(17) r ᴧ s ᴧ (r.s) = r.s 

(18) [r ⊕ (s.t)] ᴧ [r ⊕ (s ᴧ t)] = r ⊕ (s ᴧ t) 

(19) [(r.s) ⊕ r] ᴧ s = s 

(20) (r.s) ᴧ [(r ᴧ s).(r V s)]  =  (r ᴧ s).(r V s) 

(21) r V s  is maximal    ⇨   (r.s) ᴧ r ᴧ s = r ᴧ s 

(22) (x1 V  x2)n+1 ᴧ m = [x1
n+1 V (x1

n.x2) V(x1
n-1.x2

2) V…….. V (x1.x2
n) V x2

n+1] ᴧ m, for                                                                                                              

any x1, x2 ϵ L, n ϵ z+. 

(23) (x1 Vx2)k1 + k2 ᴧ  m  ≤  (x1
k1 V x2

k2) ᴧ m,   for any x1, x2 ϵ L,   K1, K2 ϵ z+. 

     Proof : Let  r, s, t, u 𝜖 P.  

(1) Since r ᴧ r = r, by R1, we get that r ⊕ r is a maximal element of P. 

Then (r ⊕ r) ᴧ (r ⊕ s) = r ⊕ s. 

Now, by condition (K) of Definition 3.1.3,   we get that   

 r ᴧ [r.(r ⊕ s)]= r.(r ⊕ s). 

(2)    We have (r ⊕ s) ᴧ (r ⊕ s) = r ⊕ s. 

By condition (k) of Definition 3.1.3, we get that   

 r ᴧ [s.(r ⊕ s)] = s.(r ⊕ s). 

(3)   By condition (1) of Lemma 3.1.1, (r ⊕ r) ⊕ s is maximal of P. 

 So that [(r ⊕ r) ⊕ s] ᴧ x = x, for all x ϵ P. 

   Now, by R3, we get that [(r ⊕ s) ⊕ r] ᴧ x = x, for all x ϵ L. 

     Therefore, (r ⊕ s) ⊕ r is maximal. 

      Now by R1, we get that (r ⊕ s) ᴧ r = r.     

(4)        [(r ⊕ s). (r V s)] ᴧ m  =  [(r ⊕ s).(r V s)] ᴧ m 

  ⇨  [{(r ⊕ s).r} V {(r ⊕ s).s}] ᴧ m  = [(r ⊕ s).(r V s)] ᴧm      

⇨  [{(r.(r ⊕ s) } V {s.(r ⊕ s)}] ᴧ m  = [(r ⊕ s).(r V s)]  ᴧ m.      

⇨    [{r ᴧ (r.(r ⊕ s)} V {r ᴧ (s.(r ⊕ s)}] ᴧ m  = [(r ⊕ s).(r V s)]  ᴧ m  

                                                                                   (By  (1) and (2))    

⇨ [r ᴧ {r.(r ⊕ s)} ᴧ m]  V [r ᴧ { s.(r ⊕ s)}] ᴧ m] = [(r ⊕ s).(r V s)] ᴧ m 

 ⇨ [ r ᴧ { (r ⊕ s).r} ᴧ m]  V [r ᴧ {(r ⊕ s).s}] ᴧ m] = [(r ⊕ s).(r V s)]                                                                

⇨ [ {r ᴧ ((r ⊕ s).r)}  V {r ᴧ ( (r ⊕ s).s)}] ᴧm  = [(r ⊕ s).(r V s)]  

⇨ [r ᴧ { (r ⊕ s).r)  V ((r ⊕ s).r)}] ᴧ m  = [(r ⊕ s).(r V s)] ᴧ m   

⇨ r ᴧ [(r ⊕ s).(r V s)] ᴧ m  =  [(r ⊕ s).(r V s)] ᴧ m  

⇨ r ᴧ [(r ⊕ s).(r V s)]   =  [(r ⊕ s).(r V s)] 

⇨[r ⊕ (r ⊕ s) ᴧ (r V s)]   =  (r V s) 
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(5)      We have [r ⊕ (s.t)] ᴧ [r ⊕ (s.t)] = r ⊕ (s.t) 

    ⇨ r ᴧ [(s.t).{r ⊕ (s.t}]  = (s.t) [(r ⊕ (s.t)]                

⇨ r ᴧ [s.{t.{r ⊕ (s.t)}}]   = s.[t. {r ⊕ (s.t)}] 

         ⇨(r ⊕ s) ᴧ [t.{r ⊕ (s.t)}]   = t.[ r ⊕ (s.t)]                                       

⇨ [(r ⊕ s) ⊕ t] ᴧ [r ⊕ (s.t)]  = r ⊕ (s.t) 

(6)       We have  [(r ⊕ s) ⊕ t] ᴧ [(r ⊕ s) ⊕ t)] = (r ⊕ s) ⊕ t 

        ⇨ (r ⊕ s) ᴧ [t.{(r ⊕ s) ⊕ t)}]   = t.[(r ⊕ s) ⊕ t)]                                             

        ⇨ r ᴧ (s.{t.[(r ⊕ s) ⊕ t)}]   =  s.{t. [(r ⊕ s) ⊕ t}]                                         

        ⇨ r ᴧ [(s. t).{(r ⊕ s) ⊕ t)}]   = (s. t) [(r ⊕ s) ⊕ t] 

        ⇨ [r ⊕ (s. t)] ᴧ [(r ⊕ s) ⊕ t)]   = (r ⊕ s) ⊕ t. 

(7)    [(r ᴧ s) ⊕ t] ᴧ (r ⊕ s) = [((r ᴧ s) ⊕ s] ᴧ m ˄ (r ⊕ s) 

                                                  = [(r ⊕ s) ᴧ (s ⊕ s)] ᴧ m ᴧ (r ⊕ s) 

                                          = [(r ⊕ s) ᴧ (s ⊕ s)] ᴧ (r ⊕ s) 

                                           = [(s ⊕ s) ᴧ (r ⊕ s)] ᴧ (r ⊕ s) 

                                           = (r ⊕ s) ᴧ (r ⊕ s)   (Since  s ⊕ s  is maximal) 

                                           = r ⊕ s. 

(8)     We  have  (r ⊕ s) ᴧ (r ⊕ s) ᴧ (s ⊕ s) ᴧ m = (r ⊕ s) ᴧ (s ⊕ s) 

           ⇨ (r ⊕ s) ⊕ [(r ⊕ s) ᴧ (s ⊕ s)] ᴧ m]   is maximal.   

          ⇨ (r ⊕ s) ⊕ [{(r ᴧ s) ⊕ s } ᴧ m]   is maximal.   

         ⇨ (r ⊕ s) ᴧ  [(r ᴧ s) ⊕ s ] ᴧ m]  = [(r ᴧ s) ⊕ s] ᴧ m 

        ⇨ (r ⊕ s) ᴧ  [(r ᴧ s) ⊕ s]   = (r ᴧ s) ⊕ s. 

(9)    [(r ᴧ s) ⊕ r ] ᴧ m  = (r ⊕ r) ᴧ (s ⊕ r) ᴧ m    

                                          = (s ⊕ r) ᴧ m   (Since r ⊕ r is maximal) 

(10)   We have   r ˄ r ˄ s = r ˄ s and s ˄ r ˄ s = r ˄ s, by R2 (ii) of Definition 3.1.1, we get that   

          [t ⊕ (r ᴧ s)] ᴧ (t ⊕ r) = t ⊕ r and  [t ⊕ (r ᴧ s)] ᴧ (t ⊕ s) =  t ⊕ s. 

             Therefore,   [t ⊕ (r ᴧ s)] ᴧ [(t ⊕ r)˅ (t ⊕ s)] 

                          = [{t ⊕ (r ᴧ s)} ᴧ (t ⊕ r)]˅[{t ⊕ (r ᴧ s)}  ᴧ (t ⊕ r)] 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
_____________________________________________________________________________________  
 

1697 
 

                          = ( t ⊕  r) ˅ (t ⊕ s). 

(11)      Assume that  r ⊕ s = r. 

            Suppose r ˄ (s.u) = s.u. 

             By condition (k) of Definition 3.1.3, we get that (r ⊕ s) ˄ u = u. 

             Hence    r ˄ u = u    (Since r ⊕ s = r). 

(12)     [r ⊕ (r ⊕ s )] ᴧ [ r ⊕ (r ⊕ s)] = r ⊕ (r ⊕ s) 

          ⇨ r ᴧ [(r ⊕ s).{r ⊕ (r ⊕ s )}] =  (r ⊕ s).[r ⊕ (r ⊕ s)] 

        ⇨ r ᴧ [(r ⊕ s).{r ⊕ (r ⊕ s )}] ˄ m = [(r ⊕ s).{r ⊕ (r ⊕ s)} ˄ m 

        ⇨ r ᴧ [ {r ⊕ (r ⊕ s)}.(r ⊕ s)] ˄ m = [{r ⊕ (r ⊕ s)}.(r ⊕ s )] ˄ m 

         ⇨ r ᴧ [ {r ⊕ (r ⊕ s )}.(r ⊕ s)]  = [{r ⊕ (r ⊕ s)}.(r ⊕ s)] 

         ⇨ [r ⊕ {r ⊕ (r ⊕ s)}]  ˄ (r ⊕ s)]  = r ⊕ s  

 (13)    We have  (r ˅ s) ˄ r  = r   and   (r ˅ s) ˄ s = s. 

      ⇨ [(r ˅ s) ⊕ t] ˄ (r ⊕ t) = r ⊕ t and   [(r ˅ s) ⊕ t] ˄ (s ⊕ t) = s. 

       ⇨ [{(r ˅ s) ⊕ t} ˄ (r ⊕ t)] ˅ [{(r ˅ s) ⊕ t} ˄ (s ⊕ t)] = (r ⊕ t) ˅(s ⊕ t) 

       ⇨ [(r ˅ s) ⊕ t] ˄ [(r ⊕ t)˅ (s ⊕ t)] = (r ⊕ t) ˅(s ⊕ t). 

(14)  Suppose r ˄ m ≥  s ˄ m 

            then s ˄ m ˄ r ˄ m =  s ˄ m 

     ⇨  r ˄ s = s. 

 Now,  (s ⊕ t) ˄ m ˄ (s ⊕ t) ˄ m = (r ⊕ t) ˄ (s ⊕ t) ˄ m 

                                                               = [(r ˄ s) ⊕ t] ˄ m 

                                                               = (s ⊕ t) ˄ m    (Since r ˄ s = s). 

   Therefore, (r ⊕ t) ˄ m ≥ (s ⊕ t) ˄ m. 

(15)    By property (4) above, we have 

     ⇨[r ⊕ {r ⊕ {r ⊕ (r ⊕ s )}}] ˄ m  ≥  [r ˅ {r ⊕ (r ⊕ s)] ˄ m 

      ⇨[{r ⊕ {r ⊕ {r ⊕ (r ⊕ s)}}} ⊕ s] ˄ m  ≥  [(r ˅ [r ⊕ (r ⊕ s)] ⊕ s] ˄ m 

                                                             (By property (14) above) 

  Now, [(r ⊕ s) ⊕ {r ⊕ {r ⊕ (r ⊕ s )}} ˄ m 

   = [{r ⊕ {r ⊕{r ⊕ (r ⊕ s )}}} ⊕ s] ˄ m     



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
_____________________________________________________________________________________  
 

1698 
 

      ≥  [(r ˅ [r ⊕ (r ⊕ s )) ⊕ s}] ˄ m       

     ≥ [(r ⊕ s) ˅ {(r ⊕ (r ⊕ s)) ⊕ s} ˄ m              (By (13)) 

     = [{(r ⊕ (r ⊕ s)) ⊕ s} ˅ (r ⊕ s) ˄ m 

     ≥ {(r ⊕ (r ⊕ s)) ⊕ s} ˄ m 

    = [(r ⊕ s) ⊕ (r ⊕ s)] ˄ m      

    = m. 

Therefore,    [(r ⊕ s) ⊕ {r ⊕ (r ⊕ (r ⊕ s))}] ˄ m = m. 

               ⇨ (r ⊕ s) ⊕ {r ⊕ (r ⊕ (r ⊕ s))} is maximal. 

  By condition R1 of Definition 3.1.1,   we get that 

    (r ⊕ s) ˄ [r ⊕ (r ⊕ s)] = r ⊕ {r ⊕ (r ⊕ s)}. 

(16)    Suppose     r ˄ s = s. 

        Then [(r.t) ˄ m] ˅ [(s.t) ˄ m] 

       = [(t.r) ˅ (t.s)] ˄ m 

       = [t.(r ˅ s)] ˄ m   (By M4  of Definition 3.1.2) 

       = (t.r) ˄ m    (Since r ˅ s = r) 

       = (r.t) ˄ m    (By M1 of Definition 3.1.2) 

      ⇨ (r.t) ˄ m ˄ (s.t) ˄ m = (s.t) ˄ m 

    ⇨ (r.t) ˄ (s.t) = s.t. 

(17)  [(r ˄ s) ⊕ r] ˄ s = [(r ˄ s) ⊕ r] ˄ m ˄ s 

                                         = (r ⊕ r) ˄ (s ⊕ r) ˄ m ˄ s. 

                                         = (s ⊕ r) ˄ s = s       (By property (3), above) 

           ⇨ r ˄ s ˄ (r.s) = r.s        (By condition (k) of  Definition 3.1.3). 

(18)  By property (17), above  we have  s ˄ t ˄ (s.t) = s.t. 

         By R2(ii)  of Definition 3.1.1,  we get that 

           [r ⊕ (s.t)] ˄ [r ⊕ (s ˄ t)] = r ⊕ (s ˄ t). 
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(19)  We have   (r.s) ˄ (r.s) = r.s. 

        By condition (k) of Definition 3.1.3,  we get that  [(r.s) ⊕ r] ˄ s = s. 

(20)  We know that s ˄ r ˄ s = r ˄ s 

         ⇨(s.r) ˄ [(r ˄ s).r] = (r ˄ s).r      

         ⇨(r.s) ˄ [(r ˄ s).r] = (r ˄ s).r      

        Similarly,   (r.s) ˄ [(r ˄ s).s] = (r ˄ s).s 

                 Now,    (r.s) ˄ [(r ˄ s).(r ˅ s)] ˄ m 

 = (r.s) ˄ [{(r ˄ s).r} ˅ {(r ˄ s).s}] ˄ m    

                            = [{(r.s) ˄ [{(r ˄ s).r}} ˅ {(r.s) ˄ {(r ˄ s).s}}] ˄ m    

                            = [{(r ˄ s).r}} ˅ {(r ˄ s).s}}] ˄ m    

                            = [(r ˄ s).(r ˅ s)] ˄ m         

         Therefore,   (r.s) ˄ [(r ˄ s).(r ˅ s)] = (r ˄ s).(r ˅ s). 

(21)  Suppose   r ˅ s is maximal. 

          By (19), above,  we have (r.s) ˄ [(r ˄ s).(r ˅ s)] = (r ˅ s). 

                                ⇨ (r.s) ˄ [(r ˄ s).(r ˅ s)] ˄ m = [(r ˄ s).(r ˅ s)] ˄ m 

                                ⇨ (r.s) ˄ (r ˄ s) ˄ m = (r ˄ s) ˄ m   

                                ⇨ (r.s) ˄ r ˄ s = r ˄ s. 

(22)    Let x1, x2 ϵ L. 

    This result is proved by Mathematical Induction on n. 

     Put   n = 1, then 

        [(x1 ˅ x2)2  ˄ m = [(x1˅x2).( x1˅x2)] ˄ m 

         [(x1 ˅ x2)2] ˄ m= [x1
2 ˅ (x1.x2) ˅ (x2.x1) ˅ x2

2] ˄ m     

                                    = [x1
2 ˅ (x1.x2) ˅ x2

2] ˄ m.         

        Therefore, the result is true for n = 1. 

        Assume that the result is true for n = k. 

That is [(x1 ˅ x2)k+1] ˄ m = [x1
k+1 ˅ (x1

k.x2) ˅ (x1
k-1 . x2

2 ) ˅……˅ (x1.x2
k) ˅ x2

k+1] ˄ m. 

 Now,  [(x1 ˅ x2)k+2 ] ˄ m=[(x1 ˅ x2 )k+1  . (x1 ˅ x2) ˄ m.   
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Hence [(x1 ˅ x2)k+2 ] ˄ m = [{x1
k+1 ˅ (x1

k.x2) ˅ (x1
k-1 . x2

2) ˅…..˅ (x1.x2
k) ˅ x2

k+1}.(x1 ˅ x2)] ˄ m 

                     = [{x1
k+2 ˅ (x1

k+1.x2) ˅ (x1
k. x2

2) ˅..…˅ (x1
2.x2

k) ˅ x2
k+2}} ˅ {(x1

k+1.x2) 

                          ˅ (x1
k .x2

2) ˅ (x1
k-1.x2

3) ˅…...˅ (x1.x2
k+1) ˅ x2

k+2}] ˄ m                

                     = [x1
k+2 ˅ (x1

k+1.x2) ˅ (x1
k . x2

2 ) ˅……˅ (x1.x2
k+1) ˅ x2

k+2] ˄ m. 

Therefore  the result is true for n = k+1. 

    Hence  (x1 ˅ x2)k+1 ˄ m = [x1
k+1 ˅ (x1

k.x2) ˅ (x1
k-1 . x2

2 ) ˅……˅ (x1.x2
k) ˅ x2

k+1] ˄ m, 

         for any x1, x2 ϵ L, n ϵ Z+ . 

 (23)  Let   x1, x2 ϵ L,  k1, k2  ϵ Z+. 

               Then   (x1 ˅ x2) k1+k2 ˄ m = [(x1 ˅ x2)k1  .( x1 ˅ x2)k2] ˄ m. 

       By property (22),  above we get  that  

       (x1 ˅ x2) k1+k2 ˄ m = [{x1
k1 ˅ ( x1

k1-1.x2) ˅ (x1
k1-2.x1

2) ˅…..˅ x2
k1}.{x1

k2 ˅ (x1
k2-1).x1 

                         = [{x1 
k1+k2 ˅ (x1

k1+k2-1.x2) ˅……˅ (x1
k1.x2

k2)} ˅ (x1
k1+k2-1.x2) ˅ ( x1

k1+k2-1.x2
2) ˅…… 

                                       ˅ ( x1
k1-1.x2

k2+1)} ˅…...˅ [(x1
k2.x2

k1) ˅ ( x1
k2-1. x2

k2+1) ˅…...˅ x2 
k1+k2}] ˄ m. 

                         = [{x1
k1+k2 ˅ ( x1

k1+k2-1.x2) ˅………..˅ (x1
k1.x2

k2)} ˅ {x1
k1-1.x2

k2+1) ˅……..˅              

                                                                            (x1
0.x2

k1+k2)}] ˄ m. 

                         ≤ ( x1
k1 ˄ m) ˅ ( x2

k2 ˄ m) 

                         = ( x1
k1 ˅ x2

k2) ˄ m. 

Hence   (x1 ˅ x2) k1+k2 ˄ m  ≤  (x1
k1 ˅ x2

k2) ˄ m,   for any  x1, x2 ϵ P,  k1, k2  ϵ Z+. 

Now, we conclude this paper with the characterization of r ⊕ s and r.s  when  s is a complemented element of a semi 

residuated ADL P. 

First we have given the following definition. 

Definition 3.1.4: Suppose P is an ADL and r ϵ P. An element r1 ϵ P is said to be a complement of r in P, if r ˄ r1 = 0  

and  r ˅ r1 is maximal. In this case, we say that r is a complemented element of P.   If each element of P is 

complemented, then P is called a complemented ADL. 

Theorem 3.1.1: Suppose P is a semi residuated ADL with maximal m and r, s ϵ P.   If an element s1 is a complement 

of s in P, then   (r ⊕ s) ˄ m =  (r ˅ s1) ˄ m. 

Proof:   Suppose an element s1 is a complement of s in P. 

  Then {(r ⊕ s) ⊕ (r ˅ s1)} ˄ m 

     = [{r ⊕ s) ⊕ r} ˄ {(r ⊕ s) ⊕ s1}] ˄ m            
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     = [(r ⊕ r) ⊕ s] ˄ [(r ⊕ s) ⊕ s1}] ˄ m             

     = {(r ⊕ s) ⊕ s1}] ˄ m  (Since (r ⊕ r) ⊕ s  is maximal) 

     = [r ⊕ (s.s1)] ˄ m           

  Therefore,  [(r ⊕ s) ⊕ (r ˅ s1)] ˄ m = m     and    

  hence (r ⊕ s) ⊕ (r ˅ s1)  is a maximal element  of   L.     

  Thus by   R1, (r ⊕ s) ˄ (r ˅ s1) = r ˅ s1. 

  Now,   [(r ˅ s1) ⊕ (r ⊕ s) ˄ m 

             ≥ [{r ⊕ (r ⊕ s)}˅{ s1⊕ (r ⊕ s)}] ˄ m 

                 (By property (13)  of  Lemma 3.1.2) 

            = [(s ˅ r) ˄ m] ˅ [{s1 ⊕ (r ⊕ s)} ˄ m 

                  (By property (4) of Lemma 3.1.2) 

               ≥ (s ˅ s1) ˄ m = m   (Since s ˅ s1 is maximal). 

   Thus   [(r ˅ s1) ⊕ (r ⊕ s)] ˄ m = m. 

   So that   (r ˅ s1) ⊕ (r ⊕ s)    is maximal. 

 Hence, by R1, we get that (r ˅ s1) ˄ (r ⊕ s) = r ⊕ s. 

Thus (r ⊕ s) ˄ m = (r ˅ s1) ˄ m. 

Theorem 3.1.2: Let P be a semi residuated ADL with a maximal element  m  and   r, s ϵ P. If s is a complemented 

element of P, then r ˄ s ˄ m = (r.s) ˄ m. Proof:  Suppose s is a complemented element  of  P  and  s1 is a complement  

of  s  in P. Then   s ˄ s1 = 0 and s ˅ s1 is maximal.   

  We have [r.( s ˅ s1)] ˄ (s ˅ s1) = r ˄ (s ˅ s1) 

                                        ⇨ [r.(s ˅ s1)] ˄ (s ˅ s1) ˄ m  = r ˄ (s ˅ s1) ˄ m 

                                        ⇨ [r.(s ˅ s1)] ˄ m =  r ˄ m   (Since  s ˅ s1   is maximal) 

 ⇨ r ˄ m =  [(r. s) ˅ (r.s1)] ˄ m 

                   ⇨ r ˄ m =[(r.s) ˅ (s1.r)] ˄ m        ( By M1of Definition 3.1.2) 

  ≤  [(r.s) ˅ s1] ˄ m                               

      Thus  r ˄ m ≤ [(r.s) ˅ s1] ˄ m   →  (1). 

 From above (1), we get that  
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                    s ˄ r ˄ m  ≤ s ˄ [(r.s) ˅ s1] ˄ m     

 = [{s ˄ (r.s)} ˅ (s ˄ s1)] ˄ m 

 = [s ˄ (r.s)] ˄ m 

 = [s ˄ (s.r)] ˄ m      (By M1of Definition 3.1.2)                                          

                                      = (s.r) ˄ m                        

     Now, r ˄ s ˄ m =  s ˄ r ˄ m. 

                               ≤ (s.r) ˄ m                          

                               = (r.s) ˄ m. 

Also, we have r ˄ s ˄ (r.s) = r.s. 

              So that r ˄ s ˄ m ≥ (r.s) ˄ m. 

      Hence    r ˄ s ˄ m = (r.s) ˄ m. 

CONCLUSION 

In this paper, we conclude that for r, s ϵ P, the characterization of r ⊕ s and r.s  when  s is a complemented element 

of a semi residuated ADL P. 
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