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Abstract: 

Let 𝐹𝑞 be a field of order q, whereas and are two not zero items of 𝐹𝑞, and q is a fraction of an unusual prime p. This 

article's main objective is to investigate the structural characteristics of cyclic codes over the finite ring R = 𝐹𝑞[𝑚1].  

In {{
[𝑚1𝑚2−𝑚2𝑚1𝑖,𝑚2]

𝑚2−𝛼2 } , (𝑚2 − 𝛽2)}. The researcher constructs quantum-error-correcting (QEC) codes over R by 

decomposing the ring R into its parts, 𝑅 = 𝐷1 ⊕ 𝐷2 ⊕ 𝐷3 ⊕ 𝐷4, utilising orthogonal idempotent 

𝐷1, 𝐷2, 𝐷3, 𝑎𝑛𝑑 𝐷4. As an example, we create a few ideal LCD codes. 

Keywords: LCD code, Cyclic code, Quantum code, Gray map; 

1. Introduction: 

Until otherwise noted, the value of the order q is denoted by Fq (where q is an odd prime power), and its non-zero 

components are a and b. The finite ring R = Fq[u1, u2]/hu21- a2, u22 -b2, u1u2 -u2u1i will now be discussed. Verifying 

that R is a non-chain semi-local ring of order q4 is simple. Building quantum-error-correcting (QEC) coding is a great 

usage for cyclic codes. Classical error-correcting (CEC) codes are not the same as QEC codes. When Calderbank et 

al. [1] figured out how to get QEC codes using CEC coding over GF (4), it was a huge advance in 1998. Additionally, 

Calderbank et al. [1] presented a technique for creating QEC codes using CEC codes. Cycle coding spanning finite 

fields has been extensively studied in great detail (see, e.g., [2–5] and reference thereto). Gao et al. [6] created new 

quantum computations over Fq in 2015 using cyclic coding over Fq + vFq + v2Fq + v3Fq (in which q = pm, p is a 

prime that corresponds to 3j(p 1), v4 = v, and m is a positive integer). Subsequently, several tripartite quantum 

computer codes were built by Ozen et al. [7] using cyclic codes constructed over F3 + uF3 + vF3 + uvF3. Improved 

quantum and LCD coding spanning the ring Fpm + vFpm with v2 = 1, where m is a positive integer, were discovered 

in 2021 by Ashraf et al. [8]. The structural characteristics of cyclic codes over the FIELDS R are covered in this piece 

of writing. Researchers build a Grey mapping on the resulting ring R that yields stronger parameters and helps find 

stronger codes for quantum phenomena across R than those found in [8–13] (and their reference). Our primary goals 

in this study are to build quantum-error-correcting (QEC) codes over the bounded ring R and investigate the structural 

features of cyclic algorithms over it. Additionally, we research LCD codes. 

The following are this paper's main contributions: 

1. As shown in Table 1, this research presents better quantum code structures compared to those found in prior 

references [8–13]. 

2. A number of new codes for quantum systems are provided in this paper; Table 2. 

mailto:vinod.k4bais@gmail.com


Tuijin Jishu/Journal of Propulsion Technology   
ISSN: 1001-4055   
Vol. 45 No. 1 (2024)   
______________________________________________________________________________________ 
 

5284 
 

3. As shown in Table 3, this research examines a few ideal LCD codes over the field R. 

Table 1: Quantum coding generated over R from cycle coding. 

[[n0 , 

k0 , d0 

]]q 

[[n, k, 

d]]q 

h(C) h4(X) h3(X) h2(X) h1(X) n 

[[40, 

24, 

2]]5 

[9] 

[[40, 

32, 

2]]5 

[40, 

36, 2] 

X+4 X+4 X+1 X+1 11 

[[80, 

54, 

3]]5 

[11] 

[[80, 

56, 

3]]5 

[80, 

68, 3] 

(X+2)2 

X+4 

(X+2)2 

X+4 

(X+2)2 

X+4 

(X+2)2 

X+4 

21 

[[88, 

48, 

2]]5 

[9] 

[[88, 

80, 

2]]5 

[88, 

84, 2] 

X+4 X+4 X+1 X+1 23 

[[112, 

64, 

2]]5 

[9] 

[[112, 

104, 

2]]5 

[112, 

108, 

2] 

X+3 X+3 X+2 X+2 29 

[[120, 

32, 

3]]5 

[12] 

[[120, 

88, 

3]]5 

[120, 

104, 

3] 

(X+1)2 

X2+X+1 

(X+1)2 

X2+X+1 

(X+1)2 

X2+X+1 

(X+1)2 

X2+X+1 

31 

[[124, 

100, 

4]]5 

[8] 

[[124, 

106, 

4]]5 

[124, 

115, 

4] 

(X3+X2+X+4) 

(X3+X2+3X+4) 

 

X+4 X+4 X+4 32 

[[140, 

112, 

2]]5 

[9] 

[[140, 

118, 

3]]5 

[140, 

129, 

3] 

(X+4) 

(X6+X5+X4+X3+ 

X2+X+1) 

 

(X+4)2 

 

 

X+4 X+4 36 

[[168, 

96, 

2]]5 

[10] 

[[168, 

112, 

4]]5 

[168, 

140, 

4] 

 

(X+4) 

(X6+2X4+3X3+ 

2X2+X+1) 

(X+4) 

(X6+2X4+3X3+ 

2X2+X+1) 

(X+4) 

(X6+2X4+3X3+ 

2X2+X+1) 

(X+4) 

(X6+2X4+3X3+ 

2X2+X+1) 

43 
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[[96, 

80, 

3]]7 

[8] 

[[96, 

84, 

3]]7 

[96, 

90, 3] 

(X+3) 

(X2+X+4) 

 

(X+3) 

 

(X+3) 

 

(X+3) 

 

25 

[[312, 

282, 

3]]13 

[13] 

[[312, 

288, 

3]]13 

[312, 

300, 

3] 

(X+3)2 

(X+12) 

(X+3)2 

(X+12) 

(X+3)2 

(X+12) 

(X+3)2 

(X+12) 

79 

[[48, 

32, 

4]]17 

[8] 

[[48, 

34, 

4]]17 

[48, 

41, 4] 

(X+1) 

(X2+4X+16) 

(X2+X+1) 

(X+1) 

 

(X+1) 

 

1 

 

12 

 [[76, 

40, 

4]]19 

[76, 

58, 4] 

(X+18)14 (X+18)2 (X+18) (X+18) 20 

 

Table 2. From code with cycles over R to new quantum codes. 

  [[n, k, 

d]]q 

h(C) h4(X) h3(X) 

 

h2(X) 

 

h1(X) 

 

n 

New 

quantum 

code 

[[36, 22, 

3]]3 

[36, 29, 3] 1 (X+2) (X+2)2 (X+2)4 10 

New 

quantum 

code 

[[100, 84, 

3]]5 

[100, 92, 3] 1 (X+4) (X+4) (X+4)6 26 

New 

quantum 

code 

[[60, 46, 

3]]5 

[60, 53, 3] 1 1 (X+4) (X+4)2(X2+X+1) 16 

New 

quantum 

code 

[[56, 44, 

4]]7 

[56, 50, 4] 1 (X+6) (X+1) (X+1)(X+6)3 15 

New 

quantum 

code 

[[44, 30, 

4]]11 

[44, 37, 4] 1 (X+10) (X+10) (X+10)5 12 
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Table 3. LCD code graphics in grayscale with length n over R. 

 h(C

) 

h4(X) h3(X) 

 

h2(X) 

 

h1(X) 

 

n 

Optim

al 

[16, 

11, 

4]3 

(X+1)(X2+1) (X+1) (X+1) 1 5 

Optim

al 

[88, 

84, 

2]3 

(X+1) (X+1) (X+1) (X+1) 2

3 

 [24, 

17, 

4]5 

(X+1)(X2+X+1) 

(X2+4X+1) 

(X+1) (X+1) 1 7 

Optim

al 

[32, 

27, 

4]7 

(X+1) 

(X2+4X+1) 

(X+1) (X+1) 1 9 

Optim

al 

[148

, 

124, 

5]11 

X6+4X5+3X4 

+7X3 

+3X2+4X+1 

X6+4X5+3X4 

+7X3 

+3X2+4X+1 

X6+4X5+3X4 

+7X3 

+3X2+4X+1 

X6+4X5+3X4 

+7X3 

+3X2+5X+1 

3

8 

 [156

, 

100, 

4]11 

(X2+X+1)(X11+X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X2+X+1)(X11+X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X2+X+1)(X11+X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X2+X+1)(X11+X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

4

0 

 [44, 

4, 

11]19 

(X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

(X10+ 

X9+X8+X7+X6+ 

X5+X4+X3+X2 

+X+1) 

1

2 

 [112

, 60, 

8]19 

(X+1)( X6+ 

X5+X4+X3+X2 

+X+1) (X6+ 

8X5+3X4+8X3+3X2 

(X+1)( X6+ 

X5+X4+X3+X2 

+X+1) (X6+ 

8X5+3X4+8X3+3X2 

 

(X+1)( X6+ 

X5+X4+X3+X2 

+X+1) (X6+ 

(X+1)( X6+ 

X5+X4+X3+X2 

+X+1) (X6+ 

11X5+3X4+11X3+3

X2 

2

9 
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+8X+1) +8X+1) 11X5+3X4+11X3+3

X2 

+11X+1) 

+11X+1) 

 [136

, 

100, 

4]19 

(X+1)( 

X8+13X7+15X6+ 

16X5+8X4+16X3+15

X2 

+13X+1) 

(X+1)( 

X8+13X7+15X6+ 

16X5+8X4+16X3+15

X2 

+13X+1) 

(X+1)( 

X8+13X7+15X6+ 

16X5+8X4+16X3+15

X2 

+13X+1) 

(X+1)( 

X8+13X7+15X6+ 

16X5+8X4+16X3+15

X2 

+13X+1) 

3

5 

2. Preliminaries Result 

The following subsection describes the Grey map over the ring R and deals with the investigation of certain 

preliminary issues. Additionally, we establish a few key findings that are necessary for the conversations that follow. 

A code C is linear if it is an R-submodule of Rn (where n is a positive integer). We refer to the components of C as 

codewords. The total amount of code words in C, denoted by jCj, is the dimension of C. We remember the following 

fundamental explanations: 

(i) The number of locations where two vectors, y = (yn ,-------- y2, y1),  and x = (xn ,-------- x2,x1, )  differ is known 

as the Hamming is the distance, and it is represented by the symbol d(x, y). 

(ii) The number of non-zero xi, represented by wt(x), is the Hamming weight of a vector x = (xn ,----x1, x2). 

(iii) The dual of linear code C is C ⊥ = {x ∈ R n |x · y = 0 ∃ y ∈ C}. The Euclidean inner product of any two vectors, 

x = (xn ,------, x2 ,x1 ) and y = (yn ,----------, y2,y1), is defined as  yx = yn xn 1+--------------+ y1 x1 +y0 x0 . 

(iv) The code C is considered dual contained if C ⊥ ⊆ C, self-orthogonal when C = C?, and self-dual when C = C?. It 

is obvious that R = Fq + Fq m1 + Fq m2 + Fq m1m2 is a mathematical equation for the field, that's why Here, Fq is 

the finite field of order q, where q = pm for odd prime p and m2 = A2, n2 = B2, and m2 n2 = n2 m2. With four maximal 

concepts, it is a commutative non-chain semi-local field. X = α1 + α2m1 + α3m2 + α4m1m2 is a representation of a 

substance X of R, where ai €2 Fq and 1< i< 5. Every single component of this field may be expressed using a set of 

orthogonal idempotents. 

D1=
(𝐴+𝑚)+(𝐵+𝑛)

4𝑚𝑛
 

D2=
(𝐴+𝑚)+(𝐵−𝑛)

4𝑚𝑛
 

D3=
(𝐴−𝑚)+(𝐵+𝑛)

4𝑚𝑛
 

D1=
(𝐴−𝑚)+(𝐵−𝑛)

4𝑚𝑛
 

It is easy to demonstrate that ∆ 2 i equals ∆i. 

where 1 ≤ i, j ≤ 4, and i 6= j. Additionally, 0 = ∆i∆j, and ∆1 + ∆2 + ∆3 + ∆4 = 1. The formula that we are able to 

acquire is R = D1R ⊕ D2R ⊕ D3R ⊕ D4R = D1Fq ⊕ D2Fq ⊕ D3Fq ⊕ D4Fq, considering the Chinese the remains 

Theorem. Therefore, we can write X = A1 + A2u1 + A3m2 + A4m1m2 = D1X1 + D2X2 + D3X3 + D4X4, where Ai, 

Xi ∈ Fq and 1 ≤ i < 4. This allows us to represent every component X of R. 
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The Gray map η : R −→ 𝐹𝑞
4𝑛  is defined by η(D1X1 + D2X2 + D3X3 + D4X4) = (D1, D2, D3, D4)A 

A GL4(Fq) is a constant matrix, and GL4(Fq) is the linear subgroup of all 4* 4 inverted matrix across the domain Fq 

such that AAT = eI44, where A T is the transposition of A and e Fq0. This defines the Grey map : R F 4 q. 

Researchers are able to expand the linear Grey mapping from Rn to 𝐹𝑞
4𝑛 , where n is an even integer, component-wise. 

The Le weight for the component X = D1X1 + D2X2 + D3X3 + D4X4 ∈ R can be expressed as wL(X) = wH(η(X)), 

where wH is the Hamming is the weighted over Fq. We start our conversation with what follows Grey map (1) outcome 

is that. 

Proposition 1. The map η : R −→ 𝐹𝑞
4𝑛 defined in (1) is an Fq-linear and distance-preserving map from (R n , dL) to 

(𝐹𝑞
4𝑛, dH), where dL = dH. 

Proof. Let X, X 0 ∈ Rn such that X = D1X1 + D2X2 + D3X3 + D4X4. 

 and Xi , 𝑋𝑖
′ ∈ 𝐹𝑞

4𝑛 for 1 ≤ i ≤ 4. Then, we have η(X + X’ ) = η(D1X1 + D1𝑋1
′  + D2X2 + D2𝑋2

′  + D3X3 + D3𝑋3
′  + 

D4X4 + D4𝑋4
′  ) = η(D1(X1 + 𝑋1

′  ) + D2(X2 +𝑋2
′  ) + D3(D3 +𝑋3

′  ) + D4(D4 + 𝑋4
′  )) = (X1 + 𝑋1

′  , X2 + 𝑋2
′  , D3 + 𝑋3

′  , 

D4 + 𝑋4
′ )A = (X1, X2, X3, X4)A + (𝑋1

′  , 𝑋2
′  , 𝑋3

′ , 𝑋4
′   )A = η(X) + η(X’ ) f or all X, X 0 ∈ Rn  . Furthermore, for any 

α ∈ Fq, we have η(αX) = η(D1αX1 + D2αX2 + D3αX3 + D4αX4) = (αX1, αX2, αX3, αX4)A = α(X1, X2, X3, X4)A 

= αη(X) f or all X ∈ Rn . 

η is therefore a Fq-linear. Regarding the latter, we are aware that dL(X, X’ ) = wL(X – X’ ) = wH(η(X –X’ )) = 

wH(η(X) − η(X’ )) = dH(η(X), η(X’ )). 

Consequently, η is a map that preserves distance. 

Define D1 ⊗ D2 ⊗ D3 ⊗ D4 = {(X1, X2, X3, X4) | Xi ∈ Di : 1 ≤ i ≤ 4} and D1 ⊕ D2 ⊕ D3 ⊕ D4 = {(X1 + X2 + 

X3 + X4) | Xi ∈ Di : 1 ≤ i ≤ 4}. Let C be a length n linear code over R. The reasecher define that C1 = {X1 ∈ 𝐹𝑞
4𝑛| 

D1X1 + D2X2 + D3X3 + D4X4 ∈ C, where X2, X3, X4 ∈ 𝐹𝑞
4𝑛}, C2 = {X2 ∈ 𝐹𝑞

4𝑛| D1X1 + D2X2 + D3X3 + D4X4 

∈ C, where X1, X3, X4 ∈ 𝐹𝑞
4𝑛}, C3 = {X3 ∈ 𝐹𝑞

4𝑛| D1X1 + D2X2 + D3X3 + D4X4 ∈ C, where X1, X2, X4 ∈ 𝐹𝑞
4𝑛}, 

and C4 = {D4 ∈ 𝐹𝑞
4𝑛  | D1X1 + D2X2 + D3X3 + D4X4 ∈ C, where X1, X2, X3 ∈ 𝐹𝑞

4𝑛}. 

Each Ci is now a linear code over Fq with length n. for 1 ≤ i ≤ 4. Therefore, any length of n linear code can be 

expressed as C = D1C1 ⊕ D2C2 ⊕ D3C3 ⊕ D4C4 and |C| = |C1||C2||C3||C4| over R. If a matrix's rows produce C, 

the matrix is referred to as a generator matrix of C. A generator matrix of C is M if Mi are the generator matrices of 

the linear code Ci for i = 1, 2, 3, 4, and so on. N= (

𝐷1𝑁1
𝐷2𝑁2
𝐷3𝑁3
𝐷4𝑁4

) 

and  a η(C) generating matrix is  

η (N)= η(

(𝐷1𝑁1)
𝐷2𝑁2
𝐷3𝑁3
𝐷4𝑁4

) 
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3.Conclusions 

Several structural characteristics of periodic codes across the ring R = Fq[M1, N2]/〈N2 1 − α2, N2
2 − B2, M1N2

− N2M1〉 

are covered in this paper. Here, α and β denote non-zero members of Fq. Additionally, we produce quantum codes 

that are superior to those reported in [8–13]. We are able to receive LCD codes via the circle R as a programme. One 

can extend this research to the output of infinite circles. In order to examine new and improved quantum codes in the 

future, we believe our work will inspire viewers to look at these codes instead of other limit circles. 
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