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Abstract:-In this paper, we introduce and study a class of mappings called generalized 𝛼-𝜓 contractive 

mappings, which are a generalization of the well-known 𝛼-𝜓 contractive mappings. We explore various fixed 

point theorems for such mappings in complete metric spaces, using the concept of 𝛼 -admissible mappings. 

Additionally, we apply our main results to establish fixed point theorems for metric spaces with partial orders. 

Our results extend and improve upon a number of previously established results in the literature, and we provide 

illustrative examples to demonstrate the effectiveness of our approach. 
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1. Introduction 

Metric fixed point theory has been a key area of research in mathematics for over a century, and has had a 

profound impact on the development of functional analysis and other areas of mathematics. The concept of a 

metric space, introduced by French mathematician M. Frechet in 1906, has provided a framework for the study 

of abstract spaces and has inspired the development of new mathematical structures, such as complex-valued 

metric spaces and semi-metric spaces. By generalizing and extending the notion of a metric space, researchers 

have gained new insights into the nature of mathematical structures and have expanded the boundaries of 

functional analysis.In this direction several authors obtained further results [4,5,9,10,11,15]. 

In recent years, a number of mathematicians have obtained fixed point results for contraction typemappings in 

metric spaces equipped with a partial order. Some early results in this direction wereestablished by Ran and 

Reurings [19] who studied the existence of fixed points for certain mappings in partially ordered metric spaces 

and applied their results to matrix equations. Nieto and Lopez [12] built upon the results of Ran and Reurings 

[19] by extending the theorem to cover non-decreasing mappings and deriving solutions to certain partial 

differential equations with periodic boundary conditions. 

The concept of mixed monotone property, which refers to contractive operators of the form 𝐹: 𝑋 × 𝑋 → 𝑋 that 

have both monotone increasing and monotone decreasing properties, was first introduced by Bhaskar and 

Lakshmikantham [16] for partially ordered metric spaces. Based on this concept, they derived a number of 

coupled fixed point theorems, which are related to fixed point theorems for a single operator that has one of 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 10 (2024) 

__________________________________________________________________________________ 

5236 

these monotone properties. In addition to the work of Bhaskar and Lakshmikantham [16], Chatterji [2] 

considered various contractive conditions for self-mappings in metric spaces, which are a special case of 

partially ordered metric spaces. Later, Dass and Gupta [3] built upon these ideas by exploring rational type 

contractions to find unique fixed points in complete metric spaces. 

The work of Samet et al. [21] introduced α-ψ contractive type mappings as a new category of contractive 

mappings. The fixed point results obtained by Samet et al. [21] extended and generalized several fixed point 

results that exist in the literature, including the Banach contraction principle. In a further development, 

Karapinar and Samet [18] generalized the notion of α-ψ contractive type mappings and obtained various fixed 

point theorems for these mappings. Recently, Raji M. [24]presented a class of contractive type mappings 

calledgeneralized α-ψ contractive pair of mappings and study various coincidence fixedpoint theorems for such 

mappings in complete metric spaces and introduced the notion of α-admissible with respect to g mapping which 

in turn generalized theconcept of g-monotone mapping.  

The main contribution of this paper is to derive fixed point results for generalized α-ψ contractive type 

mappings. These results unify and generalize the findings of Karapinar and Samet [18], Samet et al. [21], Ciri´c 

et al. [23] and other related results. Moreover, we obtain fixed point results for metric spaces with partial 

orderings as a direct consequence of our main results. Additionally, we provide illustrative examples to 

demonstrate the improved results obtained with our approach. An interesting results in this direction can be seen 

in ([25]-[41]). 

 

Throughout this article, the standard notations and terminologies in nonlinear analysis are used. 

2. Preliminaries 

We start this section by presenting the notions of 𝛼-𝜓 contractive and 𝛼-admissible mappings. Denote with Ψ 

the family of nondecreasing functions Ψ: [0,∞) → [0,∞) such that ∑ 𝜓𝑛(𝑡) < ∞ +∞
𝑛=1  for each 𝑡 > 0, where 𝜓𝑛 

is the nth iterate of 𝜓. 

These functions are known in the literature as (c)-comparison functions. 

Definition 2.1[17] Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is an 𝛼-𝜓-

contractive if there exist a (c)-comparison functions 𝜓 ∈ Ψ and a function 𝛼: 𝑋 × 𝑋 → ℝ such that 

𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈ 𝑋.                                      (2.1) 

Clearly, any contractive mapping, that is, a mapping satisfying Banach contraction, is an 𝛼-𝜓 contractive 

mapping with 𝛼(𝑥, 𝑦) = 1for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡, 𝑘 ∈ (0,1). 

Definition 2.2[20] Let 𝑋 be a nonempty set, 𝑇:𝑋 → 𝑋 and 𝛼:𝑋 × 𝑋 → ℝ+, we say that 𝑇 is an 𝛼-admisible 

mapping if  

𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦) ≥ 1 ⟹ 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. (2.2) 

Theorem 2.3 [21] Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 be an 𝛼-𝜓 contractive mapping. Suppose 

that  

i𝑇 is 𝛼 admissible;  

ii there exists  𝑥0 ∈ 𝑋 such that 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1;  

iii 𝑇 is continuous.  

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.  

Theorem 2.4 [21] Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 be an 𝛼-𝜓 contractive mapping. Suppose 

that  

i𝑇 is 𝛼 admissible;  

ii there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑇𝑥0, 𝑇𝑥0) ≥ 1;  

iii if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥𝑛 , 𝑥) ≥ 1 

for all 𝑛.  
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Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.  

Theorem 2.5[21] Adding to the hypotheses of Theorem 1.3 (resp., Theorem 1.4) the condition, for all 𝑥, 𝑦 ∈ 𝑋, 

there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 1 and𝛼(𝑦, 𝑧) ≥ 1, and one obtains uniqueness of the fixed point.  

Remark 2.6 Clearly, since 𝜓 is nondecreasing, every 𝛼-𝜓 contractive mapping is a generalized 𝛼-𝜓 contractive 

mapping.  

Karapinar and Samet [18] introduced the following concept of generalized 𝛼-𝜓-contractive type mappings:  

Definition 2.7 [18] Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a 

generalized 𝛼-𝜓-contractive type mapping if there exist two functions 𝛼: 𝑋 × 𝑋 → [0,∞) and 𝜓 ∈ Ψ such that 

for all 𝑥, 𝑦 ∈ X, we have  

𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)), (2.3) 

 where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝑑(𝑥, 𝑦),
𝑑(𝑥,𝑇𝑥)+𝑑(𝑦,𝑇𝑦)

2
 ,
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
} 

Further, Karapinar and Samet [18] established fixed point theorems for this new class of contractive mappings. 

Also, they obtained fixed point theorems on metric spaces endowed with a partial order and fixed point 

theorems for cyclic contractive mappings. 

3. Main Results 

We introduce the concept of generalized 𝛼-𝜓 contractive type mappings as follows.  

Definition 3.1 Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋 be a given mapping. 𝑇 is a generalized 𝛼-𝜓 

contractive type mapping if there exist two functions 𝛼: 𝑋 × 𝑋 → [0,∞) and 𝜓 ∈ Ψ such that for all 𝑥, 𝑦 ∈ X, 

we have  

𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)), (3.1) 

 where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {
𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦),

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)
 ,

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)+𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)
,
𝑑(𝑥,𝑇𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑦,𝑇𝑥)+𝑑(𝑥,𝑇𝑦)

} 

Theorem 3.2 Let (𝑋, 𝑑) be a complete metric space. Suppose that 𝑇: 𝑋 → 𝑋 is a generalized 𝛼-𝜓 contractive 

mapping and satisfies the following conditions:  

i. 𝑇 is 𝛼 admissible;  

ii. there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑇𝑥0, 𝑇𝑥0) ≥ 1; 

iii. 𝑇 is continuous.  

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢. 

Proof  By (ii) there exists a point 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1. We define a sequence  {𝑥𝑛} in 𝑋 by 𝑥𝑛+1 =

𝑇𝑥𝑛 for all 𝑛 ≥ 0. If  𝑥𝑛 = 𝑥𝑛+1 for some 𝑛 ≥ 0, then  𝑇𝑥𝑛 = 𝑥𝑛+1 = 𝑥𝑛 , so that 𝑥𝑛 is a fixed point of 𝑇 and the 

proof is finished. 

Assume that 𝑥𝑛 ≠ 𝑥𝑛+1, for all 𝑛 ≥ 0. Since 𝑇 is an 𝛼-admisible, we have  

𝛼(𝑥0, 𝑇𝑥0) = 𝛼(𝑥0, 𝑥1) ≥ 1 ⟹ 𝛼(𝑇𝑥0, 𝑇𝑥1) = 𝛼(𝑥1, 𝑥2) ≥ 1. (3.2) 

Continuing this process, we have 

𝛼(𝑥1, 𝑥2) ≥ 1 ⟹ 𝛼(𝑇𝑥1, 𝑇𝑥2) = 𝛼(𝑥2, 𝑥3) ≥ 1, 

Inductively, we get 

 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1, for all 𝑛 ≥ 0. (3.3) 
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Applying (3.1) and (3.3), for all 𝑛 ≥ 1, we have 

𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) ≤ 𝛼(𝑥𝑛 , 𝑥𝑛−1)𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) ≤ 𝜓(𝑀(𝑥𝑛 , 𝑥𝑛−1))(3.4) 

On the other hand, we have 

𝑀(𝑥𝑛, 𝑥𝑛−1)

= 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥𝑛 , 𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1),

𝑑(𝑥𝑛 , 𝑇𝑥𝑛)𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 , 𝑥𝑛−1)
,

𝑑(𝑥𝑛 , 𝑇𝑥𝑛)𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 ,  𝑥𝑛−1) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1) + 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛)
,
𝑑(𝑥𝑛 , 𝑇𝑥𝑛)𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1) + 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛)𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛−1, 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1) }
 
 

 
 

 

= 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛−1, 𝑥𝑛), 𝑑(𝑥𝑛−1, 𝑥𝑛)} 

≤ 𝑚𝑎𝑥{𝑑(𝑥𝑛, 𝑥𝑛−1), 𝑑(𝑥𝑛, 𝑥𝑛+1)}(3.5) 

From (3.4) and taking in consideration that 𝜓 is a nondecreasing function, we get 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓(𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑥𝑛+1)}), (3.6) 

for all 𝑛 ≥ 1. 

If for some 𝑛 ≥ 1, we have 𝑑(𝑥𝑛 , 𝑥𝑛−1) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1), from (3.6), we get  

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓(𝑑(𝑥𝑛 , 𝑥𝑛+1)) < 𝑑(𝑥𝑛 , 𝑥𝑛+1)(3.7) 

a contraction. Thus, for all 𝑛 ≥ 1, we have   

𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛−1), 𝑑(𝑥𝑛 , 𝑥𝑛+1)} = 𝑑(𝑥𝑛 , 𝑥𝑛−1)(3.8) 

Using (3.6) and (3.8), we get 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓(𝑑(𝑥𝑛 , 𝑥𝑛−1)) for all 𝑛 ≥ 1, (3.9) 

Continuing this process, we get 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓
2𝑑(𝑥𝑛−1, 𝑥𝑛−2) 

Using mathematical induction, we have 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜓𝑛𝑑(𝑥1, 𝑥0) for all 𝑛 ≥ 1. (3.10) 

From (3.10) and using triangular inequality, for all 𝑘 ≥ 1, we have 

𝑑(𝑥𝑛 , 𝑥𝑛+𝑘) ≤ 𝑑(𝑥𝑛 , 𝑥𝑛+1) + ⋯+ 𝑑(𝑥𝑛+𝑘−1, 𝑥𝑛+𝑘) 

≤ ∑ 𝜓𝑝𝑑(𝑥1, 𝑥0)

𝑛+𝑘−1

𝑝=𝑛

 

 

≤ ∑ 𝜓𝑝𝑑(𝑥1, 𝑥0) → 0,

𝑛+𝑘−1

𝑝=𝑛

 

as 𝑝 → ∞.     (3.11) 

Thus, {𝑥𝑛} is a Cauchy sequence in 𝑋. 

Since complete there exists 𝑢 ∈ 𝑋 such that lim
𝑛→∞

𝑥𝑛 = 𝑢. By continuity of 𝑇, we have 

𝑇𝑢 = 𝑇 ( lim
𝑛→∞

𝑥𝑛) 
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= lim
𝑛→∞

𝑇𝑥𝑛 

= lim
𝑛→∞

𝑥𝑛+1 

= 𝑢.     (3.12) 

Hence, 𝑢 is a fixed point of 𝑇. 

 

The next theorem does not require the continuity assumption of 𝑇. 

Theorem 3.3 Let (𝑋, 𝑑) be a complete metric space. Suppose that 𝑇: 𝑋 → 𝑋 is a generalized 𝛼-𝜓 contractive 

mapping and satisfies the following conditions:  

i. 𝑇 is 𝛼 admissible;  

ii. there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑇𝑥0, 𝑇𝑥0) ≥ 1; 

iii. if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then there exists a 

subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that𝛼(𝑥𝑛(𝑘), 𝑥) ≥ 1 for all 𝑘.  

Then there exists 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑢.  

Proof From the proof of Theorem 3.2, we know that the sequence {𝑥𝑛} defined by 𝑥𝑛+1 = 𝑇𝑥𝑛 for all 𝑛 ≥ 0, 

converges for some 𝑢 ∈ 𝑋. From (3.3) and condition (iii), there exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that 

𝛼(𝑥𝑛(𝑘), 𝑢) ≥ 1 for all 𝑘. Applying (3.1), for all 𝑘, we get  

𝑑(𝑥𝑛(𝑘)+1, 𝑇𝑢) = 𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑢) ≤ 𝛼𝑑(𝑥𝑛(𝑘), 𝑢)𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑢) ≤ 𝜓 (𝑀(𝑥𝑛(𝑘), 𝑢)).     (3.13) 

On the other hand, we have 

𝑀(𝑥𝑛(𝑘), 𝑢)

= 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥𝑛(𝑘), 𝑢), 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1), 𝑑(𝑢, 𝑇𝑢),

𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)𝑑(𝑢, 𝑇𝑢)

𝑑(𝑥𝑛(𝑘), 𝑢)
,

𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)𝑑(𝑢, 𝑇𝑢)

𝑑(𝑥𝑛(𝑘), 𝑢) + 𝑑(𝑥𝑛(𝑘), 𝑇𝑢) + 𝑑(𝑢, 𝑥𝑛(𝑘)+1)
,
𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)𝑑(𝑥𝑛(𝑘), 𝑇𝑢) + 𝑑(𝑢, 𝑥𝑛(𝑘)+1)𝑑(𝑢, 𝑇𝑢)

𝑑(𝑢, 𝑥𝑛(𝑘)+1) + 𝑑(𝑥𝑛(𝑘), 𝑇𝑢) }
 
 

 
 

 

            

          (3.14) 

Letting 𝑘 → ∞ in (3.14), we get 

lim
𝑘→∞

𝑀(𝑥𝑛(𝑘), 𝑢) = 𝑑(𝑢, 𝑇𝑢)     (3.15) 

Suppose that 𝑑(𝑢, 𝑇𝑢) > 0. From (3.15), for 𝑘 large enough, we have 𝑀(𝑥𝑛(𝑘), 𝑢) > 0, which implies that 

𝜓 (𝑀(𝑥𝑛(𝑘), 𝑢)) < 𝑀(𝑥𝑛(𝑘), 𝑢). Thus, from (3.13), we get 

𝑑(𝑥𝑛(𝑘)+1, 𝑇𝑢) < 𝑀(𝑥𝑛(𝑘), 𝑢)     (3.16) 

Letting 𝑘 → ∞ in (3.16),and using (3.15), we get 

𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑇𝑢)    (3.17) 

a contradiction. Thus, we have 𝑑(𝑢, 𝑇𝑢) = 0, that is, 𝑢 = 𝑇𝑢. Hence, we have a fixed point 𝑢 of 𝑇. 

Example 3.4 Let 𝑋 = {(1,0), (0,1)} ⊆ ℝ2, and define the Euclidean distance as  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 10 (2024) 

__________________________________________________________________________________ 

5240 

𝑑((𝑥, 𝑦), (𝑢, 𝑣)) = |𝑥 − 𝑢| + |𝑦 − 𝑣| for all (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋.  (3.18)                  Clearly, 𝑑(𝑋, 𝑑) is a 

complete metric space. The mapping 𝑇(𝑥, 𝑦) = (𝑥, 𝑦) is trivially continuous and satisfies for any 𝜓 ∈ Ψ. 

𝛼((𝑥, 𝑦), (𝑢, 𝑣))𝑑(𝑇(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ≤ 𝜓 (𝑀((𝑥, 𝑦), (𝑢, 𝑣))), (3.19) 

for all (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋, were 

𝛼((𝑥, 𝑦), (𝑢, 𝑣)) = {
1
0

     𝑖𝑓 (𝑥, 𝑦) = (𝑢, 𝑣),

     𝑖𝑓 (𝑥, 𝑦) ≠ (𝑢, 𝑣).
 

           (3.20) 

Thus, 𝑇 is a generalized 𝛼-𝜓 contractive mapping. On the other hand, for all (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋, we have 

𝛼((𝑥, 𝑦), (𝑢, 𝑣)) ≥ 1 ⟶ (𝑥, 𝑦) = (𝑢, 𝑣) ⟶ 𝑇(𝑥, 𝑦) = 𝑇(𝑢, 𝑣) ⟶ 𝛼(𝑇(𝑥, 𝑦), 𝑇(𝑢, 𝑣)) ≥ 1. 

           (3.21) 

Thus, 𝑇 is 𝛼 admissible. Moreover, for all (𝑥, 𝑦) ∈ 𝑋, we have 𝛼((𝑥, 𝑦), (𝑢, 𝑣)) ≥ 1. Then the assumptions of 

Theorem 3.2 are satisfied. Note that the assumptions of Theorem 3.3 are also satisfied; indeed if {(𝑥𝑛 , 𝑦𝑛)} is a 

sequence in 𝑋 that converges to some point (𝑥, 𝑦) ∈ 𝑋 with 𝛼((𝑥𝑛 , 𝑦𝑛), (𝑥𝑛+1, 𝑦𝑛+1)) ≥ 1 for all 𝑛, then, from 

the definition of 𝛼, we have (𝑥𝑛 , 𝑦𝑛) = (𝑥, 𝑦) for all 𝑛, which implies that 𝛼((𝑥𝑛 , 𝑦𝑛), (𝑥, 𝑦)) = 1 for all 𝑛. 

However, in this case, 𝑇 has two fixed points in 𝑋.  

To assure the uniqueness of a fixed point of a generalized 𝛼-𝜓 contractive mapping, we will consider the 

following hypothesis. 

For all 𝑥, 𝑦 ∈ 𝐹𝑖𝑥(𝑇), there exists 𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1.      (3.22)  

       

Theorem 3.5 Adding condition (3.22) to the hypotheses of Theorem 3.2 (resp., Theorem 3.3), we obtain that 𝑢 

is the unique fixed point of 𝑇.  

Proof Suppose that 𝑣 is another fixed point of 𝑇. From (3.22), there exists 𝑧 ∈ 𝑋 such that 

     𝛼(𝑢, 𝑧) ≥ 1 and 𝛼(𝑣, 𝑧) ≥ 1.            (3.23) 

Since 𝑇is 𝛼 admissible, from (3.23), we have 

 𝛼(𝑢, 𝑇𝑛𝑧) ≥ 1 and 𝛼(𝑣, 𝑇𝑛𝑧) ≥ 1, ∀𝑛.            (3.24) 

Define the sequence {𝑧𝑛} in 𝑋 by 𝑧𝑛+1 = 𝑇𝑧𝑛for all 𝑛 ≥ 0 and 𝑧0 = 𝑧. From (3.24), for all 𝑛, we have 

 𝑑(𝑢, 𝑧𝑛+1) = 𝑑(𝑇𝑢, 𝑇𝑧𝑛) ≤ 𝛼(𝑢, 𝑧𝑛)𝑑(𝑇𝑢, 𝑇𝑧𝑛) ≤ 𝜓(𝑀(𝑢, 𝑧𝑛))(3.25) 

On the other hand, we have 

𝑀(𝑢, 𝑧𝑛) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑢, 𝑧𝑛), 𝑑(𝑢, 𝑢), 𝑑(𝑧𝑛, 𝑧𝑛+1),

𝑑(𝑢, 𝑢)𝑑(𝑧𝑛 , 𝑧𝑛+1)

𝑑(𝑢, 𝑧𝑛)
 ,

𝑑(𝑢, 𝑢)𝑑(𝑧𝑛 , 𝑧𝑛+1)

𝑑(𝑢, 𝑧𝑛) + 𝑑(𝑢, 𝑧𝑛+1) + 𝑑(𝑧𝑛 , 𝑢)
,
𝑑(𝑢, 𝑢)𝑑(𝑢, 𝑧𝑛+1) + 𝑑(𝑧𝑛, 𝑢)𝑑(𝑧𝑛 , 𝑧𝑛+1)

𝑑(𝑧𝑛 , 𝑢) + 𝑑(𝑢, 𝑧𝑛+1) }
 
 

 
 

 

≤ 𝑚𝑎𝑥{𝑑(𝑢, 𝑧𝑛), 𝑑(𝑢, 𝑧𝑛+1)} 

    (3.26) 

Using (3.25), (3.26) and the monotone property of 𝜓, we get 

  𝑑(𝑢, 𝑧𝑛+1) ≤ 𝜓(𝑚𝑎𝑥{𝑑(𝑢, 𝑧𝑛), 𝑑(𝑢, 𝑧𝑛+1)}),   (3.27) 
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for all 𝑛. Without restriction to the generality, we can suppose that 𝑑(𝑢, 𝑧𝑛) > 0 for all 𝑛. If 

𝑚𝑎𝑥{𝑑(𝑢, 𝑧𝑛), 𝑑(𝑢, 𝑧𝑛+1)} = 𝑑(𝑢, 𝑧𝑛+1), we get from (3.27)that 

   𝑑(𝑢, 𝑧𝑛+1) ≤ 𝜓(𝑑(𝑢, 𝑧𝑛+1)) < 𝑑(𝑢, 𝑧𝑛+1)    (3.28) 

a contradiction. Thus, we have 𝑚𝑎𝑥{𝑑(𝑢, 𝑧𝑛), 𝑑(𝑢, 𝑧𝑛+1)} = 𝑑(𝑢, 𝑧𝑛), and  

𝑑(𝑢, 𝑧𝑛+1) ≤ 𝜓(𝑑(𝑢, 𝑧𝑛))   (3.29) 

for all 𝑛.  

This implies that 

     𝑑(𝑢, 𝑧𝑛) ≤ 𝜓
𝑛(𝑑(𝑢, 𝑧0)), ∀𝑛 ≥ 1.  (3.30) 

Letting 𝑛 → ∞ in (3.30), we obtain that  

lim
𝑛→∞

𝑑(𝑧𝑛 , 𝑢) = 0.   

  (3.31) 

Similarly, we have 

lim
𝑛→∞

𝑑(𝑧𝑛 , 𝑣) = 0.   

  (3.32) 

From (3.31)and (3.32), it follows that 𝑢 = 𝑣. Thus, 𝑢 is the unique fixed point of 𝑇. 

Example 3.6 Let 𝑋 = [0,1] be endowed with metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋.  

Clearly, 𝑑(𝑋, 𝑑) is a complete metric space. Define the mapping  𝑇: 𝑋 → 𝑋 by 

𝑇𝑥 = {

1

4
, 𝑖𝑓 𝑥 ∈ [0,1),

0, 𝑖𝑓 𝑥 = 1.
 

(3.33) 

In this case, T is not continuous. Define the mapping 𝛼:𝑋 × 𝑋 → [0,∞) by 

𝛼(𝑥, 𝑦) = {
1, 𝑖𝑓 (𝑥, 𝑦) ∈ ([0,

1

4
] × [

1

4
, 1]) ∪ ([

1

4
, 1] × [0,

1

4
]) ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

(3.34) 

Prove that  

i. 𝑇: 𝑋 → 𝑋 is a generalized 𝛼-𝜓 contractive mapping, where 𝜓(𝑡) =
𝑡

2
 for all 𝑡 ≥ 0;  

ii. 𝑇 is 𝛼 admissible;  

iii. there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑇𝑥0, 𝑇𝑥0) ≥ 1; 

iv. if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then there exists a 

subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that𝛼(𝑥𝑛(𝑘), 𝑥) ≥ 1 for all 𝑘;  

v. condition (3.22) is satisfied.  

Proof To show (i), we have to prove that (3.1) is satisfied for every 𝑥, 𝑦 ∈ 𝑋. If 𝑥 ∈ [0, 1 4⁄ ] and 𝑦 = 1, we 

have 
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𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑇𝑥, 𝑇𝑦) = |
1

4
− 0| =

1

4
𝑑(𝑦, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)) 

 Then (3.1) holds. If 𝑥 = 1 and 𝑦 ∈ [0, 1 4⁄ ], we have 

 

𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑇𝑥, 𝑇𝑦) = |0 −
1

4
| =

1

4
𝑑(𝑥, 𝑇𝑥) ≤ 𝜓(𝑀(𝑥, 𝑦)) 

Then (3.1) holds also in this case. The other cases are trivial. Thus, (3.1) is satisfied for every 𝑥, 𝑦 ∈ 𝑋.  

To show (ii). Let (𝑥, 𝑦) ∈ 𝑋 × 𝑋 such that 𝛼(𝑥, 𝑦) ≥ 1. From the definition of 𝛼, we have two cases.  

Case 1 if (𝑥, 𝑦) ∈ [0, 1 4⁄ ] × [1 4⁄ , 1]. In this case, we have (𝑇𝑥, 𝑇𝑦) ∈ [1 4⁄ , 1] × [0, 1 4⁄ ], which implies that 

𝛼(𝑇𝑥, 𝑇𝑦) = 1.  

Case 2 if (𝑥, 𝑦) ∈ [1 4⁄ , 1] × [0, 1 4⁄ ]. In this case, we have (𝑇𝑥, 𝑇𝑦) ∈ [0, 1 4⁄ ] × [1 4⁄ , 1], which implies that 

𝛼(𝑇𝑥, 𝑇𝑦) = 1.  

Combining Case 1 and Case 2, we have 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Thus, 𝑇 is 𝛼 admissible.  

To show (iii) Taking 𝑥0 = 0, we have 𝛼(𝑥0, 𝑇𝑥0) = 𝛼(0,
1
4⁄ ) = 1.  

To show (iv). Let {𝑥𝑛} be a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 1 for all 𝑛 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, for 

some 𝑥 ∈ 𝑋. From the definition of 𝛼, for all 𝑛, we have 

(𝑥𝑛 , 𝑥𝑛+1) ∈ ([0,
1

4
] × [

1

4
, 1]) ∪ ([

1

4
, 1] × [0,

1

4
]). 

Since ([0, 1 4⁄ ] × [1 4⁄ , 1]) ∪ ([1 4⁄ , 1] × [0, 1 4⁄ ]) is a closed set with respect to the Euclidean metric, we get 

that 

(𝑥, 𝑥) ∈ ([0,
1

4
] × [

1

4
, 1]) ∪ ([

1

4
, 1] × [0,

1

4
]), 

 which implies that 𝑥 = 1
4⁄ . Thus, we have 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛.  

To show (v). Let (𝑥, 𝑦) ∈ 𝑋 × 𝑋. It is easy to show that, for 𝑧 = 1 4⁄ , we have 𝛼(𝑥, 𝑧)𝛼(𝑦, 𝑧) = 1. So, condition 

(3.22) is satisfied.  

Conclusion. Now, all the hypotheses of Theorem 3.5 are satisfied; thus, T has a unique fixed point 𝑢 ∈ 𝑋. In this 

case, we have 𝑢 = 1
4⁄ .  

4 Consequences 

 In this section we give some consequences of the main results presented above. Specifically, we apply our 

results to generalized metric spaces endowed with a partial order.  

Definition 4.1 [1, 8,15] Let (𝑋, ≼) be a partially ordered set and 𝑇: 𝑋 → 𝑋 be a mapping. 𝑇 is nondecreasing 

with respect to ≼ if 

𝑥, 𝑦 ∈ 𝑋, 𝑥 ≼ 𝑦 ⟹ 𝑇𝑥 ≼ 𝑇𝑦. 

        (4.1) 
Definition 4.2 [1, 6,22] Let (𝑋, ≼) be a partially ordered set. A sequence {𝑥𝑛} ⊂ 𝑋 is said to be nondecreasing 

with respect ≼ if 𝑥𝑛 ≼ 𝑥𝑛+1 for all 𝑛. 

Definition 4.3 [7, 13] Let (𝑋, ≼) be a partially ordered set and 𝑑 be a metric on 𝑋. (𝑋, ≼, 𝑑)is regular if for 

every nondecreasing sequence {𝑥𝑛} in 𝑋 such that 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, there exists a subsequence {𝑥𝑛(𝑘)} of 

{𝑥𝑛} such that𝑥𝑛(𝑘) ≼ 𝑥 for all 𝑘.  
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Corollary 4.4 Let (𝑋, ≼)be a partially ordered complete generalized metric space and 𝑇: 𝑋 → 𝑋 be a 

nondecreasing self mapping. Suppose that the following conditions are satisfied:  

i. there exists a function 𝜓 ∈ Ψ for which  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)), (4.2) 

for all 𝑥, 𝑦 ∈ X with x ≼ y; 

ii. there exists 𝑥0 ∈ X such that 𝑥0 ≼ 𝑇𝑥0; 

iii. either 𝑇 is continuous, or 𝑋 is regular.  

Then 𝑇 has a fixed point 𝑢 ∈ X.  

Proof Define a mapping 𝛼:𝑋 × 𝑋 → [0,∞) as follows. 

𝛼(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 ≼ 𝑦 𝑜𝑟 𝑦 ≼ 𝑥,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, the existence conditions of Theorem 3.2 hold and hence 𝑇 has a fixed point.  

 

The following results are immediate consequences of Corollary 4.4. 

Corollary 4.5 Let (𝑋, ≼)be a partially ordered complete generalized metric space and 𝑇: 𝑋 → 𝑋 be a 

nondecreasing self mapping. Suppose that the following conditions are satisfied:  

i. there exists a function 𝜓 ∈ Ψ for which  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)), (4.3) 

for all 𝑥, 𝑦 ∈ X with x ≼ y; 

ii. there exists 𝑥0 ∈ X such that 𝑥0 ≼ 𝑇𝑥0; 

iii. either 𝑇 is continuous, or 𝑋 is regular.  

Then 𝑇 has a fixed point 𝑢 ∈ X.  

Proof Define a mapping 𝛼:𝑋 × 𝑋 → [0,∞) as follows. 

𝛼(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 ≼ 𝑦 𝑜𝑟 𝑦 ≼ 𝑥,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

observe that the existence conditions of Theorem 3.3 hold and hence 𝑇 has a fixed point.  

 

Particular case of the above results can be presented in the form of corollary as: 

Corollary 4.6 Let (𝑋, ≼)be a partially ordered complete generalized metric space and 𝑇: 𝑋 → 𝑋 be a 

nondecreasing self mapping. Suppose that the following conditions are satisfied:  

i. there exists a function 𝜓 ∈ Ψ for which  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑀(𝑥, 𝑦)), (4.4) 

where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {
𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦),

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)
 ,

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)+𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)
,
𝑑(𝑥,𝑇𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑦,𝑇𝑥)+𝑑(𝑥,𝑇𝑦)

} 

for all 𝑥, 𝑦 ∈ X with x ≼ y; 
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ii. there exists 𝑥0 ∈ X such that 𝑥0 ≼ 𝑇𝑥0; 

iii. either 𝑇 is continuous, or 𝑋 is regular.  

Then 𝑇 has a fixed point 𝑢 ∈ X.  

Proof Define a mapping 𝛼:𝑋 × 𝑋 → [0,∞) as follows. 

𝛼(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 ≼ 𝑦 𝑜𝑟 𝑦 ≼ 𝑥,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, the existence conditions of Theorem 3.2 hold and hence 𝑇 has a fixed point.  

 

The following results are immediate consequences of Corollary 4.6. 

Corollary 4.7 Let (𝑋, ≼)be a partially ordered complete generalized metric space and 𝑇: 𝑋 → 𝑋 be a 

nondecreasing self mapping. Suppose that the following conditions are satisfied:  

i. there exists a function 𝜓 ∈ Ψ for which  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)), (4.5) 

where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {
𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦),

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)
 ,

𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑦)+𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)
,
𝑑(𝑥,𝑇𝑥)𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑦,𝑇𝑥)+𝑑(𝑥,𝑇𝑦)

} 

for all 𝑥, 𝑦 ∈ X with x ≼ y; 

ii. there exists 𝑥0 ∈ X such that 𝑥0 ≼ 𝑇𝑥0; 

iii. either 𝑇 is continuous, or 𝑋 is regular.  

Then 𝑇 has a fixed point 𝑢 ∈ X.  

Proof Define a mapping 𝛼:𝑋 × 𝑋 → [0,∞) as follows. 

𝛼(𝑥, 𝑦) = {
1, 𝑖𝑓 𝑥 ≼ 𝑦 𝑜𝑟 𝑦 ≼ 𝑥,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

we observe that the existence conditions of Theorem 3.3 hold and hence 𝑇 has a fixed point.  

5 Conclusion 

In this paper, we introduced and studied a class of mappings called generalized 𝛼-𝜓 contractive mappings, 

which are a generalization of 𝛼-𝜓 contractive mappings. We consider various fixed point theorems for such 

mappings in complete metric spaces with the help of 𝛼-admissible mappings. Furthermore, we establish fixed 

point theorems for metric spaces endowed with partial orders as an application of our main results. These 

theorems extend and improve upon existing results in the literature, and are accompanied by illustrative 

examples that demonstrate the benefits of our approach. 
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