
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

5159 

Advanced System for Identifying Ancient 

Photographs Using Contemporary Tagged 

Images 

Prashant Ghulappanavar1 , Hameem Shanavas2 
1*Research Scholar, MVJCE Bengaluru, Karnataka, India                                                                                          
2Professor, Dept of ECE, MVJCE Bengaluru, Karnataka, India 

Abstract: - Huge collections of imagery on the Internet have inspired a wave of approaches to location recognition, 

the problem of determining where a photo was taken by comparing it to a database of images of previously seen 

locations from the past few years. Due to this, as excitement in these areas increases, a world-scale location 

recognition engine from all the geo-tagged pictures from online photo collections, such as Flicker, Instagram, and 

street view databases from Microsoft and Google. Matching modern historical images to old ones requires a 

special effort when dealing with historical photos. The performance of many algorithms is good on modern 

pictures but is not very efficient on old historical photos. A novel approach to place identification, taking pictures 

taken in different weather conditions, illuminations, and positions, is proposed in this paper, expecting more 

accuracy than other existing systems. 
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I. Introduction 

The matching feature has been extensively researched and applied to computer vision, pattern recognition, image 

processing, and object detection. One such approach is the matching of modern to historical photos. Many 

travelers, historians, historical campaigns, and researchers are interested in matching images that depict a timeline 

view of specific locations or landmarks. Capturing a photo of a location of an existing place by a photographer in 

the past was traditionally done using photographic films.  These photos are usually only shared with a few friends 

or family, so the photographer's picture usually has limited quality. With the exponential growth of the World 

Wide Web and the growth of photo-sharing websites like Flicker, a massive change in the size of photo processing 

and photo Collections has happened with digital photography's invention. 

We now have many photos of cities, monuments, and places worldwide. Therefore, dealing with these images and 

extracting their features is a challenging task as a great set of pictures of specific benchmarks captured countless 

times by different photographers with different cameras from different points of view and in various weather 

conditions is difficult. 

Developmental stages of landmarks or detecting deformation or damage that has occurred can be discovered 

during processing steps using these features. There are different feature extraction approaches, such as vector-

based and binary-based. In our paper, we made use of vector-based approaches. A photo set of famous landmarks 

in the world has been gathered. Different photographers captured these photos countless times, from various 

perspectives, using different cameras and different weather conditions. Figure 2 shows pictures of 6 landmarks 

with historical and modern images. Compared to contemporary digital images, you can see old photographs with 

different textures, colors, and contrast characteristics. All these images can be used to create a novel place 

recognition system during implementation. 
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II. Existing System 

Soonmin Bae et al. [04] presented a real-time visualization and estimation approach for rephotograph that helps 

users reach a desired location during capture. Reference images taken from the chosen viewpoint are the input to 

this approach using SIFT Detector, ANN matching, RANSAC, and a 5-point algorithm. Nikolas Hesse et al. [10] 

presented the guidelines for optimizing the performance and exploring how well a standard place recognition 

system is suited to handle IR data. The system will increase enormously if SIFT descriptors computed on Hessian 

Affine regions are used instead of SURF features taking three datasets. Bolei Zhou et al. [11] used Convolutional 

Neural Networks (CNNs) to learn bottom-line features for scene recognition tasks and establish new state-of-the-

art results using many scene-centric datasets. Working on the CNN layer's responses shows differences in the 

internal representations of object-centric and Scene-centric networks.  

Basura Fernando et al. [12] presented a dataset spanning over 25 locations and more than one century. They 

analyzed several representations, looking for the most novel approach to the variability induced by color 

degradation and different image acquisition processes. Experimental evolution has depicted that the Hessian 

Affine detector, root-SIFT, and fisher vector are more suitable for the task at hand than other detector and 

descriptor pairs. Niko Sunderhauf et al. [14] comprehensively compared the behavior of three state-of-the-art 

ConvNets on the problems of particular relevance to navigation for robots. An extensive experiment presentation 

took four real-world datasets cultivated to evaluate each specific challenge in place recognition. Networks trained 

for semantic categorization networks also place better in the recognition site when faced with extreme changes in 

appearance and provide a reference for the networks. The layers are optimal for various aspects of the place 

recognition problem. 

III. Proposed system 

The methodology presented here is a novel approach to recognizing historical images. It consists of two phases: 

training and testing.  

A. Training phase 

In the training phase, as in Figure 1, input modern images are pre-processed based on the dataset chosen and are 

passed to the detector block. Where the detection is done using Hessine Affine (HA)[01] and Dense detectors 

[08], this output is passed to the descriptor block, which is used to do a feature description using the rootSIFT 

(rSIFT) descriptor. Representation is done using Fisher Vector (FV). The ESA domain adoption technique is also 

used to avoid problems caused by data variability. The extracted feature is stored in the Knowledge base after 

training the Convolutional Neural Network (CNN).  

Fisher Vector 

 Let X =  {xt, t =  1 . . . T } be the set of T local descriptors extracted from an input image. By probability 

density function uλ with parameters λ  4  we assume that the generation process of X can be modeled. By the 

gradient, vector X can be described. 

Gλ
X =  

1

T
 ∇λ log uλ(X)                                                             (01) 

 The log-likelihood gradient describes the contribution of parameters for the generation process. This 

vector‘s dimensionality depends only on the number of parameters in λ but not on the number of patches T. These 

gradients' natural kernel is represented as, 

K(X, Y) =  Gλ
X′

Fλ
−1Gλ

Y                                                            (02) 

where Fλ is the Fisher information matrix of uλ: 

Fλ =  Ex~uλ
[∇λ log uλ(x) ∇λ log uλ(x)′]                                          (03) 

As Fλ is symmetric and positive definite, it has Cholesky decomposition Fλ =  Lλ 
′ Lλ and K(X, Y) can be rewritten 

as a dot product between normalized vectors Gλ with, 
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gλ
X = Lλ Gλ

X                                                                         (04) 

As the Fisher vector of X refers to Gλ
X. We choose uλ to be the Gaussian mixture model (GMM), 

uλ(x) = ∑ wi

K

i=1
ui(x)                                                              (05) 

λ Is denoted as λ =  {wi, Σi, i = 1 .  .  .  K }, where wi, μ
i
 and Σ

i
 are mixture weight, mean vector, and covariance 

matrix of Gaussian ui respectively. Assuming covariance matrices to be diagonal, we denote by the variance 

vectorσi
2. Using Maximum Likelihood (ML) estimation, the GMM uλ is trained on a large number of images. 

Assuming that the xt ‘s are generated by uλ independently and, therefore, 

Gλ
X =  

1

T
 ∑ ∇λ log uλ(xt)

T

t=1

                                                         (06) 

Concerning the standard deviation and mean parameters (the gradient concerning the weight parameters brings 

little additional information), we consider the gradient. Diagonal closed form approximation, in which case the 

normalization of the slope by Lλ =  Fλ
−1/2

 is simply a Whitening of the dimensions used. Consider γ
t
(i) be the 

soft assignment of xt descriptor to Gaussian i, 

γ
t
(i) =  

wi ui(xt)

∑ wi
K
i=1 ui(xt)

                                                                  (07) 

 The dimensionality of the descriptors xt is denoted by D. 𝒢μ,i
X  be the D-dimensional gradient concerning 

the mean ui of Gaussian i. The mathematical derivations are given by, 

𝒢μ,i
X =  

1

T√wi

∑ γ
t
(i) (

xt −  ui

σi

)

T

t=1

                                                  (08) 

𝒢σ,i
X =  

1

T√2wi

∑ γ
t
(i) (

xt − ui

σi
2 − 1)

T

t=1

                                           (09) 

where the division operation between the vectors is a term by term. The final gradient vector obtained Gλ
X is the 

concatenation of the 𝒢x,i
X  and 𝒢σ,i

X  for i=1.  .  . K, and therefore it is 2K D dimensional [03]. 

Root SIFT 

This approach is well known for areas such as image categorization and texture classification, which uses 

Euclidean distance to compare histograms, which often yields inferior performance compared to using measures 

such as  𝒳2 or Hellinger. SIFT [09] was initially designed to be used with Euclidean distance. But here, we used 

the Hellinger kernel to bring a more significant benefit. Let us consider that x and y is n vectors with unit Euclidean 

norm(‖X‖2 = 1), then dE(X, Y) the Euclidian distance between them is related to their similarity SE(X, Y) as 

dE(X, Y)2 =  ‖X − Y‖2
2 =  ‖X‖2 

2 +  ‖y‖2
2 −  2XTY             = 2 − 2SE(X, Y)                                             (10) 

where SE(X, Y) =  XTY and the last step follows from‖X‖2 
2 + ‖y‖2

2 = 1. We want to replace the Euclidean 

similarity/kernel with the Hellinger kernel. This kernel is also known as the Bhattacharyya’s coefficient for two 

L1 normalized histograms, X and Y i,e ∑ xi
n
i  = 1and xi  ≥ 0), is defined as, 

H(X, Y) =  ∑ √xiyi

n

i=1

                                                              (11) 
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Figure 1: Block Diagram of Place Recognition System 

Using a simple algebraic manipulation in two steps: 1) L1 normalize the SIFT vector (initially, it has unit L2 

norm);2) square root each element. It is then followed by SE(√X, √Y) = √X
T

√Y = H(X, Y), and the resulting 

vectors are L2 normalized since SE(√X, √X) = ∑ xi
n
i=1  = 1. Hence, a new descriptor is described, which is called 

RootSIFT. This is an element-wise square root of the normalized L1 SIFT vectors. Comparing RootSIFT 

descriptors using Euclidean distance is equivalent to using the Hellinger kernel to compare the original vectors of 

SIFT, 

dE(√X, √Y)2 = 2 − 2H(X, Y)                                                                  (12) 

RootSIFT is used in the specific object retrieval pipeline by simply replacing SIFT with RootSIFT at every point 

[05]. 

Extended subspace Alignment(ESA)  

The Subspace Alignment (SA) method learns a linear transformation matrix M ∈. Rds×dT  Which aligns the target 

and source coordinate systems by mining the below given Bregman divergence, 

F(M) =  ‖XsM −  XT‖F
2                                                                        (13)                    

where ‖. ‖F
2 denotes the Frobenius norm. It is shown that the optimal matrix is M =  XS

′ XT , and Xa =  XsXS
′ XT  . 

The similarity between these two samples is given by, 

Sim(Xs, XT) = (xS , Xa)(xTXT)′                                                               (14) 

The Demonstration of deviation between two successive Eigenvalues to be bounded can be shown. We make use 

of bounds to determine the maximum size of the subspaces dmax that to get a non-overfitting and stable matrix 

M. Subspace dimensionality d can then be done by minimizing the classification error through twofold cross-

validation over the labeled source data and finally setting  ds =  dT = d. For more information, refer to [06]. 

The equation in (14) operates in the original RD space. Any problem can be formulated in the RdT  target subspace 

after the domain transformation. To reduce the computational complexity, ESA proposes a new approach to 

evaluate the similarity between target subspaces projected data and target-aligned source samples by using their 

Euclidean distance[07] directly, 

Θ(xS, xT ) =  ‖xSXa −  xTXT‖2                                                                 (15) 

When working with data represented by high-dimensional features, the cross-validation procedure described to 

define the best d for SA becomes very slow and tedious. In cases where some kinds of origin have minimal 

recorded samples, reliable results are unlikely to be provided. The two domains are considered separately, which 

implies ds ≠ dT. For more information, refer to [07]. The flow for FV is as in Figure 2. 
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Figure 2: Pre and Post steps for Fisher Vector 

B. Testing phase 

In the testing phase, the query image is pre-processed based on the chosen dataset and passed to the detector block. 

Where the detection is done using Hessine Affine (HA) [02] and Dense detectors, this output is passed to the 

descriptor block, which is used to do a feature description using the rootSIFT (rSIFT) descriptor. Representation 

is done using Fisher Vector (FV). The output of this is passed to ESA in the training phase. The extracted feature 

is compared with the features stored in the Knowledge base using a CNN classifier. Classified output is then 

displayed in Figure 3. 
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Figure 3: Pictures of Seven Locations Over Large Time Lags Showing an Evident Change in Appearances 

C. Convolutional Neural Networks(CNN) 

CNNs are multi-layer supervised networks that can learn features automatically from datasets. CNNs have 

achieved state-of-the-art performance in almost all essential classification tasks for the last few years. Place 

recognition is an important task of image similarity matching.  According to the benchmark demonstration result, 

in-depth features from different layers of CNNs consistently perform better than other matching techniques; mid-

level features of CNNs are evaluated for implementing image retrieval and achieving comparable performance 

characteristics using other prior art. The best performance is obtained using mid-network features rather than those 

learned at the final layers [23]. The three types of layers present in a convolutional neural network are: 

Convolutional:  

Layers consisting of a rectangular grid of neurons are called convolutional layers. The requirement is that the 

previous layer is a rectangular grid of neurons. Each neuron takes its input from a rectangular section of the 

previous layer. The weights for the rectangular section are the same for each neuron in the convolutional layer. 

Therefore, this layer is not more than the convolution image of the previous layer, and weights indicate that the 

filter is convolutional. In addition to it, there may be many grids in each convolutional layer. Using potentially 

different filters, each grid takes inputs from all the grids in the previous layer. 

Consider we have some 𝑁 × 𝑁 square neuron layer followed by our convolutional layer. If we use 

an 𝑚 × 𝑚 filter ω, then our convolutional layer output of size(𝑁 − 𝑚 + 1)  ×  (𝑁 − 𝑚 + 1). For computing the 

pre-nonlinearity input to some unit  xi,j
l in this layer, it is necessary to sum up the contributions (weighted by the 

filter components) from the cells of the previous layer. Figure 4 depicts the different layers of CNN. 

𝑥𝑖𝑗
𝑙 =  ∑ ∑ 𝑤𝑎𝑏

𝑚−1

𝑏=0

𝑚−1

𝑎=0

𝑦(𝑖+𝑎)(𝑗+𝑏)
𝑙−1                                                            (15)  

This approach is taken during forward propagation. Then, this layer applies its nonlinearity, and the relation is 

given by, 

𝑦𝑖,𝑗
𝑙 =  𝜎(𝑥𝑖𝑗

𝑙  )                                                                               (16)  

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

5165 

 

Figure 4: Different Layers of Convolutional Neural Network (CNN) 

Max-Pooling:  

There may be a pooling layer after every convolutional layer. This layer takes small rectangular blocks from the 

convolutional layer and produces a single output from that block subsamples it. There are several approaches to 

do this poling, such as taking the average or the maximum and learning the linear combination of the neurons in 

the block. These layers are always max-pooling layers, i.e., they take the maximum amount of the block they are 

pooling. Comparatively, max-pooling layers are superficial, and they take 𝑘 × 𝑘 region and give a single value as 

the output, which is the maximum in that region. Suppose their input layer is a 𝑁 × 𝑁 layer, then the output is a 
𝑁

𝑘
×

𝑁

𝑘
 Layer, as each 𝑘 × 𝑘 block is reduced to a single value via the maximum function. 

Fully-Connected:  

The high-level reasoning in the neural network is done via fully connected layers after several convolutional and 

max pooling layers. Fully connected layers are not spatially located anymore, so there can be no convolutional 

layers after a fully connected layer, as fully connected layers are not spatially located anymore. For more details, 

refer to [23]. The max-pooling layers do not do any learning themselves. Instead, they reduce the size of the 

problem by introducing sparseness. 𝑘 × 𝑘 blocks are reduced to a single value in forward propagation. Then, from 

the previous layer, this single value acquires an error computed from backward propagation. This error is then 

just forwarded to the place where it originated. The back-propagated errors from max-pooling layers are relatively 

sparse since they only came from one place in the 𝑘 × 𝑘 block. 

IV. Experimental Result 

As we know, modern to-historical image matching is a severe issue in many internet Media, so an efficient method 

to achieve this is necessary. In this methodology, we propose a new job of naming the places given in an old photo 

utilizing modern images. A set of contemporary images where trained and historical old images are shown as the 

test images for matching purposes. 

The Matlab2012a tool is utilized to find the results of the approached method. Figure 5 explains the input images 

considered for testing the system. Figure 5 (a) shows the input image, which is present in a grayscale image; the 

intensity of the image is very poor; to enhance the image's brightness, pre-processing contrast stretching is used.  

Figures 5(b), (c), and (d) show the color image that was captured recently.  
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“TajMahal” “?” “?” “?” 

“Statue of Liberty” “?” “?” “?” 

“Eiffel Tower” “?” “?” “?” 

Figure 5: Pictures of Three Locations over Large Time Lags Showing an Evident Change in Visual 

Appearance 

Figure 3 depicts the testing and training images. 8 historical image and their corresponding modern images with 

similarity matching are given. Proper matches for all the images are found with reasonable accuracy. A total of 8 

classes are taken, each having 5 images. 40 images are trained, and the testing folder consists of 8 old photos. 

Figure 6 shows that the existing system without domain adoption has a recognition rate of 48.5%, and a 

recognition rate of 49% is obtained using our proposed method. Figure 7 depicts the comparison graph between 

Existing and proposed domain adoption methods. The comparison says the proposed system gives better retrieval 

results than existing systems. 

 

Figure 6: Comparison Graph for Existing and 

Proposed Method without Domain Adoption 

Method. 

 
Figure 7: Comparison Graph for Existing and 

Proposed Method with Domain  Adoption Method. 

V. Conclusion 

Modern to-historical image matching is a severe issue for many internet media, so an efficient method to achieve 

this is essential. In this paper, we proposed a new task of recognizing the places given in an old photograph using 

modern images. A set of contemporary images was trained, and historical old photos were provided as the test 

images for matching purposes. Our analysis depicted a robust approach involving a Hessian Affine detector and 
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dense detector with root-SIFT descriptor along with Fisher vector, ESA domain adoption method, and CNN 

classifier to get improved results compared to other place recognition systems. 

Reference 

[1] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van 

Gool, “A comparison of affine region detectors,” Springer, Vol. 65, Issue 1, pp. 43-72, 2005. 

[2] Michal Perdoch, Ondrej Chum and Jiri Matas, “Efficient Representation of Local Geometry for Large Scale 

Object Retrieval,” pp. 9 – 16, IEEE, 2009. 

[3] Florent Perronnin, Jorge Sanchez and Thomas Mensink, “Improving the Fisher Kernel for Large-Scale Image 

Classification,” ACM, 2010. 

[4] Soonmin Bae and Fredo Durand, “Computational Re-Photography,” ACM, 2010. 

[5] Relja Arandjelovic and Andrew Zisserman, “Three things everyone should know to improve object retrieval,” 

IEEE, pp. 2911 – 2918, 2012. 

[6] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars, “Unsupervised Visual Domain 

Adaptation Using Subspace Alignment,” IEEE, pp. 2960 – 2967, 2013. 

[7] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars, “Subspace Alignment for Domain 

Adaptation,” ACM, 2014. 

[8] Basura Fernando, Tatiana Tommasi, and Tinne Tuytelaars, “Lost in the Past: Recognizing Locations Over 

Large Time Lags,” ACM, 2014. 

[9] Heider K. Ali and Anthony Whitehead, “Modern to Historic Image Matching: ORB/SURF an Effective 

Matching Technique,” 2014. 

[10] Nikolas Hesse, Christoph Bodensteiner, and Michael Arens, “Performance Evaluation of Image-Based 

Location Recognition Approaches Based on Large-scale UAV Imagery,” 2014. 

[11] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva, “Learning Deep Features 

for Scene Recognition Using Places Database,” 2014. 

[12] Basura Fernando, Tatiana Tommasi, and Tinne Tuytelaars, “Location Recognition over Large Time Lags,” 

ACM, 2015. 

[13] Zetao Chen, Obadiah Lam, Adam Jacobson, and Michael Milford, “Convolutional Neural Network-based 

Place Recognition,” 2015. 

[14] Niko S¨underhauf, Sareh Shirazi, Feras Dayoub, Ben Upcroft, and Michael Milford, “On the Performance of 

ConvNet Features for Place Recognition”, IEEE, 2015. 


