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Abstract: -We investigate the steady state behavior of a batch arrival single server queue in which the first phase 

of service with general service time is essential and the second phase of service with heterogeneous general 

service time is optional. We term such a two-phase service as generalized Coxian-2 service, which means that 

every customer may take only the first essential phase of service or the first essential phase of service followed 

by second optional phase of service.  It is further assumed that after completion of service(s) selected by a 

customer,the server, with a certain probability, may opt to take a working vacation with exponentially 

distributed length of time. As soon as the server’s working vacation time completes, it instantly stops the 

undergoing service and the customer with incomplete service joins the head of the queue. This customer whose 

service is interrupted, will be taken up by the server for the regular first essential phase of the Coxian-2 service.   

We obtain steady state probability generating functions for the queue size at a random epoch of time. Some 

particular cases of interest have been discussed. 

Keywords: Generalized Coxian-2 service, generating function, working vacation, queue size, steady state. 

 

1. Introduction 

In real life, there are many queueing situations with one or the other kinds of interruptions during the period 

when the server is proving service. These interruptions may occur due to sudden breakdowns experienced by the 

server or due to vacations taken by the server. During vacations the server stops working but resumes work as 

soon as the vacation period ends. Most of the papers on vacations deal with non-working vacations. More 

recently, quite a few authors have worked on queueing systems with working vacations. In such kind of 

vacations, the server does not stop working completely but does provide service but with a different rateof 

service. As soon as the vacation period is over, the server instantly switches to the original rate. For queueing 

systems with general interruptions and breakdowns, we refer the reader to Fadhil, R et al [1], Federgruen and So 

[2], Madan et al [6[ and Takine [7], for papers on non-working vacations, we refer the reader to Hur and Ahn 

[3], Ke [4], Madan and Abu-Rub [5] and Zhang et al [8] and for queueing systems with working vacations, we 

refer the reader to Tian et al [9], Zhang et al [10], Sun and Li [11, 12] and Li and Tian [13, 14]. In the present 

paper, we study a single server queueing system with arrivals in batches of variable size. The server provides 

first essential phase of service to all customers. On completion of the first phase of service, a customer has the 

option to ask for the second phase of service. We term such a combination of two phases of service as 

generalized Coxian-2 service.  Both phases follow a general service time distribution with different service 

times. In addition, we assume that after completing the first phase or both phases of service chosen by a 

customer, the server has the option to take a working vacation of a random duration with an exponential service 

time and exponentially distributed vacation time. We determine steady state solution for the queue size in terms 

of generating functions for all states of the system.  Some interesting particular cases have been derived. 
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2. The Mathematical Model 

We describe the mathematical model of our study by the following underlying assumptions: 

• Customers arrive at the system in batches of variable size in accordance with a compound Poisson process. 

Let 
dtci

(
...,3,2,1=i
) be the first order probability that a batch of  i  customers arrives at the system 

during a short interval of time 
],( dttt +

, where 
10  ic

,

1
1

=


=i

ic

and 
0

is the mean arrival rate 

of batches. The arriving batches wait in the queue in the order of their arrival. It is further assumed that 

customers with each batch are pre-ordered for the purpose of service.  

• The system comprises of a single server who provides generalized Coxian-2 service which means essential 

first phase of service followed by optional second phase of service. The first phase of service is provided to 

all customers one by one on a first-come, first-served basis. Let 𝑮𝟏(𝒙) and 𝒈𝟏(𝒙) respectively be the 

distribution function and the density function of the first phase service time and let 
dxx)(1  be the 

conditional probability of completion of first phase service, given that the elapsed time is x, so that 

𝜇1(𝑥) =
𝑔1(𝑥)

1−𝐺1(𝑥)
 (2.1) 

and, therefore, 

𝑔1(𝑥) = 𝜇1(𝑥)𝑒− ∫ 𝜇1(𝑡)𝑑𝑡
𝑥

0   .        (2.2)  

• After completion of the first phase of service, the server provides second phase of service which is optional. 

A customer may take second phase of service with probability p or may leave the system with probability 1-

p. Let 𝑮𝟐(𝒙) and 𝒈𝟐(𝒙) respectively be the distribution function and the density function of the first phase 

service time and let 𝜇2(𝑥)𝑑𝑥 be the conditional probability of completion of first phase service, given that 

the elapsed time is x , so that 

𝜇2(𝑥) =
𝑔2(𝑥)

1−𝐺2(𝑥)
 (2.3) 

and, therefore, 

𝑔2(𝑥) = 𝜇2(𝑥)𝑒− ∫ 𝜇2(𝑡)𝑑𝑡
𝑥

0   .        (2.4) 

• On every completion of service(s) chosen by a customer, the server has a choice of taking a working 

vacation with probability 𝛼, or no vacation with probability 1 − 𝛼. We further assume that as soon as a 

customer’s service during vacation period is completeed, the server again has a choice to continue being on 

vacation with pobability𝛼 or to return to provide the first essential service with probability 1 − 𝛼. 

• We assume that the server’s working vacation period has an exponential distribution with mean working 

vacation  time 1/𝛾, 𝛾 > 0 and therefore, 𝛾𝑑𝑡 is the probability that a working vacation will terminate during 

the time interval (𝑡, 𝑡 + 𝑑𝑡] 

• It is further assumed  that during a working vacation, the server serves the customers one  by one following  

an exponential distribution with mean service time 1/𝜗, 𝜗 > 0. Accordingly,  𝜗𝑑𝑡 is the probability that 

during a working vacation a service will complete  during the time interval (𝑡, 𝑡 + 𝑑𝑡] 

• As soon as either vacation is complete, the server instantly takes up the customer, if any, at the head of the 

queue and resumes providing first essential phase of service. If there is no customer waiting for service, the 

server still joins the queue and remains idle till a new batch of customers arrives. 

• Various stochastic processes involved in the system are independent of each other. 
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3. Definitions and Equations 

We assume that 𝑊𝑛
(𝑗)

(𝑥, 𝑡), 
2,1=j

 is the probability that at time t, there are 0n customers in the queue 

excluding  one customer in 
j

th phase  service with elapsed service time x. Accordingly,  𝑊𝑛
(𝑗)

(𝑡) =

∫ 𝑊(𝑥, 𝑡)
∞

𝑥=0
𝑑𝑥 denotes the probability that at time t, there are 0n  customers in the queue excluding one 

customer in the 
j

th phase service irrespective of the value of x. Further, we define 𝑉𝑛(𝑡) to be the probability 

that at time t there are 0n  customers in the queue excluding one customer in service and the server is in the 

state of working vacation. Further, Q(t) be the probability that at time t, the queue is empty and the server is idle. 

Further, let 𝑃𝑛(𝑡) = ∑ 𝑊(𝑡)2
𝑗=1 + 𝑉𝑛(𝑡) denote the probability that at time t there are n (0) customers in the 

queue irrespective of whether the server is providing the first or the second phase of service or he is on the 

working vacation. Finally, let Q(t) be the probability that at time t, there is no customer in the system and the 

server is idle.  

4. Steady State Equations Governing the System 

Let 

𝐿𝑖𝑚
𝑡→∞

 𝑊𝑛
(𝑗)

(𝑥, 𝑡) = 𝑊𝑛
(𝑗)

(𝑥), 𝐿𝑖𝑚 
𝑡→∞

𝑊𝑛
(𝑗)

(𝑡) = 𝑊, , 𝐿𝑖𝑚 
𝑡→∞

𝑉𝑛(𝑡) = 𝑉𝑛 

𝐿𝑖𝑚
𝑡→∞

𝑃𝑛(𝑡) = ∑ 𝐿𝑖𝑚
𝑡→∞

2
𝑗=1 𝑊𝑛

(𝑗)
(𝑡) + 𝐿𝑖𝑚

𝑡→∞
𝑉𝑛(𝑡) = 𝑃𝑛’ 

2,1=j
, and  

QtQLim
t

=
→

)(
denote the corresponding 

steady state probabilities. 

Applying the usual probability reasoning based on the underlying assumptions of the model, we obtain the 

following set of integra differential-difference forward equations: 

𝑑

𝑑𝑥
𝑊𝑛

(1)(𝑥) + (𝜆 + 𝜇1(𝑥))𝑊𝑛
(1)(𝑥) 

= 𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(1)
(𝑥),    n1  (4.1) 

𝑑

𝑑𝑥
𝑊0

(1)
(𝑥) + (𝜆 + 𝜇1(𝑥))𝑊0

(1)
(𝑥, 𝑡) = 0 (4.2) 

𝑑

𝑑𝑥
𝑊𝑛

(2)(𝑥) + (𝜆 + 𝜇2(𝑥))𝑊𝑛
(2)(𝑥) 

= 𝜆 ∑ 𝑐𝑖
𝑛
1 𝑊𝑛−𝑖

(2)
(𝑥), n1  (4.3) 

𝑑

𝑑𝑥
𝑊0

(2)
(𝑥) + (𝜆 + 𝜇2(𝑥))𝑊0

(2)
(𝑥, 𝑡) = 0,                                         (4.4) 

(𝜆 + 𝜗 + 𝛾)𝑉𝑛 = 𝜆 ∑ 𝑐𝑖

𝑛

𝑖=1

𝑉𝑛−𝑖 +  𝛼(1 − 𝑝) ∫ 𝑊𝑛+1
(1) (𝑥)𝜇1(𝑥)𝑑𝑥

∞

0

 

+ 𝛼 ∫ 𝑊𝑛+1
(2) (𝑥)𝜇2(𝑥)𝑑𝑥

∞

0
 + 𝛼𝜗𝑉𝑛+1𝑛 ≥ 1 (4.5) 

(𝜆 + 𝜗 + 𝛾)𝑉0 =  𝛼(1 − 𝑝) ∫ 𝑊1
(1)(𝑥)𝜇1(𝑥)𝑑𝑥

∞

0
+ 𝛼 ∫ 𝑊1

(2)(𝑥)𝜇2(𝑥)𝑑𝑥
∞

0
 +𝛼𝜗𝑉1 (4.6) 

𝜆𝑄 = (1 − 𝑝) ∫ 𝑊0
(1)(𝑥)𝜇1(𝑥)𝑑𝑥

∞

0
+ ∫ 𝑊0

(2)(𝑥)𝜇2(𝑥)𝑑𝑥
∞

0
+ ∫ 𝑊0

(2)(𝑥)𝜇2(𝑥)𝑑𝑥
∞

0
+ 𝜗𝑉0 (4.7) 

The above equations will be solved based on the following boundary conditions:  

𝑊𝑛
(1)(0) = (1 − 𝑝)(1 − 𝛼) ∫ 𝑊𝑛+1

(1) (𝑥)𝜇1(𝑥)𝑑𝑥
∞

0
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+(1 − 𝛼) ∫ 𝑊𝑛+1
(2)

∞

0

(𝑥)𝜇2(𝑥)𝑑𝑥 

+(1 − 𝛼) ∫ 𝑊𝑛+1
(2)∞

0
(𝑥)𝜇2(𝑥) + (1 − 𝛼)𝜗𝑉𝑛+1   +𝛾𝑉𝑛 + 𝜆𝑐𝑛+1𝑄 n 0 ,      (4.8) 

𝑊𝑛
(2)

(0) = 𝑝 ∫ 𝑊𝑛
(1)

(𝑥)𝜇1(𝑥)𝑑𝑥
∞

0
, n 0 ,     (4.9) 

5. Steady State Queue Size at a Random Epoch  

We define the following probability generating functions (pgf’s): 

𝑊(𝑗)(𝑥, 𝑧) = ∑ 𝑧𝑛𝑊𝑛
(𝑗)∞

𝑛=0 (𝑥), 𝐴(𝑗)(𝑧) = ∑ 𝑧𝑛𝑊𝑛
(𝑗)∞

𝑛=0 ,    j=1,2,   

𝑉(𝑧) = ∑ 𝑧𝑛𝑉𝑛
∞
𝑛=0  ,   

             𝑃(𝑧) = ∑ 𝑊(𝑗)(𝑧)2
𝑗=1 + 𝑉(𝑧) , |z| 1 . 

𝐶(𝑧) = ∑ 𝑧𝑖∞
𝑖=1 𝑐𝑖 , (5.1) 

Multiplying equation (4.1) by 
nz , summing over n and adding the result to (4.2) and using (5.1) we get    

𝑑

𝑑𝑥
𝑊(1)(𝑥, 𝑧) + (𝜆 + 𝜇1(𝑥) − 𝜆𝐶(𝑧))𝑊(1)(𝑥, 𝑧) = 0 (5.2) 

Similar operation on equations (4.3)- (4.4), (4.5) -(4.6) and (4.8) and (4.9) yield 

𝑑

𝑑𝑥
𝑊(2)(𝑥, 𝑧) + (𝜆 + 𝜇2(𝑥) − 𝜆𝐶(𝑧))𝑊(2)(𝑥, 𝑧) = 0  (5.3) 

[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]𝑉(𝑧) 

               = 𝛼(1 − 𝑝) ∫ 𝑊(1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
+ 𝛼 ∫ 𝑊(2)(𝑥, 𝑧)𝜇2(𝑥)𝑑𝑥

∞

0
 -−𝛼𝜆𝑄    (5.4) 

Z𝑊(1)(0, 𝑧) = (1 − 𝑝)(1 − 𝛼) ∫ 𝑊(1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
 

+(1 − 𝛼) ∫ 𝑊(2)∞

0
(𝑥, 𝑧)𝜇2(𝑥)𝑑 + (1 − 𝛼)𝜗𝑉(𝑧) +𝛾𝑧𝑉(𝑧) + [𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄,   (5.5) 

𝑊(2)(0, 𝑧) = 𝑝 ∫ 𝑊(1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
,  (5.6) 

Next, we integrate (5.2) and (5.3) between the limits 0 and x to get 

𝑊(1)(𝑥, 𝑧) = 𝑊(1)(0, 𝑧) 𝑒𝑥𝑝 [
−(𝜆 − 𝜆𝐶(𝑧))𝑥

− ∫ 𝜇1(𝑡)𝑑𝑡
𝑥

0

] (5.7)   

𝑊(2)(𝑥, 𝑧) = 𝑊(2)(0, 𝑧) 𝑒𝑥𝑝 [
−(𝜆 − 𝜆𝐶(𝑧))𝑥

− ∫ 𝜇2(𝑡)𝑑𝑡
𝑥

0

] (5.8) 

Where 𝑊(1)(0, 𝑧) and 𝑊(2)(0, 𝑧) are given respectively in (5.5) and (5.6). 

We further integrate equations (5.7) and (5.8) with respect to x by parts to get 

W(1)(z) = W(1)(0, z) (
1-B1(λ-λC(z))

(λ-λC(z))
) (5.9) 

𝑊(2)(𝑧) = 𝑊(2)(0, 𝑧) (
1−𝐵2(𝜆−𝜆𝐶(𝑧))

(𝜆−𝜆𝐶(𝑧))
) (5.10) 

Where  

𝐵𝑗(𝜆 − 𝜆𝐶(𝑧)) = ∫ 𝑒−(𝜆−𝜆𝐶(𝑧))𝑥𝑑𝐴(𝑗)(𝑥)
∞

0
, 

2,1=j
 is the Laplace-Steiltjes transform of the jth phase service 

time.  
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Next, to find out the values of the integrals ∫ 𝑊(1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
 and ∫ 𝑊(2)(𝑥, 𝑧)𝜇2(𝑥)𝑑𝑥

∞

0
 appearing in 

equations (5.4), (5.5) and (5.6), we proceed as follows: 

We multiply equations (5.7) and (5.8) by 𝜇1(𝑥) and 𝜇2(𝑥) respectively to obtain 

∫ 𝑊(1)(𝑥, 𝑧)𝜇1(𝑥)𝑑𝑥
∞

0
= 𝑊(1)(0, 𝑧)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)] (5.11) 

∫ 𝑊(2)(𝑥, 𝑧)𝜇2(𝑥)𝑑𝑥
∞

0
= 𝐴(2)(0, 𝑧)𝐵(2)[𝜆 − 𝜆𝐶(𝑧)]  (5.12) 

We use equations (5.11) and (5.12) into equations (5.4), (5.5) and (5.6) and on simplifying, we get 

[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]𝑉(𝑧) 

= 𝛼(1 − 𝑝)𝑊(1)(0, 𝑧)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)] 

              + 𝛼𝑊(2)(0, 𝑧)𝐴̄(2)[𝜆 − 𝜆𝐶(𝑧)] − 𝛼𝜆𝑄 (5.13) 

Z𝑊(1)(0, 𝑧) = (1 − 𝑝)(1 − 𝛼)𝑊(1)(0, 𝑧)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)] 

+(1 − 𝛼)𝑊(2)(0, 𝑧)𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧) 

                            + (1 − 𝛼)𝜗𝑉(𝑧)   + 𝛾 𝑧𝑉(𝑧) 

+[𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄 (5.14) 

𝑊(2)(0, 𝑧) = 𝑝𝑊(1)(0, 𝑧)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)],      (5.15) 

Next, we use (5.15) into (5.13) and (5.14), simplify to obtain 

[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]𝑉(𝑧) 

      = {
𝛼(1 − 𝑝)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

+ 𝛼𝑝𝑊(1)(0, 𝑧)𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
} 𝐴(1)(0, 𝑧 − 𝛼𝜆𝑄  (5.16) 

[
𝑧 − (1 − 𝑝)(1 − 𝛼)𝐵(1)[𝜆 − 𝜆𝐶(𝑧)]

−(1 − 𝛼)𝑝𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
] 𝑊(1)(0, 𝑧) 

= [(1 − 𝛼)𝜗 + 𝛾𝑧 ]𝑉(𝑧) + [𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄,       (5.17)  

On solving (5.16) and (5.17) for W(1)(0, z))  and V(z), we obtain 

𝑊(1)(0, 𝑧) =

[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗][𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄

−[(1 − 𝛼)𝜗 + 𝛾𝑧 ]𝛼𝜆𝑄

[
𝑧 − (1 − 𝑝)(1 − 𝛼)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

−(1 − 𝛼)𝑝𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
] [(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]

− {
𝛼(1 − 𝑝)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

+ 𝛼𝑝𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
} [(1 − 𝛼)𝜗 + 𝛾𝑧 ]

 

  (5.18) 

𝑉(𝑧) =

[𝑧−(1−𝑝)(1−𝛼)𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]−(1−𝛼)𝑝𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]𝐴̄(2)[𝜆−𝜆𝐶(𝑧)]][−𝛼𝜆𝑄]

+{𝛼(1−𝑝)𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]+ 𝛼𝑝𝐴(1)(0,𝑧)𝐴̄(2)[𝜆−𝜆𝐶(𝑧)]}[𝜆𝐶(𝑧)−𝜆(1−𝛼)]𝑄

[
𝑧−(1−𝑝)(1−𝛼)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

−(1−𝛼)𝑝𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]𝐵̄(2)[𝜆−𝜆𝐶(𝑧)]
][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗]

−{
𝛼(1−𝑝)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

+ 𝛼𝑝𝐵̄(2)[𝜆−𝜆𝐶(𝑧)]
}[(1−𝛼)𝜗+𝛾𝑧 ]

 (5.19) 

Using (5.19) in (5.15), we get 
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𝑊(2)(0, 𝑧) =
𝑝𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]〈

[(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗][𝜆𝐶(𝑧)−𝜆(1−𝛼)]𝑄

−[(1−𝛼)𝜗+𝛾𝑧 ]𝛼𝜆𝑄
〉

[
𝑧−(1−𝑝)(1−𝛼)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

−(1−𝛼)𝑝𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]𝐵̄(2)[𝜆−𝜆𝐶(𝑧)]
][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗]

−{
𝛼(1−𝑝)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

+ 𝛼𝑝𝐵̄(2)[𝜆−𝜆𝐶(𝑧)]
}[(1−𝛼)𝜗+𝛾𝑧 ]

  (5.20) 

 

Next, using (5.18) in (5.9) and (5.20) in (5.10), we get  

𝑊(1)( 𝑧) =
[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗][𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄 − [(1 − 𝛼)𝜗 + 𝛾𝑧 ]𝛼𝜆𝑄 (

1−𝐺1(𝜆−𝜆𝐶(𝑧))

(𝜆−𝜆𝐶(𝑧))
)

[
𝑧 − (1 − 𝑝)(1 − 𝛼)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

−(1 − 𝛼)𝑝𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
] [(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]

− {
𝛼(1 − 𝑝)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

+ 𝛼𝑝𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
} [(1 − 𝛼)𝜗 + 𝛾𝑧 ]

 

  (5.21) 

𝑊(2)(𝑧) =
𝑝𝐴̄(1)[𝜆 − 𝜆𝐶(𝑧)]〈[(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗][𝜆𝐶(𝑧) − 𝜆(1 − 𝛼)]𝑄 − [(1 − 𝛼)𝜗 + 𝛾𝑧 ]𝛼𝜆𝑄〉 (

1−𝐺2(𝜆−𝜆𝐶(𝑧))

(𝜆−𝜆𝐶(𝑧))
)

[
𝑧 − (1 − 𝑝)(1 − 𝛼)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

−(1 − 𝛼)𝑝𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
] [(𝜆 − 𝜆𝐶(𝑧) + 𝜗 + 𝛾)𝑧 − 𝛼𝜗]

− {
𝛼(1 − 𝑝)𝐵̄(1)[𝜆 − 𝜆𝐶(𝑧)]

+ 𝛼𝑝𝐵̄(2)[𝜆 − 𝜆𝐶(𝑧)]
} [(1 − 𝛼)𝜗 + 𝛾𝑧 ]

 

 (5.22) 

We have thus determined all three generating functions V(z), 𝑊(1)( 𝑧)and 𝑊(2)(𝑧) in the above equations 

(5.19),(5.21) and (5.22). 

Note that the unknown probability Qcan be determined by the normalizing condition 

V (1) + 𝐴(1)(1)+ 𝐴(2)(1)+Q=1        (5.23) 

6. Particular Cases  

CASE 1.  No Second Phase Service (Only First Phase Service with Optional Working Vacations 

In this case, we substitute p=0 in the main results (5.19), (5.21) and (5.22). Thus, we obtain 

𝑊(1)( 𝑧) =
[(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗][𝜆𝐶(𝑧)−𝜆(1−𝛼)]𝑄−[(1−𝛼)𝜗+𝛾𝑧 ]𝛼𝜆𝑄(

1−𝐺1(𝜆−𝜆𝐶(𝑧))

(𝜆−𝜆𝐶(𝑧))
)

[𝑧−(1−𝛼)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗]

−[ 𝑧−(1−𝛼)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]][(1−𝛼)𝜗+𝛾𝑧 ]

 (6.1) 

𝑊(2)( 𝑧) = 0 (6.2) 

𝑉(𝑧) =

[𝑧−(1−𝛼)𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]][−𝛼𝜆𝑄]

+{𝛼𝐴̄(1)[𝜆−𝜆𝐶(𝑧)} [][𝜆𝐶(𝑧)−𝜆(1−𝛼)]𝑄

[𝑧−(1−𝛼)𝐵(1)[𝜆−𝜆𝐶(𝑧)]][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗]

−[ 𝑧−(1−𝛼)𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]][(1−𝛼)𝜗+𝛾𝑧 ]

 (6.3) 

CASE 2.   First Phase Essential Service followed by Optional Second Phase Service Without Optional Working 

Vacations 

In this case, we substitute 𝛼 = 0in the main results to obtain 

𝑊(1)( 𝑧) =
[(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧][𝜆𝐶(𝑧)−𝜆]𝑄

[
𝑧−(1−𝑝)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

−𝑝𝐵(1)[𝜆−𝜆𝐶(𝑧)]𝐴̄(2)[𝜆−𝜆𝐶(𝑧)]
][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧]

 (6.4) 
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𝑊(2)(𝑧) =
𝑝𝐴̄(1)[𝜆−𝜆𝐶(𝑧)]〈[(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧−𝛼𝜗][𝜆𝐶(𝑧)−𝜆(1−𝛼)]𝑄〉

[
𝑧−(1−𝑝)𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]

−𝑝𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]𝐴̄(2)[𝜆−𝜆𝐶(𝑧)]
][(𝜆−𝜆𝐶(𝑧)+𝜗+𝛾)𝑧]

 (6.5) 

𝑉(𝑧) = 0 (6.6) 

 

CASE 3.    No Optional Second Phase Service and No Optional Working Vacations 

In this case, we let 𝑝 = 0, 𝛼 = 0 , 𝜗 = 0  and  𝛾=0 in the main results found above and get 

𝑊(1)( 𝑧) =
[𝜆𝐶(𝑧)−𝜆]𝑄

[𝑧−𝐵̄(1)[𝜆−𝜆𝐶(𝑧)]]
−

 (6.7) 

𝑊(2)( 𝑧) = 0 (6.8) 

𝑉(𝑧) = 0 (6.9)  
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