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Abstract:- Accurate hydrokinetic efficiency prediction plays a crucial role in renewable energy research, 

particularly in assessing the effectiveness of small water turbine harvesters. Various models, including both 

conventional and Artificial Neural Network (ANN) approaches are being utilized for hydrokinetic efficiency 

prediction. External factors and geographical variables significantly influences these predictions, underscoring 

the importance of identifying relevant variables for precise forecasts. To address this, the Waikato Environment 

for Knowledge Analysis (WEKA) software analyzed 25 diverse water sources with distinct environmental 

factors to pinpoint influential input parameters for ANN-based hydrokinetic efficiency prediction. Key 

parameters identified included turbine hydraulic power, shaft mechanical power, turbine efficiency, the ratio of 

blade length to blade width, blade axle length, and blade inclination angle. Three ANN models (ANN-1, ANN-

2, and ANN-3) were developed, with maximum Mean Absolute Percentage Errors (MAPE) of 19.36%, 11.29%, 

and 8.31%, respectively. Impressively, the ANN-3 model, incorporating specific input variables, demonstrated a 

12.67% enhanced prediction accuracy compared to ANN-1 and ANN-2. WEKA identified blade width, blade 

axle length, blade inclination angle, and turbine efficiency as the most relevant input variables, culminating in a 

robust hydrokinetic efficiency prediction of 29.6%. 

Keywords: hydrokinetic efficiency, ANN, ore based water harvester, prediction models. 

 

1. Introduction 

Hydropower is an environmentally friendly source of energy that gets its supply from the sun-driven, 

perpetually renewing water cycle. It is an environmentally beneficial energy source because of its dependency 

on water. The conventional method of using hydropower entails building large reservoirs and dams to create a 

significant water head that allows for the production of electricity with efficiency. Nonetheless, the possibility of 

small-scale hydropower systems is becoming increasingly recognized, especially when considering minor flow 

canals and rivers. This realization stems from the desire to extend the advantages of hydropower to more rural or 

economically disadvantaged areas, as well as environmental and social problems related to large-scale dams.  

Due to a number of benefits, small hydrokinetic turbines intended for use in rivers and canals with moderate 

flow are becoming more and more popular as an alternative to fossil fuels. Small-scale hydrokinetic turbines 

present an environmentally benign and more cost-effective alternative to huge dams, which can be costly and 

destructive to the environment. huge dams also require extensive infrastructure. The unhindered flow of fish and 

other aquatic species is ensured by their operation without impounding water, which is a vital advantage over 

traditional hydropower plants where dams can obstruct fish migration pathways and have negative effects on 

local aquatic ecosystems. 
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Because hydrokinetic turbines can run in partially submerged locations, they provide a variety of installation 

possibilities. Turbines of this design can run effectively above and below the water's surface. In rivers or tidal 

environments, partial submersion improves flexibility to changing levels of water and flow conditions. By 

harnessing the kinetic energy of flowing water, the turbines minimise their negative environmental effects while 

producing electricity. Because of their adaptable deployment, they may be used in a variety of aquatic habitats 

and contribute to decentralised, sustainable energy solutions that cause less disturbance to the environment and 

the visual arts.  

For effective electricity generation from flowing water, small-scale hydrokinetic turbines rely on a number of 

crucial characteristics for proper operation. One important aspect that affects the amount of kinetic energy that 

can be extracted is the water's flow velocity. For turbines to function efficiently, they have to run within certain 

velocity ranges. The amount of energy that can be captured is directly impacted by water density, another 

crucial factor. The efficiency of a turbine is largely dependent on its design, which includes the form and 

arrangement of its blades. This allows the turbine to convert kinetic energy into mechanical power. The area that 

the revolving blades cover, or the swept area, affects how much water is caught and how much energy is 

extracted. The turbine's operational boundaries are defined by its cut-in and cut-out speeds, guaranteeing safe 

and efficient operation.  

The overall efficiency of the system depends on the generator efficiency, which quantifies the transformation of 

mechanical power into electrical power. To survive exposure to water, materials used in the construction of 

turbines must be robust and resistant to corrosion. Fish-friendly designs facilitate safe fish passage by taking the 

effects on aquatic life into account. When designing and implementing small-scale hydrokinetic turbines, 

deployment depth, modularity, scalability, environmental effect, operational maintenance demands, and 

integration with power electronics are all important factors to take into account. For energy solutions to be 

sustainable, effective, and ecologically responsible, these factors must be balanced. 

It is essential to research hydrokinetic turbine parameters in order to create effective, long-term energy 

solutions. Optimising design and performance requires an understanding of variables like flow velocity, turbine 

efficiency, and environmental effect. By guiding turbine adaptation to changing water conditions, these 

parameters maximise energy extraction and foster reliability. Making turbines that are both efficient and 

environmentally benign requires balancing factors including material durability, fish-friendly design, and 

operational requirements. In order to maximise ecological impact, minimise the viability of hydrokinetic energy, 

and improve the overall effectiveness of small-scale hydrokinetic systems, a thorough understanding of these 

characteristics is essential. Numerous studies have been conducted as a result of the expanding significance of 

hydrokinetic small-scale turbine harvesters. 

In order to determine an appropriate power prediction technique for horizontal axis hydrokinetic turbines, 

Andrei et al. (2017) carried out research. Using an open-source framework for modelling and design, the study 

made use of operational data from literature, laboratory testing, and simulation. The best blade geometry for tiny 

rotor models was found through the investigation, and these models were evaluated in an experimental bench 

specifically designed for axial hydraulic turbine models. The study modified the performance curve power 

coefficient vs. tip speed ratio to forecast the extracted power for a range of hydrokinetic turbines with varying 

diameters but comparable geometry using the data and findings gathered. 

A numerical and experimental investigation on a scale-model Horizontal Axis Hydrokinetic Turbine (HAHT) 

was carried out by Javaherchi et al. (2017). The turbine's modified blade shape was intended to reproduce the 

RM1's planned Cp–TSR performance curve at particular Reynolds numbers. It was based on the U.S. 

Department of Energy Reference Model 1 (RM1). Planar particle image velocimetry was used to get new 

insights, and a load cell and magnetic angular encoder were used to measure wake structure and performance. 

The study used numerical solutions of the RANS equations to examine the wake evolution and the rotor flow 

field. Insights into characterising HAHT and recommendations for verifying numerical tools with experimental 

data were obtained by comparing the results of experiments and numerical calculations. 

In order to forecast scour caused by marine hydrokinetic turbines on erodible bed surfaces in fluvial or tidal 

environments, Musa et al. (2018) created a modelling framework. The paper describes flow structures affecting 

equilibrium scour depth conditions at the turbine base by applying the phenomenological theory of turbulence 
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and utilising recent developments in bridge scour formulation. The theoretical model uses dimensionless 

parameters to estimate scour depth by connecting turbine operating conditions to flow structures and scour depth 

through drag force. Different sediment mobility regimes, turbine configurations, hydraulic settings, bed 

materials, and migrating bedform types are all included in the validation process at the laboratory scale. This 

work provides a physics-based prediction formula for the local scour depth, which is useful for flow energy 

conversion technologies' system design anchoring studies and feasibility assessments. 

A horizontal axis micro-hydrokinetic river turbine (HAMHRT) was created by Wang et al. (2019) for use in 

regional renewable energy projects. In order to develop a 2 m diameter, three-bladed HAMHRT, the research 

involved choosing a hydrofoil shape, evaluating hydrodynamic and cavitation characteristics, and maximising 

chord length and twist angle for various blade placements. After that, hydrodynamic analysis under several 

operating conditions was conducted using numerical computer modelling, which revealed a maximum 

efficiency of 25.2% at a river current speed of 0.8 m/s, 4° pitch angle, and a tip speed ratio of 6. Despite 

variations in tip speed ratio from design values and varying current speeds, the rotor exhibited consistent power 

production and efficiency. 

Riglin et al. (2021) constructed and tested a preliminary hydrokinetic turbine prototype intended for use in 

rivers. The prototype was tested in a circulating water channel after extensive blade characterization and 

optimization investigations using computational fluid dynamics (CFD) simulations. Channel flow rates were 

varied between 1.0 and 1.7 m/s during the tests, while generator loading was manually changed. In conjunction 

with the ground renewable energy system (GREENS), a solar charging device replicated the operation of a 

turbine. During manual generator loading, validation using CFD predictions produced a peak power coefficient 

of 0.37 at a tip speed ratio of 2.50%. With a relative inaccuracy of less than 3.0% when taking into consideration 

different component losses in numerical forecasts, the prototype showed that it could be successfully integrated 

with GREENS for portable applications. 

Studies on the Savonius Hydro-Kinetic Turbine (SHKT), renowned for its affordable design and possibility for 

local manufacture, were carried out by Rengma et al. (2022). Through 3D CFD simulations, artificial neural 

network (ANN)-augmented optimisation, and testing, an optimised semicircular SHKT geometry was 

developed, positioning it as a feasible option for off-grid power generation in remote and hilly places. After 

identifying the factors impacting the power coefficient (Cp) through CFD research, the ANN was trained to 

optimise the blade parameter. The optimised blade was verified by experiments, which showed that better 

performance was suggested by aspect ratios between 1.4 and 2.0 and overlap ratios between 0.15 and 0.2. A 

maximum Cp of 0.194 at a TSR of 0.8 was obtained with a blade arc angle of 166°.  

The Savonius hydrokinetic turbine, a vertical axis turbine used to generate electricity in rivers and canals, was 

explored by Khani et al. (2023). The power coefficient (CP) was used to gauge the turbine's performance. The 

study used a number of soft computing techniques, taking into account a variety of input variables, including 

aspect ratio, overlap ratio, blockage ratio, number of blades, blade arc angle, blade form factor, twist angle, 

Reynolds number, and tip speed ratio (TSR). When compared to other statistical indices, CatBoost proved to be 

the most effective strategy for estimating the power coefficient. Aspect ratio was found to be the most important 

design parameter by sensitive analysis, which suggests CatBoost for precise forecasts taking into account a 

variety of input variables in Savonius hydrokinetic turbines. 

The focus of Paturi et al. (2022) was on hydrokinetic turbines, which are known for their exceptional efficiency 

in hydropower applications. A hydrokinetic turbine's physical dimensions and operating characteristics affect its 

efficiency. In order to evaluate an Archimedes screw turbine (AST), the study used a standalone artificial neural 

network (ANN) with a graphical user interface (GUI) due to the intricate and nonlinear interaction between 

geometric configuration and output. Axle length, blade stride, blade angle, and diameter ratio were the input 

variables, while the only output was the power coefficient (Cp). The 4-3-1 design showed the lowest average 

error (0.0211) and root mean square error (RMSE) (0.0008) among different neural network topologies. The 

predictions showed good agreement with data from second-order regression models (SORM) and computational 

fluid dynamics (CFD). The effect of AST variables on the efficiency of hydropower production was measured 

using a virtual hydropower system, with diameter ratio being the most important parameter (84%). The 
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relationship between AST's geometric configuration and hydropower production efficiency was accurately 

analysed by the created model. 

Blade Element Momentum (BEM) theory, which is frequently used to forecast the performance of horizontal 

axis conversion systems like wind and water turbines, was assessed by Abutunis et al. (2019). Though 

conceptually straightforward, BEM theory has a number of convergence problems. To get over these 

convergence problems, the study proposed multilayer perceptron (MLP) neural networks (NNs) as a 

computational intelligence method. In order to improve BEM accuracy in determining lift and drag coefficients 

over a range of local Reynolds numbers, NNs were also used for multivariate interpolation. The BEM-NNs 

model outperformed models with a constant Reynolds number at greater tip speed ratios without experiencing 

convergence issues, providing better power prediction. 

Wind power, a well-liked renewable energy source, has an extractable value that is restricted to 0.593, also 

referred to as the Betz-Joukowsky limit. Siavash et al. (2021) investigated this topic. Given that wind power is 

directly proportional to cubic wind speed, a small increase in wind speed results in a noticeable rise in power 

output. The research went beyond the Betz limit by introducing a controlled duct with adjustable shrouding 

angles. Due to the time and financial limits of wind tunnel research, the study evaluated just four duct opening 

angles. Multiple linear regression and an artificial neural network were used to forecast turbine performance. 

For turbine power generation and rotor angular speed under various wind velocities and duct opening angles, 

both models were recommended. When calculating the turbine power curve and rotor speed, the created neural 

network performed better than the regression model. The paper proposed the neural network model as a lookup 

table for regulating turbines equipped with the novel mechanism, emphasising the intense importance of 

shrouding angle on turbine performance at higher wind velocities. 

After reviewing previous literature and conducting significant investigations, it was observed that there is a 

scarcity of studies focusing on the development of Artificial Neural Network (ANN) based prediction models 

specifically for predicting the overall efficiency of ore-based small-scale water turbines. The lack of literature in 

this specific domain prompted the undertaking of this research. The primary objective here was to construct 

ANN-based prediction models tailored to the unique characteristics of Ore-Based Water Turbine Harvesters. 

2 Materials & Methods 

2.1 Source of data 

The study utilized 25 distinct small water flowing regions situated across various climatic zones in Tamil Nadu, 

India, for both training and testing purposes in Artificial Neural Network (ANN) models, as outlined in Table 1. 

Figure 1 illustrates the configuration of the Oar-Based Water Turbine Harvester employed in the investigation.  

Table 1. Details of regions selected for training and testing of the Oar-Based Water Turbine Harvester 

prediction ANN models 

Data 

No 

District Region – Canals with Small 

water flow  

Latitude Longitude Average Flow rate 

(AFR) (m3/s) 

1 Tanjore Pookara Grand Anaikut  10°46'21.7"N  79°08'52.5"E 0.015 – 0.215 

2 Tanjore Othaipalam  10°46'50.2"N  79°07'44.5"E 0.026 – 0.194 

3 Tanjore Seappanavari Palam  10°46'50.6"N  79°07'29.4"E 0.019 – 0.206 

4 Tanjore Padithurai  10°46'52.7"N  79°07'01.1"E 0.012 – 0.216 

5 Tanjore Peacock River View Cross 10°45'41.9"N  79°04'30.0"E 0.032 – 0.211 

6 Tanjore Alakudi Cross  10°45'04.5"N  79°03'13.2"E 0.029 – 0.231 

7 Nagapattinam Vettaru Bridge 10°49'21.0"N  79°50'17.1"E 0.019 – 0.184 

8 Nagapattinam Narimanam Small Canal 10°48'55.2"N  79°47'41.7"E 0.022 – 0.174 

9 Nagapattinam Thundam Bridge Canal 10°48'25.8"N  79°45'59.6"E 0.026 – 0.156 

10 Nagapattinam Anaimangalam Kohur Canal 10°47'55.5"N  79°44'21.2"E 0.029 – 0.178 

11 Nagapattinam Poolangudi Poovai Bridge 10°47'20.1"N  79°42'58.1"E 0.017 – 0.157 

12 Nagapattinam Palayavalam Vettaru Bridge  10°47'39.8"N  79°40'24.3"E 0.022 – 0.211 

13 Tiruchirappalli Kambarasampettai Dam 10°50'59.3"N  78°41'02.6"E 0.028 – 0.245 

14 Tiruchirappalli Melur Bridge 10°52'01.6"N  78°39'38.6"E 0.011 – 0.231 
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15 Tiruchirappalli Putru Kovil 10°52'34.4"N  78°37'44.0"E 0.014 – 0.213 

16 Tiruchirappalli Panayakuruchi Palam 10°50'19.1"N  78°43'27.6"E 0.017 – 0.226 

17 Tiruchirappalli Uthamarseeli 10°49'48.0"N  78°46'52.3"E 0.019 – 0.168 

18 Tiruchirappalli Kowtharasanllur Palam 10°50'06.8"N  78°48'08.4"E 0.026 – 0.174 

19 Tiruchirappalli Thogur Canal 10°50'02.6"N  78°48'46.1"E 0.022 – 0.156 

20 Tiruchirappalli Mykulumi Outlet 10°49'42.6"N  78°48'57.4"E 0.023 – 0.144 

21 Karur Thirukaduthurai Palam 11°05'31.1"N  77°59'14.7"E 0.028 – 0.152 

22 Karur Kutchipalayam Canal 11°05'19.4"N  77°58'41.6"E 0.024 – 0.195 

23 Karur S Kondalam 11°04'07.6"N  77°55'59.7"E 0.016 – 0.221 

24 Kumbakonam Kabisthalam 10°56'39.9"N  79°16'12.4"E 0.022 – 0.185 

25 Kumbakonam Kudamuriti 

Melauthamannallur  

10°56'12.6"N  79°16'53.1"E 0.031 – 0.221 

 

This approach ensures a diverse representation of environmental conditions, enhancing the robustness and 

applicability of the developed ANN models for predicting the performance of the water turbine harvester across 

different settings. The details regarding the water bodies and rivers flowing in different parts of Tamil Nadu, has 

been taken from the open source data available in Tamil Nadu State Council for Science, Technology & 

Environment, hosted by Ministry of environment, Forests & Climate Change, Government of India. The 

temperature, rainfall, minimum flow of water and maximum flow rate of water in these small rivers and canals 

were obtained from the open source data available in the repository of Meteorological Department, Government 

of India [11]. From the meteorological data available for the past five consecutive years, the average of them has 

been taken for consideration.  

 

Figure 1. Photograph of Oar-Based Water Turbine Harvester (OBWTH) 

Conducting experiments under carefully specified flow conditions, the blades were immersed at 25% for an 

extensive two-month duration spanning from September to October. This time frame was intentionally chosen to 

coincide with a period of increased rainfall compared to other months. The resulting dataset is robust, consisting 

of 60 readings meticulously recorded during the experiments. 

Various parameters were diligently observed and documented at the experimental location, each offering key 

insights into the turbine's performance: 

1. Daily Maximum Temperature (Tmax): This metric represents the greatest temperature that was measured each 

day, giving insight into the thermal conditions that prevailed during the experiment. 

2. Daily Minimum Temperature (Tmin): Tmin, the lowest temperature ever measured in a given day, adds to our 

knowledge of the range of temperature variations and how they could affect a turbine. 

3. Average Rainfall (AR): This parameter provides important information on the availability of water resources 

and how they affect turbine operations by quantifying the mean amount of rainfall that was received throughout 

the experimental period. 
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4. Wind Speed (WS): WS, which indicates wind speed, is essential for assessing the possible effects of wind 

forces on turbine blades and overall system performance. 

5. Maximum Fluctuation in Height (MFH): This parameter provides information about the dynamic changes in 

the hydraulic circumstances that the turbine is subjected to by measuring the highest variation in water level. 

6. Gross Height Drop (GHD): GHD provides information about the gross height energy available for the turbine 

by reflecting the difference in water level between the accumulation point (point 0) and the turbine exit (H). 

7. Net Height Drop (Hn): Hn, which measures the turbine's available potential energy while taking the net height 

drop into account, is essential to comprehending the turbine's overall effectiveness in turning water potential 

into electricity. 

To replicate practical operating conditions, the studies were carried out with the blades half submerged. The 

selected period, which is marked by increased precipitation, provides important information about how well the 

turbine functions in these kinds of conditions. The resulting dataset, which includes variations in these indicated 

characteristics, makes a substantial contribution to a thorough comprehension of the behaviour of the system 

during the given time frame. The information gathered for the location-based parameters over a 60-day period 

(October to December) is displayed in Figure 2. 

 

Figure 2. Data collected during the 60 day span (October to December) for the location based parameters 

The information about the Oar-Based Water Turbine Harvester is as follows. Hydraulic energy loss equation 

Hloss is displayed beneath.  

2

lossH A Q= 
------- Eq. 1

 

The turbine's coefficient, A, and the volume of water passing through it, Q (m3/s), are given in the equation 

above.  

The following formula is used to determine the turbine's hydraulic power [12]. 

nHP Q g H=   
------Eq. 2

 

The density in the equation above is denoted by ρ. 
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G stands for gravitational acceleration. 

The net height drop, or Hn, is a measure of the turbine's potential energy that is available (m). 

On the turbine shaft, mechanical power (MP) [13] is displayed as 

30 9.549

n n
MP T T T


=  =  = 

---------Eq. 3
 

The turbine's efficiency can be calculated by dividing its mechanical power by its hydraulic power. 

T

MP

HP
 =

--------- Eq. 4
 

Specific speed based on the power element - SSP 

The turbine SSP's rotating speed in revolutions per minute (min-1) is defined as a height drop of one metre and a 

power level of one kilowatt. 

5/4

n

P
SSP n

H
= 

----- Eq. 4

 

The benefit of this word is that the power P includes the utilization rate.  

The specific speed as seen by the flow aspect - SSQ 

It is defined as the turbine SSQ's rotations per minute (min-1) at a one-meter height drop and a one-cubic-meter-

per-second flow rate. 

5/4

n

Q
SSQ n

H
= 

--------- Eq. 5

 

The following illustrates the link between SSP and SSQ. 

3.65SSP SSQ=  
 ---- Eq. 6

 

P stands for turbine power and ω for angular velocity (rad/s) in the equations above. 

Thus, when developing the ANN model, the following parameters were included. 

Loss of hydraulic energy - Hloss 

HP is hydraulic power. 

Equipment mechanical power - MP 

Efficiency of turbines - ηT 

Specific speed while considering power SSP 

The specific velocity as seen by the flow aspect – SSQ 

There are a number of important factors that affect the Oar-Based Water Turbine Harvester's performance. 

These parameters are described below with thorough explanations [14]. 

1. Blade Length to Blade Width Ratio (RBLBW): This ratio, which is expressed as bl/bw, is essential for 

figuring out how the turbine blades are arranged geometrically. It represents the proportionate relationship 

between the breadth and length of the blades, which affects how well the turbine captures water flow to produce 

electricity. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

4916 

2. Axle Length (AL): The Axle Length (AL) of a turbine is the distance between its pivotal points, expressed in 

millimetres (mm). This parameter affects the turbine's stability and overall structural integrity by influencing its 

mechanical features. 

3. Blade Inclination Angle (BIA): The Blade Inclination Angle (BIA), which is measured in degrees (°), 

indicates the tilt or angle at which the turbine blades are positioned with respect to the water flow. This angle is 

essential for maximising the interaction between the water flowing through the blades, which affects how well 

the turbine converts water energy into power.. 

An extensive evaluation that mirrored the geographic environment and lasted 60 days, from October to 

November, was conducted to determine how well the Oar-Based Water Turbine Harvester performed in relation 

to these factors. The resulting data, as shown in Figure 3, sheds important light on how changes in RBLBW, 

AL, and BIA affect the turbine's performance during the given time frame. This investigation advances our 

knowledge of how design factors interact with the efficiency of the turbine in capturing water energy. 

 

Figure 3. Data related to the parameters of Oar-Based Water Turbine Harvester evaluated for 60 days 

2.2. Input variables selection using WEKA 

Picking the right input variables is a crucial first step in building an Artificial Neural Network (ANN) model. In 

particular, seventeen input process variables were selected as the training set for the Oar-Based Water Turbine 

Harvester (OBWTH) efficiency prediction models. A critical evaluation is conducted as part of the variable 

selection procedure to determine which input factors are most important in determining the OBWTH's 

efficiency estimate. 

The study makes use of WEKA [15], a software suite that the government of New Zealand developed in 1993, 

for this purpose. WEKA is a flexible tool used in many fields, such as machine learning, business analytics, and 

data mining. The J48 algorithm, which is an implementation of the c4.5 algorithm, is commonly used in the 

WEKA framework to build Decision Trees. In this case, decision trees aid in identifying and comprehending the 

critical factors impacting the effectiveness of the OBWTH. Decision trees are useful in identifying links within 

intricate datasets. The creation of precise and useful efficiency prediction models for the Oar-Based Water 

Turbine Harvester is dependent on this methodical approach to input variable selection.  

A decision tree, which represents knowledge in a structure like to a tree, functions as a categorization rule. 

Using the Decision Tree approach, relevant variables are chosen in order to estimate the Oar-Based Water 
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Turbine Harvester's (OBWTH) efficiency. A standard Decision Tree produced by the c4.5 algorithm (or 

possibly ID3 or c5.0) consists of several branches, one root, numerous nodes, and numerous leaves [16]. 

In this structure, a branch is represented by a sequence of nodes that go from the root to the leaf, with each node 

representing a distinct variable. When a variable is added to the tree, it offers important information about how 

important it is in influencing the efficiency predictions for the Oar-Based Water Turbine Harvester (OBWTH). 

As a result, the design and organisation of the Decision Tree provide an information-rich and visually intuitive 

representation that highlights the relationships and significance of the many variables in the context of 

predicting the effectiveness of the OBWTH. 

WEKA explorer was used to demonstrate how to use WEKA to choose pertinent variables from an input vector 

X that is generated from input variables. Using twenty-five sets of data samples from various geographic 

locations—small water canals, in particular—this video attempts to illustrate the process of choosing relevant 

input variables. 

Choosing a search strategy and attribute evaluator in WEKA is part of the process. Next, all of the variable 

ranks that result are noted. Table 2 gives a detailed summary of the ranks that WEKA allocated to each input 

variable in relation to solar radiation prediction. The variables that have the lowest rankings are highlighted and 

labelled as secondary. When Artificial Neural Network (ANN) models are developed later, process parameters 

that show less impact on the output prediction accuracy are replaced with parameters that have a greater positive 

effect on the hydrokinetic efficiency of the Oar-Based Water Turbine Harvester (OBWTH). 

The ranks that the WEKA algorithm allocated to the input variables in order to forecast the hydrokinetic 

efficiency of OBWTH are shown in Tables 2 and 3. With the use of this methodical technique, it is ensured that 

the variables chosen will best contribute to the precision and efficacy of the hydrokinetic efficiency estimates 

for the Oar-Based Water Turbine Harvester. 

Table 2 - Rank of Input Variables (Tmax, Tmin, AR, WS, MFH, GHD, H, Hm, & Hloss) 

Location Tmax Tmin AR WS MFH GHD H Hm Hloss 

1 0.11036 0.2915 0.09829 0.11 0.07529 0.03973 0.09677 0.15189 0.12376 

2 0.18876 0.4664 0.07045 0.14021 0.05996 0.12138 0.02776 0.15298 0.12564 

3 0.12821 0.0858 0.13361 0.02725 0.12701 0.06026 0.07248 0.09364 0.0618 

4 0.1014 0.5058 0.07428 0.10778 0.03676 0.0252 0.0787 0.0248 0.12568 

5 0.14538 0.445 0.066 0.14028 0.15605 0.05822 0.03468 0.06219 0.01174 

6 0.17855 0.0848 0.17556 0.06761 0.0549 0.08747 0.09884 0.11794 0.01599 

7 0.0584 0.3189 0.12768 0.08818 0.1032 0.14946 0.08065 0.15189 0.05956 

8 0.18296 0.0618 0.12815 0.05526 0.03379 0.14683 0.05842 0.0286 0.01422 

9 0.04619 0.4698 0.05825 0.04491 0.09224 0.09765 0.00856 0.07462 0.09462 

10 0.18141 0.4682 0.19675 0.09307 0.00883 0.09469 0.11153 0.08805 0.02348 

11 0.19312 0.0746 0.21203 0.05019 0.02089 0.12191 0.0272 0.06615 0.09209 

12 0.04948 0.1505 0.20327 0.07492 0.12088 0.10005 0.08417 0.01891 0.06504 

13 0.05618 0.4117 0.07433 0.12686 0.11468 0.08106 0.00734 0.00656 0.10512 
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14 0.09936 0.284 0.17542 0.12819 0.08747 0.06314 0.1532 0.11399 0.0249 

15 0.14213 0.5348 0.11371 0.14819 0.08774 0.12347 0.08727 0.15258 0.15827 

16 0.12894 0.3477 0.17826 0.04983 0.05443 0.15507 0.15263 0.01845 0.04456 

17 0.20971 0.3328 0.23283 0.10396 0.0717 0.02572 0.01159 0.022 0.07774 

18 0.17207 0.2603 0.15837 0.00795 0.11751 0.15748 0.09246 0.09024 0.04103 

19 0.16913 0.1577 0.19325 0.13751 0.07305 0.11023 0.07649 0.03458 0.03073 

20 0.0885 0.3821 0.06028 0.1197 0.02773 0.02726 0.06485 0.06436 0.14993 

21 0.04056 0.1612 0.1469 0.14243 0.13436 0.15322 0.12549 0.13361 0.09206 

22 0.09832 0.4878 0.07841 0.14049 0.14264 0.06489 0.07669 0.13532 0.1096 

23 0.13158 0.0458 0.10393 0.14018 0.00926 0.05116 0.05705 0.10284 0.0467 

24 0.03568 0.2348 0.1843 0.08427 0.00513 0.09617 0.15468 0.07399 0.057 

25 0.13511 0.116 0.16533 0.12029 0.01955 0.03302 0.01394 0.10046 0.11111 

 

Table 3 - Rank of Input Variables (HP, MP, ήT, SSP, SSQ, RBLBW, AL, BIA) 

Location HP MP ήT SSP SSQ RBLBW AL BIA 

1 0.11778 0.13616 0.04656 0.13434 0.04744 0.0842 0.0644 0.04248 

2 0.02598 0.12491 0.141728 0.12757 0.02997 0.06024 0.11247 0.01742 

3 0.01738 0.05231 0.167648 0.09885 0.08872 0.0904 0.07718 0.07575 

4 0.0205 0.01471 0.278272 0.10674 0.03568 0.03265 0.01324 0.10175 

5 0.14986 0.07955 0.247392 0.07521 0.08726 0.0067 0.08517 0.10983 

6 0.1471 0.00697 0.080736 0.14385 0.06597 0.0659 0.01878 0.12813 

7 0.07349 0.14301 0.053376 0.05202 0.12134 0.01236 0.15395 0.11376 

8 0.0087 0.05026 0.040352 0.10973 0.03863 0.13507 0.04507 0.07923 

9 0.10044 0.05702 0.067328 0.04307 0.14853 0.01972 0.1146 0.06744 

10 0.00916 0.07603 0.073376 0.01061 0.01215 0.14001 0.08394 0.00499 

11 0.10924 0.05649 0.344416 0.0603 0.03056 0.14399 0.08948 0.02087 

12 0.08675 0.08938 0.22592 0.09605 0.11596 0.15125 0.05028 0.05729 

13 0.02363 0.02775 0.45984 0.14 0.10995 0.14334 0.01639 0.14621 

14 0.09119 0.05721 0.4848 0.1525 0.15764 0.05659 0.06483 0.04617 

15 0.13508 0.131 0.441088 0.15153 0.1397 0.04153 0.08206 0.0515 
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16 0.12575 0.05139 0.063392 0.15659 0.13613 0.13967 0.00644 0.06435 

17 0.0168 0.05865 0.3544 0.07506 0.05358 0.13749 0.09331 0.08117 

18 0.0377 0.15432 0.049792 0.07945 0.05631 0.07677 0.04662 0.11266 

19 0.09519 0.04796 0.119168 0.15151 0.0259 0.08282 0.04492 0.03391 

20 0.12642 0.09462 0.234496 0.09849 0.10331 0.0909 0.02183 0.05245 

21 0.03386 0.10653 0.074464 0.14605 0.09916 0.13387 0.13769 0.11869 

22 0.06213 0.02372 0.194624 0.13043 0.15414 0.10604 0.08036 0.10154 

23 0.09708 0.03881 0.202624 0.02554 0.108 0.01926 0.10432 0.15463 

24 0.1244 0.06733 0.29136 0.14374 0.15486 0.03268 0.12648 0.12657 

25 0.15035 0.13232 0.435456 0.09458 0.10164 0.10415 0.02258 0.03814 

 

3 Results & Discussions 

3.1. OBWTH hydrokinetic efficiency prediction models prediction models with selected inputs 

Artificial neural network fitting tool (nftool) is utilised in the development of the ANN models (ANN-1, ANN-

2, and ANN-3), which are used for prediction. The Levenberg-Marquardt (LM) algorithm-trained standard two-

layer feed forward neural network that powers the nftool is appropriate for static fitting challenges. Scaled 

conjugate gradient [18] is automatically used for training. Sixty percent, twenty percent, and twenty percent of 

the randomly divided data are utilised for training, testing, and validation, respectively. The input and target 

values are automatically mapped in the range of -1 to 1. The ANN models are trained using the LM method on 

the training data. The testing data offer an impartial gauge of network performance both during and after 

training, and they have no bearing on training.  

The validation data are used to gauge the network's capacity for generalisation and are stopped during training 

when generalisation reaches its limit. Plotting the mean square error (MSE) against the number of epochs 

represents the performance. The epochs consist of a single training, testing, and validation sweep. The MSE in 

training, testing, and validation data is displayed in the performance plot. The MSE plot displays a higher curve 

in the validation data set and a lower curve in the training data. The trained ANN model is the network with the 

lowest validation mean square error (MSE) [17]. When an increase in the mean square error (MSE) of validation 

data samples indicates that validation error is no longer improving, the training automatically ends. Several 

training sessions will yield distinct outcomes because connection weights are randomly initialised and because 

initial conditions vary. Figure 4 shows the step-by-step instructions for implementing nftool, while Figure 5 

shows the suggested methodology and Appendix A contains the Matlab code.  
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Figure 4. Stepwise sequence for implementation of nftool in WEKA 

 

Figure 5. Algorithm for developing WEKA based ANN model 

Equation below calculates the number of neurons in the hidden layer; HLn and DSn are the number of neurons 

in the hidden layer and the number of data samples used in the artificial neural network (ANN) model, 

respectively; Ni and No stand for the number of input and output parameters.  

2
nn

Ni No
HL DS

+
= +  ------------ Eq. 7 

By measuring the change in prediction error (MAPE) when the number of hidden layer neurons is altered + 5 

from the hidden layer neurons estimated by Eq. (1) (above), the sensitivity test is carried out to validate the 

number of hidden layer neurons. Tables 4–6 display the results of the sensitivity analysis of hidden layer 

neurons for ANN models. Table 4 displays the statistical error evaluation for the ANN-1 model. Table 5 
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displays the statistical error evaluation for the ANN-2 model. Table 6 displays the statistical error evaluation for 

the ANN-3 model. 

 The ANN architecture with the least MAPE is utilised to forecast the OBWTH hydrokinetic efficiency. The 

MAPE is provided by Eq. (2).   

1

1
100

n
iANN Iactual

i Iactual

SR SR
MAPE

n SR=

 −
=   
 


………… Eq. 8 

Table 4 - Statistical Error Evaluation in ANN-1 model 

Hidden layer neurons 

sensitivity 

MLP structure Training R value Max. MAPE 

during testing 

ANN selection 

For 8 inputs, Avg. η 

for 2 months, 25 

samples, HLn varied 

from 9 to 19  

8 – 9 – 1 90.81 21.22 ANN architecture 

with 8 inputs, 10 

hidden layers and 

1 neuron in  o/p 

layer was selected  

8 – 10 – 1 92.22 19.32 

8 – 11 – 1 89.32 19.98 

8 – 12 – 1 87.41 21.25 

8 – 13 – 1 96.52 19.98 

8 – 14 – 1 88.69 24.21 

8 – 15 – 1 87.41 23.41 

8 – 16 – 1 85.26 21.69 

8 – 17 – 1 89.63 20.89 

8 – 18 - 1 90.02 21.22 

 

Table 4 - Statistical Error Evaluation in ANN-2 model 

Hidden layer neurons 

sensitivity 

MLP structure Training R value Max. MAPE 

during testing 

ANN selection 

For 7 inputs, Avg. η 

for 2 months, 25 

samples, HLn varied 

from 9 to 18 

7 – 9 – 1 89.68 19.89 ANN architecture 

with 7 inputs, 11 

hidden layers and 

1 neuron in  o/p 

layer was selected 

7 – 10 – 1 90.89 21.23 

7 – 11 – 1 91.86 18.69 

7 – 12 – 1 87.41 22.41 

7 – 13 – 1 88.32 21.52 

7 – 14 – 1 89.54 20.87 

7 – 15 – 1 90.41 22.41 

7 – 16 – 1 91.22 23.54 

7 – 17 – 1 87.63 21.74 

7 – 18 - 1 88.41 20.89 

Table 4 - Statistical Error Evaluation in ANN-3 model 

Hidden layer neurons 

sensitivity 

MLP structure Training R value Max. MAPE 

during testing 

ANN selection 

For 4 inputs, Avg. η 

for 2 months, 25 

samples, HLn varied 

from 9 to 18 

4 – 9 – 1 90.23 21.32 ANN architecture 

with 4 inputs, 11 

hidden layers and 

1 neuron in  o/p 

layer was selected 

4 – 10 – 1 91.82 20.21 

4 – 11 – 1 92.18 18.83 

4 – 12 – 1 89.51 22.32 

4 – 13 – 1 90.21 24.56 

4 – 14 – 1 88.69 25.12 

4 – 15 – 1 87.21 21.41 

4 – 16 – 1 89.52 22.23 

4 – 17 – 1 88.63 23.21 

4 – 18 - 1 89.91 22.12 
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Lewis's MAPE is used to assess prediction accuracy [49]. A prediction accuracy of 10% < MAPE < 20% 

suggests a decent prediction, a fair prediction of 20% < MAPE < 50% indicates a reasonable prediction, and a 

forecasting accuracy of 10% < MAPE < 50% indicates erroneous forecasting. The ANN-1, ANN-2, and ANN-3 

models' maximum MAPE of testing sites are determined to be 19.36%, 11.29%, and 8.31%, respectively. This 

indicates that the ANN-3 model's prediction accuracy increases by 12.67% upon deleting less influential 

characteristics.  Consequently, WEKA can be utilised to determine pertinent input parameters for the prediction 

of solar radiation. ANN-3's MAPE is lower than ANN-2's, indicating that the parameters were more crucial. 

We therefore lower the training data when the variables selection challenge is solved. Three neural network 

(ANN) models (ANN-1, ANN-2, and ANN-3) were created to determine prediction accuracy in order to validate 

the authenticity of WEKA. Every process variable is incorporated into the ANN model. More significant 

variables from the first analysis, provided by WEKA, were used in the ANN-2 model. Just five important input 

variables were used by the ANN-3 model: MP, ΔT, RBLBW, AL, and BIA.   

Figure 6 displays the ANN models' performance graphs. The training, test, and validation Mean Square Error 

were plotted over 11 epochs. 

 

Figure 6. MBE variations for training, testing and validation of ANN1, ANN2 and ANN3. 

In the context of the ANN-3 model, the correlation coefficient (R-value) is a critical metric for evaluating the 

relationship between the goal values and projected outputs. Three Artificial Neural Network (ANN) models—

ANN-1, ANN-2, and ANN-3—were created and put through a comparison study in order to assess the 

predicting performance. ANN-3 significantly outperformed ANN-1 and ANN-2 in terms of prediction accuracy, 

showing an impressive 12.67% improvement. Blade width, blade axle length, blade inclination angle, and 

turbine efficiency were found to be the most significant input factors in the feature selection procedure carried 

out using WEKA.  

These factors were found to be important contributors to the prediction of hydrokinetic efficiency overall. An 

overall hydrokinetic efficiency prediction of 29.6% was obtained by combining the integration of the blade 

width, blade axle length, blade inclination angle, and turbine efficiency to create a strong prediction model. This 

shows that, given the chosen input variables, the model can predict hydrokinetic turbine efficiency with 

reasonable accuracy. 
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Conclusions 

• The study highlights the importance of specific input parameters—hydraulic power, mechanical power, 

turbine efficiency, blade dimensions, and inclination angle— in predicting hydrokinetic efficiency.  

• The comparison of ANN models reveals that ANN-3, incorporating the ratio of blade length to blade 

width, blade axle length, blade inclination angle, and turbine efficiency, outperforms ANN-1 and 

ANN-2, showing a significant improvement in prediction accuracy (18.83% MAPE). 

• WEKA identifies blade width, blade axle length, blade inclination angle, and turbine efficiency as the 

most relevant variables, contributing significantly to accurate hydrokinetic efficiency predictions. 

• The developed ANN models, particularly ANN-3, demonstrate a good level of prediction accuracy 

with a 29.6% success rate in forecasting hydrokinetic efficiency. 

• The study underscores the significance of specific input parameters and the use of ANN models, 

particularly ANN-3, in accurately predicting hydrokinetic efficiency for small water turbine harvesters 

in renewable energy applications.  

References 

[1] Rares-Andrei, C., Florentina, B., Gabriela, O., & Lucia-Andreea, E. L. (2017, October). Power 

prediction method applicable to horizontal axis hydrokinetic turbines. In 2017 International 

Conference on Energy and Environment (CIEM) (pp. 221-225). IEEE. 

[2] Javaherchi, T., Stelzenmuller, N., & Aliseda, A. (2017). Experimental and numerical analysis of the 

performance and wake of a scale–model horizontal axis marine hydrokinetic turbine. Journal of 

Renewable and Sustainable Energy, 9(4). 

[3] Musa, M., Heisel, M., & Guala, M. (2018). Predictive model for local scour downstream of 

hydrokinetic turbines in erodible channels. Physical Review Fluids, 3(2), 024606. 

[4] Wang, W. Q., Yin, R., & Yan, Y. (2019). Design and prediction hydrodynamic performance of 

horizontal axis micro-hydrokinetic river turbine. Renewable energy, 133, 91-102. 

[5] Riglin, J., Carter III, F., Oblas, N., Schleicher, W. C., Daskiran, C., & Oztekin, A. (2016). 

Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for 

river applications. Renewable Energy, 99, 772-783. 

[6] Rengma, T. S., & Subbarao, P. M. V. (2022). Optimization of semicircular blade profile of Savonius 

hydrokinetic turbine using artificial neural network. Renewable Energy, 200, 658-673. 

[7] Khani, M. S., Shahsavani, Y., Mehraein, M., & Kisi, O. (2023). Performance evaluation of the 

savonius hydrokinetic turbine using soft computing techniques. Renewable Energy, 118906. 

[8] Paturi, U. M. R., Cheruku, S., & Reddy, N. S. (2022). Artificial neural networks modelling for power 

coefficient of Archimedes screw turbine for hydropower applications. Journal of the Brazilian Society 

of Mechanical Sciences and Engineering, 44(10), 447. 

[9] Abutunis, A., Hussein, R., & Chandrashekhara, K. (2019). A neural network approach to enhance blade 

element momentum theory performance for horizontal axis hydrokinetic turbine 

application. Renewable Energy, 136, 1281-1293. 

[10] Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., & Mamat, R. 

(2021). Prediction of power generation and rotor angular speed of a small wind turbine equipped to a 

controllable duct using artificial neural network and multiple linear regression. Environmental 

research, 196, 110434. 

[11] Chuphal, D. S., & Mishra, V. (2023). Hydrological model-based streamflow reconstruction for Indian 

sub-continental river basins, 1951–2021. Scientific Data, 10(1), 717. 

[12] Arndt, R. E., & Chamorro, L. P. (2017). Hydraulic turbines. In Energy Conversion (pp. 257-279). CRC 

Press. 

[13] Fathabadi, H. (2016). Maximum mechanical power extraction from wind turbines using novel proposed 

high accuracy single-sensor-based maximum power point tracking technique. Energy, 113, 1219-1230. 

[14] Ferro, L. M. C., Gato, L. M. C., & Falcão, A. F. O. (2011). Design of the rotor blades of a mini 

hydraulic bulb-turbine. Renewable Energy, 36(9), 2395-2403. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

4924 

[15] Aarthi, E., Daniel, J. D., Suba, G. M., Dharani, N. P., & Devi, C. P. (2024). A Naive Bayes Approach 

for Improving Heart Disease Detection on Healthcare Monitoring Through IoT and WSN. International 

Journal of Intelligent Systems and Applications in Engineering, 12(2s), 553-570. 

[16] Owie-Obazee, E. (2020). Development of a Predictive Model for the Classification of the Survival of 

Hepatitis patients using Decision Trees Algorithm. 

[17] bin Othman, M. F., & Yau, T. M. S. (2007). Comparison of different classification techniques using 

WEKA for breast cancer. In 3rd Kuala Lumpur International Conference on Biomedical Engineering 

2006: Biomed 2006, 11–14 December 2006 Kuala Lumpur, Malaysia (pp. 520-523). Springer Berlin 

Heidelberg. 

[18] Babani, L., Jadhav, S., & Chaudhari, B. (2016). Scaled conjugate gradient based adaptive ANN control 

for SVM-DTC induction motor drive. In Artificial Intelligence Applications and Innovations: 12th IFIP 

WG 12.5 International Conference and Workshops, AIAI 2016, Thessaloniki, Greece, September 16-

18, 2016, Proceedings 12 (pp. 384-395). Springer International Publishing. 

 

 

. 


