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Abstract 

 

A simple model presented here is to study the effect of bi-linear thickness variation on vibration 

of visco-elastic orthotropic skew plate having simply supported boundary condition on all the four 

edges. Using the separation of variables method, the governing differential equation has been 

solved for vibration of visco-elastic orthotropic skew plate. An approximate but quite convenient 

frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. 

The frequencies corresponding to the first two modes of vibration has been calculated for a simple 

supported visco-elastic skew plate for various values of taper constant and thermal gradient with the 

help of MAPPLE software. (today's computational software). 

Keywords: Vibration, skew plate, thickness, taper constant, thermal gradient, non-homogeneity 

constant.  

 

     

1. INTRODUCTION 

 

Vibration is the mechanical oscillations of an item about an equilibrium factor. The oscillations may be normal which 

includes the motion of a pendulum or random including the movement of a tire on a gravel street. Vibration of Plates 

offers a comprehensive, self-contained advent to vibration theory and evaluation of two-dimensional plates. Vibrations 

are encountered in many mechanical and structural applications, for example, mechanisms and machines, homes, 

bridges, motors, and plane. The effects of thermally induced vibrations in large machines have always been a most 

important concern in the field of science and technology. It is desirable to design such large machines for smooth 

operation with organized vibrations. This analysis is also beneficial for civil and architectural engineers to build 

earthquake resistant constructions. Also, the tapered plates i.e. the plates with varying thickness variations are 

frequently used in many engineering and industrial applications. 

 

In recent years, owing to the diversification of engineering materials and for operations in several thermal 

environments i.e. nuclear weapons, missiles, defense weapons, laser weapons etc. thermal problems have become very 

important for modern designers and researchers. The classical theory of vibration (which deals with the effect of 

thermal gradient on vibration) has attracted the attention of many researchers because of its extensive use in diverse 

fields. The plates of variable thickness are frequently used as structural components and their vibration characteristics 

are important for practical 

design. The structural components are used in many applications involving aerospace, submarine structural, civil 

engineering structures etc. Depending upon the requirement, durability and reliability materials are being developed 

so that these may provide better strength, efficiency and economy. Therefore a study of character and 
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Behavior of these plates is required so that the full potential of these plates may be used. These plates may be of any 

type for example-rectangular plate, square plate, triangular plate. Also, the thickness of these plates affects the behavior 

of plates. 

 

In last few years, a lot of research has been performed in the field of vibration of plate structures of various shapes 

and sizes. An up-date literature survey is as follows: An extensive review on linear vibration of plates has been given 

by Leissa [11] in his monograph. The Ritz method is employed for the all the results. Conwey and Farnham [6] study 

the free vibration of triangular, rhombic and parallelogram plates. The different skew angles of simply supported and 

clamped boundary conditions for frequencies were calculated. Leissa [27], [31] presented plate vibration research, 

classical theory and Plate vibration research, complicating effects. Jain and Soni [14] analyzed Free Vibration of 

rectangular plates of parabolic ally varying thickness .Gupta and Khanna [131] analyzed vibration of a visco-elastic 

rectangular plate under the effect of linearly varying thickness in both directions. Sharma Amit [150]. The present 

study analyzes the natural vibration of non homogeneous visco elastic skew plate (parallelogram plate) with non 

uniform thickness under temperature field. Here non homogeneity in the plate’s material arises due to circular 

variation in Poisson’s ratio. Gupta, Kumar[143] study the vibration of visco-elastic parallelogram plate whose 

thickness varies parabolic ally. It is assumed that the plate is clamped on all the four edges and that the thickness varies 

parabolic ally in one direction i.e. along length of the plate. 

 

      2. ANALYSIS 

    The parallelogram (skew) plate is assumed to be non-uniform, thin and orthotropic and the plate R be defined by 

the three number a, b and θ. 

 

Figure 2.1. The parallelogram plate with skew angle θ 

 

    The differential equation of motion and time function for visco elastic plate with thickness variation is given by  

 [D1 (w, xxxx  +2 w ,xxyy  + w, yyyy) +2 D1,x (w ,xxx + w ,xyy) + 2 w ,xxxx  +2 D1,y( w ,yyy  + w ,yxx) + 2 D1,xx( w, yyy  + w ,yxx ) 

+  D1,xx (w ,xx + 𝜈 w, yy) +  D1,yy ( w ,yy + 𝜈 w ,xx ) +2 (1- 𝜈 )D1, xy w ,xy]- 𝜌 k2lw = 0                                                                                                                                        

(1) 

                                                                             𝑇̈ + 𝑘2𝐷𝑇 = 0̃                                                  (2) 

                                

     Here, comma followed by suffix is known as partial derivative of W with respect to independent variable and 

double do represent the second derivative with respect to t. Also D1 = 
yl3

12(1−𝜈) 2
  is called flexural rigidity of the plate. 

 Now the expression for the kinetic energy (ME) and the strain energy (NE) is given by: 

                               ME =  
1

2
 𝜔2 

 𝜌 ∬ l 𝑊2 𝑑𝑦𝑑𝑥                                                                                                                   (3) 
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and  

                                NE =  
1

2
 ∬ D1 {(W,xx)2+(W,yy)2+  2𝜈W,xx W,yy+ 2(1− 𝜈 )(W,xy)2  }  dydx            (4) 

                         

         The parallelogram (skew) plate is assumed to be non-uniform, thin and orthotropic and the plate R be defined 

by the three number a, b and θ. 

 

            The skew coordinates of the plate are: 

                                                      𝜉 = x – y tanθ, 𝜑 = y secθ                                                                  (5) 

            The boundary condition of the plate in skew coordinates is: 

                                                    𝜉 = 0  , 𝜉 = 𝑎   𝑎𝑛𝑑  𝜑 = 0  , 𝜑 = 𝑏                                                    (6) 

        

 Using eqn. (5), the equation of K.E. (3) and Strain energy (4) will become: 

 

                                               ME =  
1

2
 𝑘2 

 𝜌 cos 𝜃 ∫ ∫ l 𝑊2 𝑎

0

𝑏

0
𝑑𝜉𝑑𝜑                                                     (7) 

 

NE =  
1

2
 ∫ ∫ 𝐷1

𝑎

0
[

𝑏

0
 (W,𝜉𝜉)2 −  4 sin 𝜃 (W,𝜉𝜉)( W,𝜉𝜑 ) +  2 (sin2𝜃 + 𝜈 cos2𝜃)(W,𝜉𝜉)( W,𝜑𝜑 ) + 2 ( 1 + sin2𝜃 −

 𝜈 cos2𝜃) ( W,𝜉𝜑 )
2

−  4 sin 𝜃( W,𝜉𝜑 ) ( W,𝜑𝜑 )  +  (  W,𝜑𝜑 )
2

]𝑑𝜉𝑑𝜑                                           

                                                                                                                                                              (8)                              

 

2. ASSUMPTIONS  

 

1. The thickness of the plate is assumed to be bi-linear in two dimensions. 

                              𝑔 = g0   [1 + β 1 (1- √1 −
𝜉

𝑎
 )] [1 + β 2 (1- √1 −

𝜑

𝑏
 )]                                   (9)                                                                     

     Where β 1, β 2 is tapering constant. Thickness of the plate becomes constant at  𝜉 = 0 , 𝜑 = 0. 

2. We consider plate’s material to be non-homogeneous. Therefore, either density or Poisson’s ratio varies 

circularly in one dimensions as : 

                              𝜈 =  𝜈0 [1 - m (1- √1 −
𝜉

𝑎
  )]                        (10)                              

Where m is known as non-homogeneity constant. Poisson’s ratio becomes constant i.e. 𝜈 =  𝜈0 at 𝜉 = 0 , 𝜑 = 0. 

3. The temperature variation on the plate is considered to be to bi-linear in 𝜉 direction and bi- 

parabolic in 𝜑 direction as : 

                                                 η = η0 [( √1 −
𝜉2

𝑎2 ) (√1 −
𝜑2

𝑏2  )]                     (11)                                              

Where η and η0 denotes the temperature excess above the reference temperature on the plate at any point and at the 

origin the temperature dependence modulus of elasticity for engineering structures is given by: 

                                                          Y = Y0 (1 – 𝛾 η)                                                   (12)                              

Where Y0 is the Young’s Modulus at mentioned temperature (i.e. η = 0) and 𝛾 is called slope of variation. 

Using equation (11) in equation (12), we get: 

                                       Y = Y0 [1 – 𝛾 (η0 (√1 −
𝜉2

𝑎2 ) (√1 −
𝜑2

𝑏2))] 

Y = Y0 [1 – 𝛾 η0 (√1 −
𝜉2

𝑎2 ) (√1 −
𝜑2

𝑏2))]  

                              Or                   Y = Y0 [1 – 𝛼(√1 −
𝜉2

𝑎2 ) (√1 −
𝜑2

𝑏2))]                                            (13) 
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             Where α, (0 ≤ α < 1) is called temperature, which is the product of temperature at origin and   𝛾 slope of 

variation i.e. gradient α = 𝛾η0 

          Using equation (9), (10) and (13), flexural rigidity i.e. D1 = 
yl3

(1−𝜈) 2
 of the plate becomes: 

 

    D1 = 
Y0  [1 – 𝛼(√1−

𝜉2

𝑎2 ) (√1−
𝜑2

𝑏2 ))]l0  [[ 1 +β1 ( 1− √1−
𝜉

𝑎
  )][ 1 +β2 ( 1− √1−

𝜑

𝑏
 )] ]3

12(1−𝜈0
2 [ 1 −  m ( 1− √1−

𝜉

𝑎
   )]2)

           (14) 

 

          Using (9), (10) and (14), the eqn. of K.E. and Strain Energy becomes: 

              ME =  
1

2
 𝑘2 𝜌𝑙0 ∫ ∫ (1 + 𝛽1C1)(1 + 𝛽2C2) 

𝑎

0

𝑏

0  𝑊2𝑑𝜉𝑑𝜑                                                        (15) 

                                                            

            NE   = 
𝑦0𝑙0 

24 𝑐𝑜𝑠4 𝜃
 ∫ ∫ [

[1 – 𝛼(√1−
𝜉2

𝑎2 ) (√1−
𝜑2

𝑏2 ))]][(1+𝛽1C1)(1+𝛽2C2) ]3

(1−𝜈0
2 ([ 1 −  m C1]2)

]
𝑎

0

𝑏

0
 [(W,𝜉𝜉)2 −  4 (

a

b
) sin 𝜃 (W,𝜉𝜉)( W,𝜉𝜑 ) +

 2 (
a

b
) (sin2𝜃 + 𝜈0𝑡 [ 1 −   mC1]cos2𝜃)𝑡(W,𝜉𝜉)( W,𝜑𝜑 ) + 2 (

a

b
)

2

 ( 1 + sin2𝜃 −  𝜈0 [ 1 −

  m C1]cos2𝜃) ( W,𝜉𝜑 )
2

−  4 (
a

b
)

3

sin 𝜃( W,𝜉𝜑  ) ( W,𝜑𝜑 )  + (
a

b
)

4

 (  W,𝜑𝜑 )
2

]]𝑑𝜉𝑑𝜑         (16) 

                                                                                                  

      Where,          

                                            C1 = (1- √1 −
𝜉

𝑎
  ), C2 = (1- √1 −

𝜑

𝑏
 ) 

          In this paper, we are calculating first two mode of vibration on simply supported boundary condition, 

therefore we have: 

                                                         W=W, 𝜉 = 0 at  𝜉 = 0, 𝑎 

                                                         W=W, 𝜑 = 0 at  𝜑 = 0, 𝑏                                                (17) 

                          

Hence, the two term deflection function, which satisfies eqn. (17), is: 

W (𝜉, 𝜑) = [B1 (
𝜉

𝑎
)

2

(
𝜑

𝑏
)

2

 (1 −
𝜉

𝑎
)

2

(1 −
𝜑

𝑏
)

2

+ B2  (
𝜉

𝑎
)

3

(
𝜑

𝑏
)

3

 (1 −
𝜉

𝑎
)

3

(1 −
𝜑

𝑏
)

3

]             

       =     (
𝜉

𝑎
)

2

(
𝜑

𝑏
)

2

 (1 −
𝜉

𝑎
)

2

(1 −
𝜑

𝑏
)

2

[B1+ B2(
𝜉

𝑎
) (

𝜑

𝑏
) (1 −

𝜉

𝑎
) (1 −

𝜑

𝑏
)]                             (18) 

Where B1 and B2  are arbitrary constant. 

 

4. Solution for frequency equation by Rayleigh-Ritz method  

 

           We used Rayleigh-Ritz method to solve frequency equation and frequency mode i.e. in Rayleigh-Ritz method 

maximum kinetic energy must be equal to maximum strain energy. 

           Hence we have:  

                                                                      δ (NE - ME) = 0                                                               (19) 

 

       Using equation (15) and (16), we get: 

 

                                                               δ ( NE 
*- λ2 ME

* ) = 0                                                              (20) 

                  

         Where,  

                                  ME
*   =  ∫ ∫ (1 + 𝛽1C1)(1 + 𝛽2C2) 

𝑎

0

𝑏

0  𝑊2𝑑𝜉𝑑𝜑                                                (21) 
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          And                                                        

                                                                                                                           

                  NE
*
   = 

1

 𝑐𝑜𝑠4 𝜃
 ∫ ∫ {[

[1 – 𝛼(1−  
𝜉

𝑎
 )( 1− 

𝜑

𝑏
 )][(1+𝛽1C1)(1+𝛽2C2) ]3

(1−𝜈0
2 ([ 1 −  mC1] ) 2

]
𝑎 

0

𝑏

0
 [(W,𝜉𝜉)2 −  4 (

a

b
) sin 𝜃 (W,𝜉𝜉)( W,𝜉𝜑 ) +

 2 (
a

b
) (sin2𝜃 + 𝜈0𝑡 [ 1 −   mC1]cos2𝜃)𝑡(W,𝜉𝜉)( W,𝜑𝜑 ) + 2 (

a

b
)

2

 ( 1 + sin2𝜃 −  𝜈0 [ 1 −

  mC1]cos2𝜃) ( W,𝜉𝜑  )
2

−  4 (
a

b
)

3

sin 𝜃( W,𝜉𝜑 ) ( W,𝜑𝜑 )  + (
a

b
)

4

 (  W,𝜑𝜑 )
2

]}𝑑𝜉𝑑𝜑                                                                                                                                            

                                           .                                                                                               (22) 

 

      And λ2 = 
12𝜔2 𝑎4 𝜌

Y0ℓ0
2   is known as frequency parameter. 

 

           Equation (20) consists of two unknown constants which are obtained by the substitution of W and these 

constant can be evaluated by the following formula: 

  

                                         
𝜕

𝜕𝐵1
(NE *− λ2 ME * ) = 0 ,  

𝜕

𝜕𝐵2
(NE *− λ2 ME * ) = 0                 (23)         

          after solving  equation (23)  , we get,    

                                            𝑑11𝐵 + 𝑑12𝐵2   = 0                                                                 (24) 

                                          𝑑21𝐵1 +  𝑑22𝐵2   = 0                                                                 (25) 

Where 𝑑11, 𝑑12 = 𝑑21 and 𝑑22 involve parametric constant and frequency parameter. 

For a non- trivial solution the determinant of the coefficients of Equation (24) & (25) must be zero. 

Therefore, we get the frequency equation, 

 

                                                              

                                               [
𝑑11 𝑑12

𝑑21 𝑑22
] [

𝐵1

𝐵2
]   = 0                                                           (26) 

 

With the help of equation (26), we get quadratic equation in λ2. We can obtain two roots 

of λ2 from this equation. These roots give the first (λ1) and second (λ2) modes of vibration 

of frequency for various parameters. 

 

5. Result and Discussion 

The frequency (λ) for first and second mode of vibration of an orthotropic skew (parallelogram) plate 

has been determined for different values of thermal constant(α), tapering constant (β1 and β2), aspect 

ratio (a/b) and non-homogeneity constant (m) and skew angle(θ).Every one of the outcomes are acquired by utilizing 

MATLAB/MAPLE programming. All the results are shown with the help of Figures. 

Following boundaries are utilized for this estimation is: v0=0.345, a/b=1.5 

 

In Fig I: Thickness (tapering parameter (β1) variation in plate v/s frequency (λ) with fixed value of θ 

= 300 and a/b = 1.5 and different values of taper constants and non-homogeneity constant (β1 =β2= m 

=α = 0, 0.4, 0.8).From fig.1 that as value of taper constant (β1) increases from 0 to 0.8 corresponding frequency value 

(λ) for 1st and 2nd mode of vibration also increases. 

 

 

In Fig II: Thickness (tapering parameter (β2) variation in plate v/s frequency (λ) for θ = 300 and a/b 

= 1.5 and different values of taper constants and non-homogeneity constant (β1 =β2 = m= α = 0, 0.4, 0.8).From fig.II 

that as value of taper constant (β2) increases from 0 to 0.8 corresponding frequency value (λ) for 1st and 2nd mode of 
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vibration increases. 

 

In Fig III: non-homogeneity (m1) variation in plates material v/s vibrational frequency (λ) for θ = 300 and a/b = 1.5 

and different values of taper constants and non-homogeneity constant (β1 

=β2 = m = α = 0, 0.4, 0.8).From fig.III that as value of non-homogeneity (m) increases from 0 to 0.8 

corresponding frequency value (λ) for 1st and 2nd mode of vibration is decreases. 

 

In Fig IV: Thermal gradient (α) variation in plates material v/s frequency (λ) for θ = 300 and a/b = 

1.5 and different values of taper constants and non-homogeneity constant (β1 =β2 = m = 0, 0.4, 0.8).From fig.IV 

that frequency mode decreases as value of thermal gradient increases from 0 to 0.8 

i.e. Corresponding frequency value (λ) for 1st and 2nd mode of vibration decreases. 

 

In Fig V: skew angle (θ) variation in plates material v/s frequency (λ) for a/b = 1.5 and different values of taper 

constants and non-homogeneity constant (β1 =β2 = α =0.4, m = 0, 0.4, 0.8). From fig.V clear that frequency mode 

increases sharply as value of skew angle increases from 0 to 75 i.e. corresponding frequency value (λ) for 1st and 2nd 

mode of vibration increases. 

 

Figure -1 Taper Constant (β1) v/s Frequency (λ) 

 

Figure -2 Taper Constant (β2) v/s Frequency (λ) 
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Figure -3 Non-Homogeneity (m) v/s Frequency (λ) 

 

 

Figure - 4 Thermal Gradients (α) v/s Frequency (λ) 
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Figure -5 Skew Angle (θ) v/s Frequency (λ) 
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6. Conclusion 

 

      Rayleigh - Ritz technique is applied to study the effect of various parameters (taper constants, thermal constant, and 

non-homogeneity constant, skew angle) on vibration of non-homogeneous parallelogram skew plate with circular 

variation in bi-linear thickness and bi-parabolic temperature variation. From the result discussion author conclude that 

as tapering constant (β1 and β2) and skew angle (θ) increases, frequency increases for both modes of vibration. While 

it decreases as thermal gradient and Non- Homogeneity increases. This paper gives good appropriate numerical data 

of frequency modes which is helpful for researchers and scientists, making good optimal structural designs. 
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