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Introduction 

Allow L(G) as the Subgroup Lattice of 𝒢, where 𝒢 is SL2(Zk). 

If 𝒢= {(
𝑥 𝑦 

): x, y, z, w ∈Zk , xw-yz ≠ 0} and 
𝑧 𝑤 

G = {(
𝑥 𝑦 

) ∈ 𝒢 : xw-yz = 1}, then G is a subgroup 𝒢. 
𝑧 𝑤 

Regarding order of groups, we will show that, o(𝒢) = k(k2-1)(k-1) [1] and o(G) = k(k2-1).[1] 

For complete reference we provide the breakup of L(G)while p=17 [2]. Thus, we will investigate regarding to 
the entire said properties in L(G) of this article. 

II Basics 

Lattice: Definition 1 

A Poset L is said to be a lattice if inf {u, v} and sup {u, v} exists for all u, v∈ L. 

Modular Lattice: Definition 2 

For a lattice L, L is modular if r ≤ u implies that uv r) = (u v)r   

Upper-semi modular: Definition 3 

for all u, v, r ∈L. 

For a lattice L, L is an upper-semi modular if uv covers u and v, u≠ v and u and v cover u v.     

Distributive lattice: Definition 2.5 
For a lattice L, L is distributive if u (v r) = [(u v) (u r)] for all u, v, r∈ L. 

      Now, we present the drawing of L(G) when p=17 [2] as shown in pic.1. 
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Pic.1:L(G) when p = 17 

Row I : (Left to Right) R1 to R18 and Q1 to Q136 

Row II : (Left to Right) P1 to P18 and O1 to O153 

Row III : (Left to Right) N1 to N136 

Row IV : (Left to Right) M1 to M153 

Row V : (Left to Right) L1 to L136 

Row VI : (Left to Right)and K1 to K153 

Row VII : (Left to Right) J1 to J136 and 𝒦1 

3. Main Properties 

Property 3.1 

If p =17, then L(G) is not modular. 

Proof: 

From Pic.1, we take three subgroups, K55, R1, O93 ∈ L(G). 
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Fig 3.1.1 

K55 ⋁ (R1 ⋀O93) = K55⋁𝒦1 = K55 

But, (K55 ⋁ R1 )⋀O93 = G ⋀ O93 = O93 

Hence K55 ⋁ (R1 ⋀O93)≠ (K55 ⋁ R1 )⋀O93 

Otherwise, (K55 ⋀O93) ⋁ (R1 ⋀O93) = K55⋁ 𝒦1 = K55. 

But, [(K55 ⋀O93) ⋁ R1 ] ⋀O93 = (K55 ⋁ R1) ⋀O93 = G ⋀O93 = O93. 

Therefore, (K55 ⋀O93) ⋁ (R1 ⋀O93) ≠ [(K55 ⋀O93) ⋁ R1 ] ⋀O93. 

Consequently, L(G) is non modular when p = 17. 

Property 3.2 

L(G) is not upper semi modular if p=17. 

Proof: 

From Pic.1, we take two subgroups, K14, M1 ∈ L(G). 
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K14 ⋀M1 = 𝒦1.which is covered by K14 while K14 ⋁ M1 = G . which does not cover M1. 

Therefore L(G) is not upper semi modular when p = 17. 

Property 3.3 

If p =17, then L(G) is not super modular. 

Proof: 

From Pic.1, we choose four subgroups, J1, K19, N104, P1 ∈ L(G). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.3.1 

(J1 ⋁K19) ⋀(J1 ⋁N104) ⋀(J1 ⋁P1) = G ⋀ N104 ⋀ G = N104. 

But, J1 ⋁[ K19 ⋀N104 ⋀( J1 ⋁P1)] ⋁[ N104 ⋀P1 ⋀( J1 ⋁K19)] ⋁[ K19 ⋀P1 ⋀( J1 ⋁N104)] 
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= J1 ⋁[ K19 ⋀N104 ⋀G] ⋁ [ N104 ⋀P1 ⋀G] ⋁[ K19 ⋀P1 ⋀ N104] 

= J1 ⋁ {e}⋁ {e}⋁ {e} 

=J1. 

Therefore, (J1 ⋁K19) ⋀(J1 ⋁N104) ⋀(J1 ⋁P1) ≠ J1 ⋁[ K19 ⋀N104 ⋀( J1 ⋁P1)] ⋁[ N104 ⋀P1 ⋀( J1 ⋁K19)] ⋁[ K19 ⋀P1 

⋀( J1 ⋁N104)] 

Consequently, L(G) is not super modular when p = 17. 

Property 3.4 

If p =17, then L(G) is not distributive. 

Proof: 

From Pic.1, We take three subgroups K14, M36, L16 ∈ L(G). 

K14 ⋁(M36 ⋀ L16) = K14 ⋁𝒦1 = K14. 

But, (K14 ⋁M36 )⋀ (K14 ⋁ L16) = M36 ⋀ G = M36. 

Therefore, K14 ⋁(M36 ⋀ L16) ≠ (K14 ⋁M36 )⋀ (K14 ⋁ L16). 

Consequently, L(G) is not distributive when p = 17. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

Fig 3.4.1 

Property 3.5 

If p =17, then L(G) is not consistent. 

Proof: 

We choose the join irreducible element P1 ∈ L(G) for the case p = 17, we find that 

when p = 17 , 𝒦1⋁ P1 = G = O1⋁O2 in the upper interval [𝒦1, G] 
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Therefore L(G) is not consistent when p = 17. 

Property 3.6. 

Fig.3.5.1 

If p =17, then the General disjointness condition is not true in L(G). 

Proof: 

From Pic.1, we take three subgroups 𝒦1, J1, J2 ∈ L(G). 

Now let 𝒦1 ⋀ J1 = 0 and (𝒦1⋁J1) ⋀ J2 = L16 ⋀ J2 = 0. 

Then, 𝒦1 ⋀ (J1⋁J2) = 𝒦1 ⋀G = 𝒦1 ≠ 0 

𝒦1 ⋀ (J1⋁J2) ≠ 0. 

Hence the General disjointness condition is not true in L(G) when p = 17. 
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Fig.3.6.1 

Property 3.7 

If p =17, then L(G) is not pseudo complemented. 

Proof: 

From Pic.1, we take one subgroup K14∈ L(G) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
Fig.3.7.1 

 

Then, K14 ⋀ P1 = 0 and if for any 𝒦1∈ L(G) such that 𝒦1⊂ P1. 

But, 𝒦1 ⋀ K14 = 𝒦1≠ 0. 
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Therefore, 𝒦1⋀ K14 ≠ 0. 

Consequently an element P1∈ L(G) is not pseudo complement of K14 ∈ L(G). 

Hence L(G) is not pseudo complemented when p = 17. 

Property 3.8 

Every atom is non – modular if p =17. 

Proof: 

Consider an atom among the atoms J2, J3, J4 say J2. 

We have P16 ⊂ R1 

Now, P16⋁(J2 ⋀ R1) = P16⋁{e}=P16 

But, (P16⋁J2 )⋀ R1 = G ⋀ R1 = R1 

Therefore, P16⋁(J2 ⋀ R1) ≠ (P16⋁J2 )⋀ R1 

Therefore J2 is not modular in L(G) when p = 17. 

Similarly we can prove that J3 and J4 are not modular. 

By Similar argument, we can prove that all the other atoms in L(G) when p = 17 are not modular. 

Hence there is no atom in L(G) when p= 17, which is modular. 

Property 3.9 

If p =17, then L(G) is not super solvable. 

Proof: 

By Property 3.8, we have no atom in L(G) is modular So, there is no maximal chain in L(G) with modular 
element 

Therefore, L(G) is not super solvable when p = 17. 

4. Conclusion 

In this article, the properties of L(G) over Z17 like modularity, semi modularity, super modularity distributivity, 
consistency, the GD condition, pseudo complemented and super solvability have been proved and validated. 
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