ISSN: 1001-4055 Vol. 44 No. 2 (2023)

Lattice Identities in the Subgroup Lattices of Groups of 2 × 2 Matrices over Zp

R. Hemalatha¹, R. Murugesan², P. Namasivayam³

- ^{1.}Research Scholar, (Reg. No:17221072092003), Department of Mathematics, The MDT Hindu College, Pettai, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli-627012),
- ² Associate Professor & Head, Department of Mathematics, St. John's College (SF), Palayamkottai-627002, Tamilnadu, India. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli-627012)
- ^{3.} Associate Professor & Head, Department of Mathematics, The MDT Hindu College, Pettai-627010 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli-627012),

Abstract: In this article, the properties of the subgroup lattice of the group of 2×2 matrices over Z_{17} like modularity, semi modularity, super modularity distributivity, consistency, the General disjointness condition, pseudo complemented and super solvability have been validated.

Keywords: Lattice, Subgroup lattice, Lattice properties.

Introduction

Allow L(G) as the Subgroup Lattice of G, where G is $SL_2(Z_k)$.

If
$$G = \{\begin{pmatrix} x & y \\ z & w \end{pmatrix} : x, y, z, w \in Z_k, xw-yz \neq 0\}$$
 and
$$G = \{\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in G : xw-yz = 1\}, \text{ then G is a subgroup } G.$$

Regarding order of groups, we will show that, $o(G) = k(k^2-1)(k-1)$ [1] and $o(G) = k(k^2-1)$.[1]

For complete reference we provide the breakup of L(G) while p=17 [2]. Thus, we will investigate regarding to theentire said properties in L(G) of this article.

II Basics

Lattice: Definition 1

A Poset L is said to be a lattice if $\{u, v\}$ and $\{u, v\}$ exists for all $u, v \in L$.

Modular Lattice: Definition 2

For a lattice L, L is modular if $r \le u$ implies that $u \land (v \lor r) = (u \land v) \lor r$ for all u, v, $r \in L$.

Upper-semi modular: Definition 3

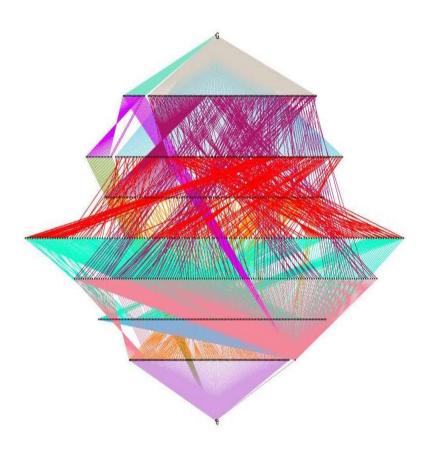
For a lattice L, L is an upper-semi modular if $u \lor v$ covers u and v, $u \ne v$ and u and v cover $u \land v$.

Distributive lattice: Definition 2.5

For a lattice L, L is **distributive** if $u \lor (v \land r) = [(u \lor v) \land (u \lor r)]$ for all u, v, r ∈ L.

Now, we present the drawing of L(G) when p=17 [2] as shown in pic.1.

ISSN: 1001-4055 Vol. 44 No. 2 (2023)



Pic.1:L(G) when p = 17

 $\mbox{\bf Row I}$: (Left to Right) R_1 to R_{18} and Q_1 to Q_{136}

Row II: (Left to Right) P₁ to P₁₈ and O₁ to O₁₅₃

Row III: (Left to Right) N₁ to N₁₃₆

Row IV : (Left to Right) M_1 to M_{153}

Row V: (Left to Right) L_1 to L_{136}

Row VI: (Left to Right) and K_1 to K_{153}

Row VII : (Left to Right) J_1 to J_{136} and \mathcal{K}_1

3. Main Properties

Property 3.1

If p = 17, then L(G) is not modular.

Proof:

From Pic.1, we take three subgroups, K_{55} , R_1 , $O_{93} \in L(G)$.

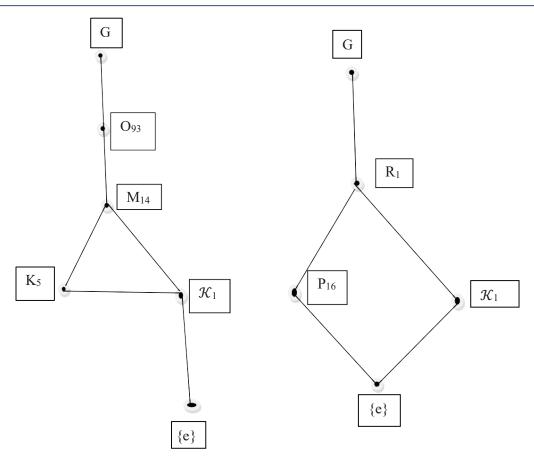


Fig 3.1.1

 $K_{55} \ V \ (R_1 \ \Lambda O_{93}) = K_{55} V \mathcal{K}_1 = K_{55}$

But, $(K_{55} \lor R_1) \land O_{93} = G \land O_{93} = O_{93}$

Hence $K_{55} \vee (R_1 \wedge O_{93}) \neq (K_{55} \vee R_1) \wedge O_{93}$

Otherwise, $(K_{55} \land O_{93}) \lor (R_1 \land O_{93}) = K_{55} \lor \mathcal{K}_1 = K_{55}$.

But, $[(K_{55} \land O_{93}) \lor R_1] \land O_{93} = (K_{55} \lor R_1) \land O_{93} = G \land O_{93} = O_{93}.$

Therefore, $(K_{55} \land O_{93}) \lor (R_1 \land O_{93}) \neq [(K_{55} \land O_{93}) \lor R_1] \land O_{93}$.

Consequently, L(G) is non modular when p = 17.

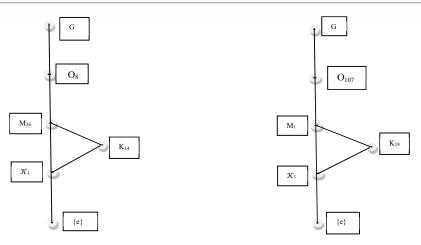
Property 3.2

L(G) is not upper semi modular if p=17.

Proof:

From Pic.1, we take two subgroups, K_{14} , $M_1 \in L(G)$.

ISSN: 1001-4055 Vol. 44 No. 2 (2023)



 $K_{14} \wedge M_1 = \mathcal{K}_1$ which is covered by K_{14} while $K_{14} \vee M_1 = G$. which does not cover M_1 .

Therefore L(G) is not upper semi modular when p = 17.

Property 3.3

If p = 17, then L(G) is not super modular.

Proof:

From Pic.1, we choose four subgroups, J_1 , K_{19} , N_{104} , $P_1 \in L(G)$.

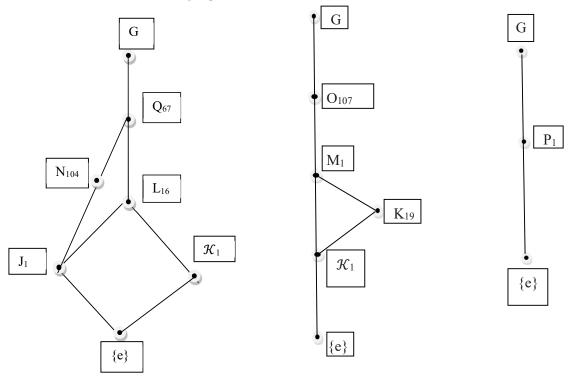


Fig.3.3.1

 $(J_1 \ VK_{19}) \ \Lambda(J_1 \ VN_{104}) \ \Lambda(J_1 \ VP_1) \ = G \ \Lambda \ N_{104} \ \Lambda \ G \ = N_{104}.$

But, $J_1 \lor [K_{19} \land N_{104} \land (J_1 \lor P_1)] \lor [N_{104} \land P_1 \land (J_1 \lor K_{19})] \lor [K_{19} \land P_1 \land (J_1 \lor N_{104})]$

ISSN: 1001-4055 Vol. 44 No. 2 (2023)

 $= J_1 \ V[\ K_{19} \ \Lambda N_{104} \ \Lambda G] \ V[\ N_{104} \ \Lambda P_1 \ \Lambda G] \ V[\ K_{19} \ \Lambda P_1 \ \Lambda \ N_{104}]$

 $= J_1 \ V \ \{e\} V \ \{e\} V \ \{e\}$

 $=J_1$.

Therefore, $(J_1 \ VK_{19}) \ \Lambda(J_1 \ VN_{104}) \ \Lambda(J_1 \ VP_1) \neq J_1 \ V[\ K_{19} \ \Lambda N_{104} \ \Lambda(\ J_1 \ VP_1)] \ V[\ N_{104} \ \Lambda P_1 \ \Lambda(\ J_1 \ VK_{19})] \ V[\ K_{19} \ \Lambda(\ J_1 \ VK_{19}$

Consequently, L(G) is not super modular when p = 17.

Property 3.4

If p = 17, then L(G) is not distributive.

Proof:

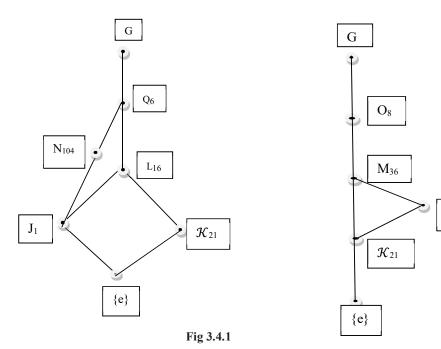
From Pic.1, We take three subgroups K_{14} , M_{36} , $L_{16} \in L(G)$.

 $K_{14} \ V(M_{36} \ \land \ L_{16}) = K_{14} \ \lor \mathcal{K}_1 = K_{14}.$

But, $(K_{14} VM_{36}) \wedge (K_{14} V L_{16}) = M_{36} \wedge G = M_{36}$.

Therefore, $K_{14} V(M_{36} \wedge L_{16}) \neq (K_{14} V M_{36}) \wedge (K_{14} V L_{16})$.

Consequently, L(G) is not distributive when p = 17.



Property 3.5

If p = 17, then L(G) is not consistent.

Proof:

We choose the join irreducible element $P_1 \in L(G)$ for the case p = 17, we find that

when p = 17, $\mathcal{K}_1 \lor P_1 = G = O_1 \lor O_2$ in the upper interval $[\mathcal{K}_1, G]$

 K_{14}

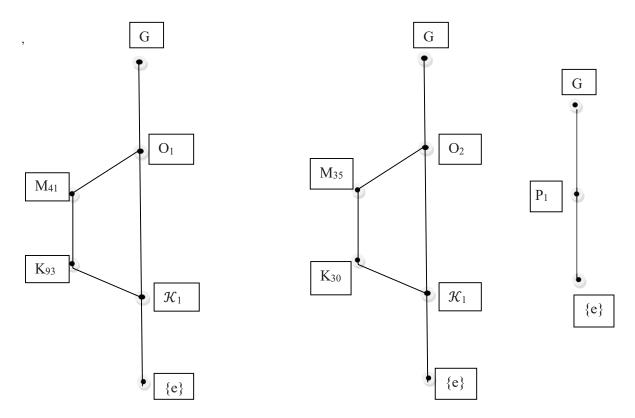


Fig.3.5.1

Therefore L(G) is not consistent when p = 17.

Property 3.6.

If p = 17, then the General disjointness condition is not true in L(G).

Proof:

From Pic.1, we take three subgroups $\mathcal{K}_{1,} J_{1,} J_{2} \in L(G)$.

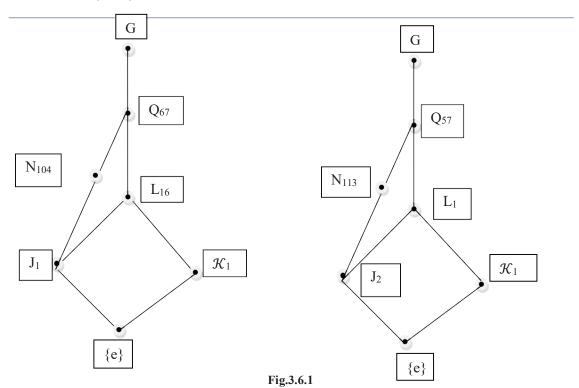
Now let $\mathcal{K}_1 \wedge J_1 = 0$ and $(\mathcal{K}_1 \vee J_1) \wedge J_2 = L_{16} \wedge J_2 = 0$.

Then, $\mathcal{K}_1 \wedge (J_1 \vee J_2) = \mathcal{K}_1 \wedge G = \mathcal{K}_1 \neq 0$

 $\mathcal{K}_1 \wedge (J_1 \vee J_2) \neq 0$.

Hence the General disjointness condition is not true in L(G) when p = 17.

ISSN: 1001-4055 Vol. 44 No. 2 (2023)

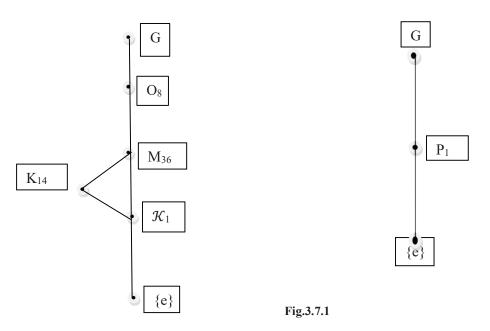


Property 3.7

If p = 17, then L(G) is not pseudo complemented.

Proof:

From Pic.1, we take one subgroup $K_{14} \in L(G)$



Then, $K_{14} \wedge P_1 = 0$ and if for any $\mathcal{K}_1 \in L(G)$ such that $\mathcal{K}_1 \subset P_1$. But, $\mathcal{K}_1 \wedge K_{14} = \mathcal{K}_1 \neq 0$.

ISSN: 1001-4055 Vol. 44 No. 2 (2023)

Therefore, $\mathcal{K}_1 \wedge K_{14} \neq 0$.

Consequently an element $P_1 \in L(G)$ is not pseudo complement of $K_{14} \in L(G)$.

Hence L(G) is not pseudo complemented when p = 17.

Property 3.8

Every atom is non – modular if p = 17.

Proof:

Consider an atom among the atoms J_2 , J_3 , J_4 say J_2 .

We have $P_{16} \subset R_1$

Now, $P_{16}V(J_2 \wedge R_1) = P_{16}V\{e\} = P_{16}$

But, $(P_{16}VJ_2) \land R_1 = G \land R_1 = R_1$

Therefore, $P_{16}V(J_2 \wedge R_1) \neq (P_{16}VJ_2) \wedge R_1$

Therefore J_2 is not modular in L(G) when p = 17.

Similarly we can prove that J₃ and J₄ are not modular.

By Similar argument, we can prove that all the other atoms in L(G) when p = 17 are not modular.

Hence there is no atom in L(G) when p=17, which is modular.

Property 3.9

If p = 17, then L(G) is not super solvable.

Proof:

By Property 3.8, we have no atom in L(G) is modular So, there is no maximal chain in L(G) with modular element

Therefore, L(G) is not super solvable when p = 17.

4. Conclusion

In this article, the properties of L(G) over Z_{17} like modularity, semi modularity, super modularity distributivity, consistency, the GD condition, pseudo complemented and super solvability have been proved and validated.

5. References

- 1. Jebaraj Thiraviam.D, A Study on some special types of lattices, Ph.D thesis, Manonmaniam Sundaranar University,2015.
- 2. Seethalakshmi. R, Durai Murugan.V and Murugesan.R, On the lattice of subgroups of 2x2 matrices over Z₁₁, Malaya journal of Matematik, vol.S,No.1, 451-456, 2020.
- 3. Hemalatha. R , Durai Murugan. V , Murugesan. R , Namasivayam. P , Seethalakshmi. R , An Investigation on the subdirect irreducibility of the subgroup lattices of the 2*2 matrices over Z_{11} , Advances and Applications in Mathematical Sciences , 21(2) , (2021), 1009 1014.
- 4. Hemalatha. R , Durai Murugan. V , Murugesan. R , Namasivayam. P , Seethalakshmi. R , Lattice Construction of L(H) over Z_{13} ,South East Asian Journal of Mathematics and Mathematical Sciences 19 (2022) ,81 84 .
- 5. Hemalatha. R, Durai Murugan. V, Murugesan. R, Namasivayam. P, Seethalakshmi. R, Lattice Construction of L(H) over Z_{17} , South East Asian Journal of Mathematics and Mathematical Sciences 19

ISSN: 1001-4055 Vol. 44 No. 2 (2023)

- (2022), 51-54.
- 6. Durai Murugan. V, Seethalakshmi. R, The Lattice Structure of the subgroups of order 21 in the subgroup lattices of 3*3 matrices over Z₂, Journal of Physics: Conference Series, 1947(4), (2021), 1 10.
- 7. Durai Murugan. V, Seethalakshmi. R, The Lattice Structure of the subgroups of order 4 in the subgroup lattices of 3*3 matrices over Z₂, Malaya journal of Matematik, vol.S,No.1, 506 509, 2021.
- 8. B. Baumslag, Theory and Problems of Group Theory: Schaum's outline Series, Mc Graw-Hill, New York, 1968.
- 9. C.F. Gardiner, A First Course in Group Theory, Springer-Verlag, Berlin, 1997.
- F. Laszlo, Structure and construction of fuzzy subgroup of a group, Fuzzy Set and System, 51 (1992), 105
 109
- 11. I.N. Herstein, Topics in Algebra, John Wiley and Sons, New York, 1975.
- 12. J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London, 1992.
- 13. M. Tarnauceanu and L. Bentea, On the number of fuzzy subgroups of finite abelian groups, Fuzzy Set and System., 159 (2008), 1084 1096.
- 14. R. Sulaiman and Abd Ghafur Ahmad, Counting fuzzy subgroups of symmetric groups S₂, S₃ and alternating group A₄, Journal of Quality Measurement and Analysis., 6 (2010), 57 63.
- 15. R. Sulaiman and Abd Ghafur Ahmad, The number of fuzzy subgroups of finite cyclic groups, International Mathematical Forum., 6 no.20 (2011), 987 994.
- 16. R. Sulaiman and Abd Ghafur Ahmad, The number of fuzzy subgroups of group defined by apresentation, International Journal of Algebra., 5 no.8 (2011), 375 382.
- 17. S. Roman, Lattice and Ordered Set, Springer, New York, 2008.