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Abstract: In this article, we have defined the concept of restrained certified domination number of graphs. For
any connected graph G, a restrained dominating set SC V(G) is said to be a restrained certified dominating set if
for every v € S there exists either at least two neighbors in V — S or no neighbors in V —S. The minimum
cardinality of the restrained certified dominating set is called the restrained certified domination number and is
denoted by y,..-(G). A restrained certified dominating set of cardinality y,...(G) is called a y,..., — Set.
Relation of y,...-(G) with other graph theoretical parameters have been discussed. Also this paper includes the
characterization of graphs. Nordhas — Gaddum type results have been studied for some values of n.
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1 Introduction:

In this article, we have defined the concept of restrained certified domination number of graphs. The concept of
restrained domination was introduced by Telle [6] as vertex partitioning problem. In [4] the concept of certified
domination was introduced. Domination nowadays is an emerging topic in graph theory. For detailed knowledge
about domination parameters one can refer[7,8]. Motivated by the ideas mentioned above we are urged to define
a new concept called restrained certified domination. The possible upper and lower bounds of ¥,...-(G) have
been determined. The value of restrained certified domination never be n — 1. Relation of y,.,.(G) with other
graph theoretical parameters have been studied. The corona product G o H of two graphs G and H is obtained by
taking one copy of G and [V(G)| copies of H and by joining each vertex of the i copy of H to the it" vertex of G
where 1 < i <|V(G)|. The friendship graph E, can be constructed by joining n copies of the cycle graph C;with a
common vertex, which becomes a universal vertex. The open neighborhood N(v) of the vertex v consists of the
set of vertices adjacent to v, that is, N(v) = {weV:vweE}. For a set S € V, the open neighbourhood of S is
defined to be U,es N(v). The complement G of a graph G = (V,E) is defined to be a simple graph with vertex
set V in which two vertices u and v are adjacent if and only if they are not adjacent in G.

A set SSV(G) is said to be a dominating set if every vertex veV/(G) is either an element of S or is
adjacent to an element of S. The minimum cardinality taken over all dominating sets is called the domination
number and is denoted by y(G). A set S < V(G) is called a certified dominating set of G if S is a dominating set
of G and every vertex belonging to S has either zero or at least two neighbours in V(G) —S. The cardinality of
the smallest certified dominating set is called the certified domination number of G and is denoted by y,.,.(G).

1.1 Definition

For any connected graph G, a restrained dominating set SC V(G) is said to be a restrained certified
dominating set if for every v € S there exists either at least two neighbours or no neighbours in V' —S. The
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minimum cardinality of the restrained certified dominating set is called the restrained certified domination
number and is denoted by y,..-(G). A restrained certified dominating set of cardinality y,...-(G) is called a

Vrcer — S€L.

Example:

U U9

Uy
Fig. 1

In the above figure, take S = {v,,v,}. The vertex v; € V — S has a neighbour vg in V — S as well as
a neighbour v, in S. Again the vertex vg € V — S has neighbours in V' — S as well as in S. Also the vertices of
S has at least two neighbours in V' — S. Thus the set S = {v,, v,} is a minimum restrained certified dominating
set and hence the restrained certified domination number is y,..,(G) = 2.

2 Y,cer Values of some standard graphs
Observations 2.1.

For any complete graph G,yyc.-(G)= 1.

Let G be a connected wheel graph. Then y,...,.(G) = 1, n > 4.
For the star graph G, ¥.cer (G) = n,n > 2.

For the path graph G, ¥ycer-(G)=n.

Theorem 2.2.
n
—,if n=0(mod 3)
For the cycle graph C,, where n > 6,y G ={3
Y/ graph Cp rcer( ) n,ianl,Z(modS)
Proof.
We prove this theorem by considering the following cases.
Case(i): n =0 (mod 3)
Let V(C,) ={v,, vy, ..,v,} be the vertices of C,, where n>6 and n =0 (mod 3). Let S =
{1, V4, ..., Vy_2}. Consider some v; € S. Since §(G) = 2, IN(v;) N (V —S)| =2 forall v; € S. Also |N(v;) n
- S)| =1 for v; €V —S. Thus the set S is minimum restrained certified dominating set. Therefore

n

Yrcer (G) = 3

Case(ii): n = 1(mod 3)

Let S = {v,, vy, V7, V10, V13) ) Un_3, Un_1}- Since 8§(G) = 2,deg(v;) = 2 for all v; € S. Therefore
vertices of S has exactly two neighbours in V' — S. Thus S is a certified dominating set.

Consider v,, € V — S. The adjacent vertices of v,, are v, and v,_; where v; € Sand v,,_, € S. That is
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v, has no neighbours in V — S, so include v, in S. Again, consider v,_, € V — S. The neighbourhoods of v,,_,
are N(v,,_,) = {vn_1,vp_3} S S. Here v,_, has no neighbours in V' — S. In this way if we check the vertices
of V — S, they have no neighbours in V —S. Proceeding like this, finally we arrive at S = V(C,). Hence

Yreer(G) = M.
Case(iii): n = 2 (mod 3)
Let S = {vy, vy, V7, V10, ..., Vn_a, Un_1}- Clearly all the vertices in S are non adjacent vertices. Hence

every member in S has two neighbours in V — S. Now consider v, € V — S. The vertex v,, has no neighbours in
V — S because v, and v,_, belong to S. Therefore v, also belongs to S.

Consider v,,_,. Neighbours of v,,_; are v, and v,,_, where v, € S and v,_, € V — S. By the definition
of restrained certified domination, v,,_, should have either atleast two neighbours or no neighbours at all in vV —
S. But v,,_; has only one neighbour in V' — S. Hence v,,_, also belongs to S. Proceeding the same way, we get
S ={v1,V,,V3, s, Vp_1, Un}- TAUS  V4eer: (C) =n,n = 6,n = 2(mod 3).

Note 2.3.

For the cycle graph C,, Vycer (G) = {nll.]icf nn: :5.
Theorem 2.4.

The pendant vertices of a graph belongs to the restrained certified dominating set.
Proof.

Let G be a connected graph and S be the restrained certified dominating set. By the definition of
restrained certified dominating set if a vertex is not in S, then it should be adjacent to a vertex in S and to a
vertex in V — S. But each pendant vertex is of degree one. Therefore the pendant vertices belong to S.

Example:

Vg

Fig.2

Here the pendant vertices are {vs,vq, vo}. The restrained certified dominating set of the graph is
{v,, V3, Vs, Vg, Vg, Vg} Which contains the pendant vertices of the graph.

Theorem 2.5.

Super set of @ ¥,.cer -Set Need Not be a y,.qq--Set.
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Proof.

Let S be the y,.-set. Without loss of generality assume S U {u} forms a super set of S, where u €
V(G). If avertex in V — (S U {u}) has no neighbour in V — (S U {u}) and S U {u}, then S U {u} is not a y,¢er-
set. Therefore, super set of S need not be y,...,--set.

Example:

(] U2 U U Ug
V7 Ve
Fig. 3

Let S = {v,, v,, vy, V5 } be the restrained certified dominating set of the above graph. Suppose we add a
vertex v; to S. The vertex v in S has only one neighbour in V — S. Thus S U {v5} is not a restrained certified
dominating set.

Observation 2.6.
A restrained dominating set need not be a restrained certified dominating set.
Example:

For example consider the cycle C,. Let S = {v,,v,, Vs, Vs, v, } be the restrained dominating set. Now,
consider the vertex v, of degree 2 in S. The vertex v, is adjacent to a vertex is S and to a vertex in V — S. But
by the definition of restrained certified dominating set a vertex in S should be adjacent to at least 2 vertices in
V — S. Thus S is not a restrained certified dominating set.

Note: ¥pcer(G) Never be n-1.
Theorem 2.7.

Let G be a connected graph of order n. If the pendant vertices of G belongs to the y,..,, — set then the
support vertices also belongs to ¥;.c., — set.

Proof.

Let S be the y,...,, — set. Suppose there exists a pendant vertex which belongs to the y,...,, — set say
v, . By the definition of restrained certified dominating set, v; € S should have atleast two neighbours. But v,
is a pendant vertex implies it’s support also belongs to S. Hence if a pendant vertex belongs to S, its support
also belongs to S.

2.8. General Bound

The value of y,.-(G ) ranges over 1 to n. Sharpness in lower bound is attained for complete graph and
wheel graph. Maximum bound is for Path graph and Star graph.

3 Characterisation of ¥,.c.,(G6) = 1
Theorem 3.1.

Let G be a connected graph of order n> 3 with no leaves. Then y,....(G) =1 if and only if there
exists a vertex of degree n-1.
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Proof.

Assume that y,...-(G) = 1. Let S = {v} be the restrained certified dominating set of G. Then {v}
dominates all the other vertices implies that degree of {v} is maximum. Clearly the maximum degree of a graph
isn — 1. Thus there exists a vertex {v} of degree n — 1.

Conversely, assume that there exists a vertex of degree n — 1. Let {w} be the vertex which is of
degree n — 1. Suppose that {u, w} is the restrained certified dominating set, where u is any vertex of G. Now
deg(w) = n — 1 implies w dominates V (G) satisfying the condition of certified domination.

Also every vertex in V — {w} has a neighbor in V' — {w} as well as adjaent to w. Thus the set {u, w} is
not the minimum restrained certified dominating set. S = {w} is a minimum restrained certified dominating set.
This implies Ypcer (G) = 1.

Theorem 3.2.

Let G be a connected graph with no pendant vertices and n > 3. When Yeer (G) = y-(G) = 1, then
Yreer(G) = 1.

Proof.

Since yq.-(G) = 1, let S = {v} be the certified dominating set. Then S is a dominating set implies all
the vertices of G are dominated by the vertex v. Since G has no pendant vertices, §(G)= 2. Now consider a
vertex in V — S. That vertex is adjacent to v and to a vertex in V — S.

Thus each vertex in V —§ satisfies the restrained condition. Hence S = {v} itself is a restrained
certified dominating set. Thus y,...,(G) = 1.

The following two theorems give the characterization for 2- regular graphs of order 4 and square of cycle
graph.

Theorem 3.3.
Let G be a 2 — regular graph with 4 vertices. Then y,...,-(G) = 4.
Proof.

Let V(G) = {u,v,w,x} be the vertices of G assigned in the clockwise direction. Since G is2 —
regular, deg(v) =2 wherev € V(G). Nown = 4 and deg(v) = 2 implieS  ¥pcer-(G) # 1. Then yyce-(G) =
2,3 or 4.

Case (0): Vreer (G) = 2.
Subcase (i): The two vertices in y,....(G) — set are adjacent.

Let S = {u,v} be the restrained certified dominating set where u and v are adjacent vertices in G.
Now [N(w)n (V—S)|=1and |N (v) n (V—S5)| =1 which means S does not satisfies certified domination.
Therefore the set S is not a y,.c., — Set.

Subcase (ii): The two vertices in y,...,, — Set are non adjacent.

Now INwW) N (V-=5)|=|INw)n (V-S| =2 whereu,w €S. Butv € V-5 is adjacent to two
vertices in S, which is a contradiction to every vertex in V — S is adjacent to a vertex in S and V — S. Therefore
the set of two vertices does not form a y,..., — set of G. Thus Vycer (G) # 2.

Case (ii): Yrcer (G) = 3
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Since n = 4 and ¥,...,- (G) never be n — 1 implies that y,...,-(G) #3. Thus clearly from the above cases,
we come to the conclusion that y,...,-(G) = 4.

Theorem 3.4.
Let G be the square of a cycle graph. Then y,.,-(G) = E] ,m=05.

Proof.

The square of a cycle graph G is a 4 - regular graph. Then §(G) = A(G) = 4 for all v € V(G). Let
V(G) = {v,,v,, ...v,} be the vertices of G. LetS = {v,, vg, Vg, V12, V17, .., Vn_s}. Since G is 4 — regular each
vertex dominates 4 vertices of G. Thus S is clearly a dominating set. Also, v; € S has four neighbours in S and
v; €V — S has neighbours both in Sand V —S. Thus S is a minimum restrained certified dominating set.

Therefore, y,cer (G) = [g]

Theorem 3.5.

Let G be a connected graph with no pendant vertices. If ¥,.(G) = ycer (G) then Ve, (G) = Vicer (G).
The result does not holds for C,.

Proof.

Since G is a connected graph with no pendant vertices, § = 2. Assume ¥,.(G) = V..r(G). Let S be the
restrained dominating set. y,.(G) = y,..(G) implies S is a certified dominating set. Now, every vertex in S has
atleast two neighbours in S and each vertex in V — S has neighbours in V — S and S.Which means S itself is a
restrained certified dominating set. Thus V.., (G) = Vrcer(G). In the case of C,,¥-(G) = y..r(G) = 2. But

Yrcer (G) =4.

4 Relations with graph theoretical parameters:
Theorem 4.1.

Let G be a connected graph of order n. Then y,cer (G) + A(G) < 2n — 1.
Proof.

For any graph, A(G) <n — 1. The upper bound of y,..,(G) is found to be n. Therefore ¥, (G) +
AG)Sn—1+n=2n-1.

Theorem 4.2.

Let G be a graph that is connected of order n. Then y,....(G) + k(G) < 2n — 1.
Proof.

Clearly k(G) < n — 1. AlSO ¥pcer (G) < 1. Implies yyeer (G) + 1(G) < 2n —1.
5 Nordhas Gaddum results
The following theorems provide some values on nordhas - gaddum type results.
Theorem 5.1.

If G is a complete graph on n vertices the nordhas - gaddum result is as follows:
Vrcer @)+ yrcer(E) =n+1and Vycer (G). yrcer(E) =n.
Proof.

Since A(G) = n — 1, by theorem, ¥,¢.r-(G) = 1. G is the complement of G in which there will be no
edges because G is a complete graph. Therefore ymr(ﬁ) =n. Thus Ycer(G) +yrm(5) =1+4+n and
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Vecer(G)- Vreer(G) = 1.
Theorem 5.2.

Let G be a cycle graph. Then ¥,cor(6) + ¥reer (G) < 1+ 2 and Yyor (G). ¥rcer (G) < 2n where n > 6.
Proof.

By theorem 2.2, ¥, (G) < n. Since G is 2-regular, G is n-3 regular. That is 6(G) =AG)=n—
3. Therefore ¥,cer(G) = 2, n = 6. HENCE ¥yeer (6) + Vicer (G) < m+ 2, and ¥yeor (G). ¥reer (G) < 21, where
nz=6.

Theorem 5.3.
When n = 2, for any graph G

Vrcer (G) + Yrcer(a) =4 and VTCGT(G) ' yrcer(E) = 4.
Proof.

If G = K,, then by theorem 3.1, ¥ycer- (G) = 2.

G = K, implies G = 2k;. We have ¥pee, (k1) = 1. Therefore ¥rcer(G) = ¥Yreer (2k1) = 2. ThUS Yyeer (G) +
Yrcer (G) =4 and Vyeor(G) . Vrcer (G) = 4. Similarly if G = k,, we get the result.

Theorem 5.4.

Let G be a connected graph of order n = 3. Then
Vrcer(G) + Yrcer (G) = 4.and Yreer (G) . ¥reer(G) = 3 if either G or G is isomorphic to K.
Yrcer (G) + Yrcer (G) = 6 aNd ¥y (G) . Vyeer (G) = 9 if either G or G is isomorphic to P.
Proof.

Let {v,, v,, v3} be the vertices of G.

Let G be isomorphic to K;. Then by theorem, y,..,(G) = 1. Since G = K3, G becomes a disconnected graph on
3 vertices. Therefore, ¥,c..(G) = 3. Thus we can see that if G = K3, then ¥reer (G) + Vrcer (G) = 143 =4
and ¥ycer (G) . Vreer(G) =1.3 =3. Similarly if G = Kj, the result holds.

Let G be a connected graph that is isomorphic to P;. Then by the theorem on path graphs, y,c..(G) = 3.
Since G = P, G = P, UK;. That is Vreer(G) = ¥rcer (P, U K1) = 3. Therefore ¥,cor-(G) + ¥reer (G) = 6 and

Yrcer (G) - Vrcer (E) =09.
Theorem 5.5.

For any graph on 4 Vertices, ¥rcer (G) + ¥reer(G) = 5 and Yyeer (G) + ¥reer(G) = 4 Only if i) G or G =
K, ii)GorG =K, —e.

Proof:

i) Let V(G) = {vq, v,, vs, v,} be the vertices of G. Suppose assume that G is isomorphic to K,. Then
v, is adjacent to v,, v;,v,. Also v, is adjacent to every other v;. Thus if we consider any pair of vertices in
V(G) we can find an edge. Therefore A(G) = n — 1. By theorem 3.1 we have ¥,..(G) = 1.

Now in G, due to adjacency between every pair of vertices in G, there will be no edge in between
vertices of G. The graph G will be a disconnected graph with 4 vertices. Therefore ¥, (G) = 4.

TNUS Vyeer (G) + Vreer (G) = 5 aNd Yyer (G) - Vrcer (G) = 4. Similarly we can prove the result if G =
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K4-

ii) Suppose G = K, —e. Removing an edge e from K, leads to decrease in the degree of two vertices. The

remaining vertices will have a maximum degree n-1. Therefore, by theorem 3.1 y,...,-(G) = 1.

In G, the vertices with degree n-1 in G, will be isolated. The removed edge e in G alone appear in G.
That is G = 2P; U P,. This implies y,cer (2P U P,) =2 = 2 ¥ycor (P + Vrcer (P2) =2 + 2 = 4. ThUS Yo (G) +

Vrcer (E) =5and Vreer (G) - Vrcer (5) =4.
Theorem 5.6.

Let G belongs to any one of the graphs Gy, G, ..., G, of order n = 4. Then Yycer (G) + Vrcer (G) =

6 or 8,and ¥,cer (G). Vycer (G) = 8 o1 16.

Proof.

D) Yrcer (G1) = 4. Then ¥yeer (Gy) = 2,

We get Vrcer(G1) + Vrcer (G1) = 6 and ¥rcer (G1). ¥rer (G1) = 8
i) Vreer(G2) = 4. Then Yyeer (G2) = 4,

We et Vycer (G2) + Vicer (G2) = 8 and ¥rcer(G2). Vrcer (G2) = 16
ii0) Yrcer (G3) = 4. Then ¥y, (G3) = 4,

We et ¥rcer(G3) + Vrcer (G3) = 8 and Vycer (Gs). ¥reer (G3) = 16.
iV)Vrcer (G) = 2. Then ¥, (G,) = 4,

We get Vycer (Ga) + Vrcer(G) = 6 and Vycer(Ga).- Vrcer (Ga) = 8.
D)¥reer (Gs) = 4. Then ycer (Gs) = 2,

We get ¥rcer(Gs) + Vrcer (Gs) = 6 and Vycer (Gs). Yreer (Gs) = 8.
V) Vrcer(Gs) = 4. Then ¥rcer(Gs) = 4,

We get ¥rcer(Ge) + Vrcer (Gs) = 8 and Vycer (Go). ¥reer (Gg) = 16.
Vil)Vrcer (G7) = 2. TheN Vyeer (G7) = 4,

We et Vrcer (G7) + Vrcer (G7) = 6 and Vycer (G7)- ¥reer (G7) = 8.

(.t 1 (-' 2 : 3
s @
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(.:4 G ] G G G

Fig. 4
Result 5.7.

Let G be a connected graph of order n>5. Then ¥,.r(G) + ¥reer(G) <n+3and
yrcer((;) . yrcer(a) < 3n.

In the following theorems we gave the characterization of corona product of graphs.

Theorem 5.8.
Let G be C,, o B, of order mn. Then y,.co,-(Cy © B,) = m.
Proof.

Let {v,,v,, ..., v} U {U;} be the vertices of the corona graph G where each U; is a collection of the
vertices of the path B,,1 < i < m. Let S={v,,v,, ..., v} be such that the vertices of S are of degree n+2. In G
we have 6(G) = 2.

Consider v; € S. In V-S, the vertex v, has atleast two neighbours. Similiarly each vertex in S has
atleast two neighbours in V-S. Thus S is a certified dominating set. Now, the vertices in V-S has exactly one
neighbour in S as well as V-S. This implies that S is a minimum restrained certified dominating set. Thus

Yrcer (Cn o By) = m.
Observation 5.9.

Yrcer(Kmo P) =m, n 2 2.
Note:

Yrcer (G) has a beautiful property over corona product of graphs. The corona product of path with
(cycle) complete graph is independent of the path we take.

Theorem 5.10.
Let G be the connected corona graph C,, © K;. Then ¥ycer (G) = 2n.
Proof.

Let {vq, vy, ..., Uy, Uq, Uy, ..., Uy, } DE the vertices of the corona graph C,, o K; such that [V(C,, o K;)| =
2n. Let S be the y,..r — set. The vertices u;'s are of degree one and v;’s are of degree 3. By theorem that
pendant vertices belongs to the y,...,, — set, we have u;ss,1 < i < n belongs to the y,...,, — set. Consider u, €
S. Now u; has only one neighbour in V-S which implies the neighbour of u; will also belongs to S. Similarly
for each vertex u; in S, there exists exactly one neighbour in V-S. Hence each v; belongs to S. Thus
S={uq, Uy, ..., Uy, Vq, Uy, ..., Uy} bethe y,.. — set. Thisimplies |S| =n+n=2n
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“ Yreer(G) = 21
Note: 1) ¥ (Kn) = Yeer (Kn) = ¥reer (Kn) =1
i)y, (G) = Vyeer (G) for star graph.
Theorem 5.11.
Let G be a connected corona graph K; ,, ° K;. Then y,...(G)=2(n+1).
Proof:

Let S be the y,..., — set. G has n+1 vertices of degree one and n+1 vertices of degree > 2. By theorem
2.4 and 2.7 n+1 vertices belongs to S and n + 1 support vertex belong to S. Thus ¥,¢e-(G) = 2(n + 1).

Theorem 5.12.
Let G be a connected corona graph B, o K;. Then y,...,.(G) = 2n.
Proof.

Let {v;, v,, ..., Vo, } be the vertices of G such that v; is of degree one if i is odd and v; is of degree > 2
ifiiseven. LetS be the y,.., — set. By theorem pendant vertices belongs to y,.., — set, we have v; with i is
odd also belongs to y,.., — set. Now v; with odd i has only one neighbour in VV-S which does not satisfy the
restrained certified domination condition. Hence v; with i even also belongs to y,cer — set. Hence yycer (G) =
2n.

Theorem 5.13.
Let G be the friendship graph. Then y,...,(G) = 1.
Proof.

G is a graph constructed by joining n copies of cycle graph C; with a common vertex and this common
vertex becomes a universal vertex. Therefore, Vycer(G) = 1.

6 Conclusion

In this paper we have discussed the restrained certified domination number of graphs. Upper and lower bounds
were found. Also we have characterised the graphs with y,...(G) = 1. Nordhas gaddum results on several
graphs have been studied. Together with this the y,...,(G) values of some corona products are calculated.
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