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Abstract: In this article, we have defined the concept of restrained certified domination number of graphs. For 

any connected graph G, a restrained dominating set S⊆ 𝑉(𝐺) is said to be a restrained certified dominating set if 

for every 𝑣 ∈ 𝑆 there exists either at least two neighbors in 𝑉 − 𝑆 or no neighbors in 𝑉 − 𝑆. The minimum 

cardinality of the restrained certified dominating set is called the restrained certified domination number and is 

denoted by 𝛾𝑟𝑐𝑒𝑟(𝐺). A restrained certified dominating set of cardinality 𝛾𝑟𝑐𝑒𝑟(𝐺) is called a 𝛾𝑟𝑐𝑒𝑟 − set. 

Relation of  𝛾𝑟𝑐𝑒𝑟(𝐺) with other graph theoretical parameters have been discussed. Also this paper includes the 

characterization of graphs. Nordhas – Gaddum type results have been studied for some values of n. 

Keywords: certified domination, restrained domination, restrained certified dominating set, restrained certified 

domination number. 
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1 Introduction: 

In this article, we have defined the concept of restrained certified domination number of graphs. The concept of 

restrained domination was introduced by Telle [6] as vertex partitioning problem. In [4] the concept of certified 

domination was introduced. Domination nowadays is an emerging topic in graph theory. For detailed knowledge 

about domination parameters one can refer[7,8]. Motivated by the ideas mentioned above we are urged to define 

a new concept called restrained certified domination. The possible upper and lower bounds of  𝛾𝑟𝑐𝑒𝑟(G) have 

been determined. The value of restrained certified domination never be 𝑛 − 1. Relation of  𝛾𝑟𝑐𝑒𝑟(𝐺) with other 

graph theoretical parameters have been studied. The corona product 𝐺 𝜊 𝐻 of two graphs 𝐺 and 𝐻 is obtained by 

taking one copy of 𝐺 and |V(𝐺)| copies of 𝐻 and by joining each vertex of the 𝑖𝑡ℎ copy of 𝐻 to the 𝑖𝑡ℎ vertex of 𝐺 

where 1 ≤ 𝑖 ≤ |𝑉(𝐺)|. The friendship graph 𝐹𝑛 can be constructed by joining n copies of the cycle graph 𝐶3with a 

common vertex, which becomes a universal vertex. The open neighborhood N(𝑣) of the vertex 𝑣 consists of the 

set of vertices adjacent to 𝑣, that is, N(𝑣) = {𝑤∈𝑉:𝑣𝑤∈𝐸}. For a set 𝑆 ⊆ 𝑉, the open neighbourhood of 𝑆 is 

defined  to be  ⋃ 𝑁(𝑣∈𝑆 𝑣). The complement  𝐺̅ of a graph 𝐺 = (𝑉,𝐸) is defined to be a simple graph with vertex 

set 𝑉 in which two vertices 𝑢 and 𝑣 are adjacent if and only if they are not adjacent in 𝐺. 

A set S⊆V(G) is said to be a dominating set if every vertex v∈V(G) is either an element of S or is 

adjacent to an element of S. The minimum cardinality taken over all dominating sets is called the domination 

number and is denoted by 𝛾(𝐺). A set S ⊆ V(G) is called a certified dominating set of G if S is a dominating set 

of G and every vertex belonging to S has either zero or at least two neighbours in V(G) –S.  The cardinality of 

the smallest certified dominating set is called the certified domination number of G and is denoted by 𝛾𝑐𝑒𝑟(G). 

1.1 Definition 

 For any connected graph G, a restrained dominating set S⊆ 𝑉(𝐺) is said to be a restrained certified 

dominating set if for every 𝑣 ∈ 𝑆 there exists either at least two neighbours or no neighbours in 𝑉 − 𝑆. The 
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minimum cardinality of the restrained certified dominating set is called the restrained certified domination 

number and is denoted by 𝛾𝑟𝑐𝑒𝑟(𝐺). A restrained certified dominating set of cardinality 𝛾𝑟𝑐𝑒𝑟(𝐺) is called a 

𝛾𝑟𝑐𝑒𝑟 − set.  

Example: 

 

Fig. 1 

 In the above figure, take S = {𝑣2, 𝑣4}. The vertex  𝑣1 ∈ 𝑉 − 𝑆  has a neighbour 𝑣5 in  𝑉 − 𝑆  as well as 

a neighbour 𝑣2  in 𝑆. Again the vertex 𝑣5  ∈ 𝑉 − 𝑆 has neighbours in 𝑉 − 𝑆 as well as in 𝑆. Also the vertices of 

𝑆 has at least two neighbours in 𝑉 − 𝑆. Thus the set S = {𝑣2, 𝑣4} is a minimum restrained certified dominating 

set and hence the restrained certified domination number is 𝛾𝑟𝑐𝑒𝑟(𝐺) =  2. 

𝟐  𝜸𝒓𝒄𝒆𝒓  values of some standard graphs 

Observations 2.1. 

1. For any complete graph 𝐺,𝛾𝑟𝑐𝑒𝑟(G)= 1. 

2. Let G be a connected wheel graph.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1, 𝑛 ≥ 4. 

3. For the star graph 𝐺, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝑛, 𝑛 ≥ 2. 

4. For the path graph G, 𝛾𝑟𝑐𝑒𝑟(𝐺)=n. 

Theorem 2.2.  

 For the cycle graph 𝐶𝑛 where 𝑛 ≥ 6,𝛾𝑟𝑐𝑒𝑟(𝐺) = {

𝑛

3
, 𝑖𝑓  n ≡ 0 (mod 3)

𝑛, 𝑖𝑓 𝑛 ≡ 1,2(𝑚𝑜𝑑 3)
 

Proof. 

We prove this theorem by considering the following cases. 

𝐶𝑎𝑠𝑒(𝑖):  𝑛 ≡ 0 (𝑚𝑜𝑑 3) 

 Let 𝑉(𝐶𝑛)  ={𝑣1, 𝑣2, … , 𝑣𝑛} be the vertices of 𝐶𝑛, where 𝑛 ≥ 6 and 𝑛 ≡ 0 (𝑚𝑜𝑑 3). Let 𝑆 =

{𝑣1, 𝑣4, … , 𝑣𝑛−2}. Consider some 𝑣𝑖 ∈ 𝑆. Since 𝛿(𝐺) = 2, |𝑁(𝑣𝑖) ∩ (𝑉 − 𝑆)| = 2  for all 𝑣𝑖 ∈ 𝑆. Also |𝑁(𝑣𝑗) ∩

(𝑉 − 𝑆)| = 1 for 𝑣𝑗 ∈ 𝑉 − 𝑆. Thus the set S is minimum restrained certified dominating set. Therefore 

𝛾𝑟𝑐𝑒𝑟(𝐺) =  
𝑛

3
. 

𝐶𝑎𝑠𝑒(𝑖𝑖): 𝑛 ≡ 1(𝑚𝑜𝑑 3) 

 Let S = {𝑣1, 𝑣4, 𝑣7, 𝑣10, 𝑣13, … , 𝑣𝑛−3, 𝑣𝑛−1}. Since 𝛿(𝐺) = 2, 𝑑𝑒𝑔(𝑣𝑖) = 2 for all 𝑣𝑖 ∈ 𝑆. Therefore 

vertices of S has exactly two neighbours in 𝑉 − 𝑆. Thus 𝑆 is a certified dominating set.  

 Consider 𝑣𝑛 ∈ 𝑉 − 𝑆. The adjacent vertices of 𝑣𝑛 are 𝑣1 and 𝑣𝑛−1 where 𝑣1 ∈ 𝑆 and 𝑣𝑛−1 ∈ 𝑆. That is 
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𝑣𝑛 has no neighbours in 𝑉 − 𝑆, so include 𝑣𝑛 in S. Again, consider 𝑣𝑛−2 ∈ 𝑉 − 𝑆.  The neighbourhoods of 𝑣𝑛−2  

are 𝑁(𝑣𝑛−2) = {𝑣𝑛−1, 𝑣𝑛−3}  ⊆ 𝑆. Here 𝑣𝑛−2  has no neighbours in 𝑉 − 𝑆.  In this way if we check the vertices 

of 𝑉 − 𝑆, they have no neighbours in 𝑉 − 𝑆. Proceeding like this, finally we arrive at 𝑆 =  𝑉(𝐶𝑛). Hence 

𝛾𝑟𝑐𝑒𝑟(𝐺) =  𝑛. 

𝐶𝑎𝑠𝑒(𝑖𝑖𝑖):  𝑛 ≡ 2 (𝑚𝑜𝑑 3) 

 Let  𝑆 = {𝑣1, 𝑣4, 𝑣7, 𝑣10, … . , 𝑣𝑛−4, 𝑣𝑛−1}. Clearly all the vertices in 𝑆 are non adjacent vertices. Hence 

every member in 𝑆 has two neighbours in 𝑉 − 𝑆.  Now consider 𝑣𝑛 ∈ 𝑉 − 𝑆. The vertex 𝑣𝑛 has no neighbours in 

𝑉 − 𝑆 because 𝑣1 𝑎𝑛𝑑 𝑣𝑛−1 belong to S.  Therefore 𝑣𝑛 also belongs to 𝑆.   

 Consider 𝑣𝑛−1. Neighbours of 𝑣𝑛−1 are 𝑣𝑛 and 𝑣𝑛−2 where 𝑣𝑛 ∈ 𝑆 and 𝑣𝑛−2 ∈ 𝑉 − 𝑆.  By the definition 

of restrained certified domination, 𝑣𝑛−1 should have either atleast two neighbours or no neighbours at all in 𝑉 −

𝑆.  But 𝑣𝑛−1 has only one neighbour in 𝑉 − 𝑆. Hence 𝑣𝑛−1 also belongs to 𝑆. Proceeding the same way, we get 

𝑆 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛−1, 𝑣𝑛}. Thus     𝛾𝑟𝑐𝑒𝑟(𝐶𝑛)  = 𝑛, 𝑛 ≥ 6, 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

Note 2.3.  

 For the cycle graph 𝐶𝑛, 𝛾𝑟𝑐𝑒𝑟(𝐺) = {
1 𝑖𝑓 𝑛 = 3

𝑛 𝑖𝑓 𝑛 = 4,5
. 

Theorem 2.4.  

 The pendant vertices of a graph belongs to the restrained certified dominating set. 

Proof.  

 Let G be a connected graph and S be the restrained certified dominating set. By the definition of 

restrained certified dominating set if a vertex is not in S, then it should be adjacent to a vertex in S and to a 

vertex in 𝑉 − 𝑆. But each pendant vertex is of degree one. Therefore the pendant vertices belong to S.  

Example: 

 

Fig.2  

 Here the pendant vertices are {𝑣3, 𝑣6, 𝑣9}. The restrained certified dominating set of the graph is 

{𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9}  which contains the pendant vertices of the graph. 

Theorem 2.5.   

 Super set of a 𝛾𝑟𝑐𝑒𝑟  -set need not be a 𝛾𝑟𝑐𝑒𝑟-set. 
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Proof.   

 Let S be the 𝛾𝑟𝑐𝑒𝑟-set.  Without loss of generality assume 𝑆 ∪ {𝑢} forms a super set of S, where 𝑢 ∈

𝑉(𝐺).  If a vertex in 𝑉 − (𝑆 ∪ {𝑢}) has no neighbour in 𝑉 − (𝑆 ∪ {𝑢}) and 𝑆 ∪ {𝑢}, then 𝑆 ∪ {𝑢} is not a 𝛾𝑟𝑐𝑒𝑟-

set.  Therefore, super set of S need not be  𝛾𝑟𝑐𝑒𝑟-set. 

Example: 

 

Fig. 3 

 Let 𝑆 = {𝑣1, 𝑣2, 𝑣4, 𝑣5} be the restrained certified dominating set of the above graph. Suppose we add a 

vertex  𝑣3 to 𝑆. The vertex 𝑣3 in 𝑆 has only one neighbour in 𝑉 − 𝑆. Thus 𝑆 ∪ {𝑣3} is not a restrained certified 

dominating set. 

Observation 2.6.   

 A restrained dominating set need not be a restrained certified dominating set.  

Example: 

 For example consider the cycle 𝐶7. Let 𝑆 = {𝑣1, 𝑣4, 𝑣5, 𝑣6, 𝑣7} be the restrained dominating set.  Now, 

consider the vertex 𝑣1 of degree 2 in S. The vertex 𝑣1 is adjacent to a vertex is 𝑆 and to a vertex in 𝑉 − 𝑆.  But 

by the definition of restrained certified dominating  set a vertex in S should be adjacent to at least 2 vertices in 

𝑉 − 𝑆. Thus S is not a restrained certified dominating  set. 

Note:   𝛾𝑟𝑐𝑒𝑟(𝐺) never be n-1. 

Theorem 2.7. 

  Let G be a connected graph of order n.  If the pendant vertices of G belongs to the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡 then the 

support vertices also belongs to 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡. 

Proof.  

 Let S be the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  Suppose there exists a pendant vertex which belongs to the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡 say 

𝑣1 . By the definition of restrained certified dominating set, 𝑣1 ∈ 𝑆 should have atleast two neighbours.  But 𝑣1 

is a pendant vertex implies it’s support also belongs to S.  Hence if a pendant vertex belongs to S, its support 

also belongs to S. 

2.8. General Bound  

 The value of 𝛾𝑟𝑐𝑒𝑟(𝐺 ) ranges over 1 𝑡𝑜 𝑛. Sharpness in lower bound is attained for complete graph and 

wheel graph.  Maximum bound is for Path graph and Star graph. 

3  Characterisation of 𝜸𝒓𝒄𝒆𝒓(𝑮) = 𝟏 

Theorem 3.1.  

 Let G be a connected graph of order n≥ 3 with no leaves. Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1  if and only  if  there  

exists  a vertex of  degree  n-1. 
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Proof.  

 Assume that 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. Let 𝑆 = {𝑣} be the restrained certified dominating set of G.  Then {𝑣} 

dominates all the other vertices implies that degree of {𝑣} is maximum.  Clearly the maximum degree of a graph 

is 𝑛 − 1.  Thus there exists a vertex {𝑣} of degree 𝑛 − 1. 

               Conversely, assume that there exists a vertex of degree 𝑛 − 1.  Let {𝑤} be the vertex which is of 

degree 𝑛 − 1.  Suppose that {𝑢, 𝑤} is the restrained certified dominating set, where 𝑢 is any vertex of G. Now 

deg(𝑤) =  𝑛 − 1 implies 𝑤 dominates 𝑉(𝐺) satisfying the condition of certified domination.   

 Also every vertex in 𝑉 − {𝑤} has a neighbor in 𝑉 − {𝑤} as well as adjaent to 𝑤.  Thus the set {𝑢, 𝑤} is 

not the minimum restrained certified dominating set. 𝑆 = {𝑤} is a minimum restrained certified dominating set. 

This implies 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 

Theorem 3.2.  

 Let 𝐺 be a connected graph with no pendant vertices and 𝑛 ≥  3. When        𝛾𝑐𝑒𝑟(𝐺) = 𝛾𝑟(𝐺) = 1, then 

𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 

Proof.  

 Since 𝛾𝑐𝑒𝑟(𝐺) = 1, let 𝑆 = {𝑣} be the certified dominating set.  Then S is a dominating set implies all 

the vertices of G are dominated by the vertex 𝑣.  Since G has no pendant vertices, 𝛿(G)≥ 2.  Now consider a 

vertex in 𝑉 − 𝑆. That vertex is adjacent to 𝑣 and to a vertex in 𝑉 − 𝑆.  

  Thus each vertex in 𝑉 − 𝑆 satisfies the restrained condition.  Hence 𝑆 = {𝑣} itself is a restrained 

certified dominating set. Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 

 

The following two theorems give the characterization for 2- regular graphs of order 4 and square of cycle 

graph. 

 

Theorem 3.3.  

 Let 𝐺 be a 2 − regular graph with 4 vertices.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 4. 

Proof. 

  Let 𝑉(𝐺) =  {𝑢, 𝑣, 𝑤, 𝑥}  be the vertices of 𝐺 assigned in the clockwise direction.  Since 𝐺 is 2 − 

regular, 𝑑𝑒𝑔(𝑣) = 2  where 𝑣 ∈  𝑉(𝐺). Now 𝑛 = 4 and 𝑑𝑒𝑔(𝑣) = 2 implies     𝛾𝑟𝑐𝑒𝑟(G) ≠ 1.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) =

2,3 𝑜𝑟 4. 

𝐶𝑎𝑠𝑒 (𝑖): 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2. 

𝑆𝑢𝑏𝑐𝑎𝑠𝑒 (𝑖):  The two vertices in 𝛾𝑟𝑐𝑒𝑟(𝐺) − set are adjacent. 

             Let 𝑆 =  {𝑢, 𝑣}  be the restrained certified dominating set where 𝑢 and 𝑣 are adjacent vertices in G.  

Now  |𝑁(𝑢) ∩ (𝑉 − 𝑆)| =1 and  |𝑁 (𝑣) ∩  (𝑉 − 𝑆)| = 1  which means S does not satisfies certified domination.  

Therefore the set S is not a 𝛾𝑟𝑐𝑒𝑟 − set. 

𝑆𝑢𝑏𝑐𝑎𝑠𝑒 (𝑖𝑖): The two vertices in 𝛾𝑟𝑐𝑒𝑟 − set are non adjacent. 

              Now |𝑁(𝑢) ∩  (𝑉 − 𝑆)| = |𝑁(𝑤) ∩ (𝑉 − 𝑆| = 2 where 𝑢, 𝑤 ∈ 𝑆.  But 𝑣 ∈  𝑉 − 𝑆  is adjacent to two 

vertices in S, which is a contradiction to every vertex in 𝑉 − 𝑆 is adjacent to a vertex in 𝑆 and 𝑉 − 𝑆.  Therefore 

the set of two vertices does not form a 𝛾𝑟𝑐𝑒𝑟 − set of G.  Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) ≠ 2. 

𝐶𝑎𝑠𝑒 (𝑖𝑖): 𝛾𝑟𝑐𝑒𝑟(𝐺) = 3 
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 Since 𝑛 = 4 and 𝛾𝑟𝑐𝑒𝑟(𝐺) never be 𝑛 − 1 implies that 𝛾𝑟𝑐𝑒𝑟(𝐺) ≠3. Thus clearly from the above cases, 

we come to the conclusion that 𝛾𝑟𝑐𝑒𝑟(𝐺) = 4. 

Theorem 3.4.  

 Let 𝐺 be the square of a cycle graph. Then 𝛾𝑐𝑒𝑟(𝐺) =  ⌈
𝑛

5
⌉ , 𝑛 ≥ 5. 

Proof.   

 The square of a cycle graph 𝐺 is a 4 - regular graph.  Then 𝛿(𝐺) = ∆(𝐺) = 4   for all 𝑣 ∈ 𝑉(𝐺). Let  

𝑉(𝐺) = {𝑣1, 𝑣2, … 𝑣𝑛} be the vertices of 𝐺. Let 𝑆 = {𝑣1, 𝑣6, 𝑣9, 𝑣12, 𝑣17, … , 𝑣𝑛−4}. Since 𝐺 is 4 – regular each 

vertex dominates 4 vertices of G. Thus S is clearly a dominating set. Also, 𝑣𝑖 ∈ 𝑆 has four neighbours in S and 

𝑣𝑗 ∈ 𝑉 − 𝑆 has neighbours both in 𝑆 𝑎𝑛𝑑  𝑉 − 𝑆.  Thus 𝑆 is a minimum restrained certified dominating set. 

Therefore, 𝛾𝑟𝑐𝑒𝑟(𝐺) = ⌈
𝑛

5
⌉. 

Theorem 3.5. 

  Let 𝐺 be a connected graph with no pendant vertices.  If 𝛾𝑟(𝐺) = 𝛾𝑐𝑒𝑟(𝐺) then 𝛾𝑐𝑒𝑟(𝐺) = 𝛾𝑟𝑐𝑒𝑟(𝐺). 

The result does not holds for 𝐶4. 

Proof.  

 Since 𝐺 is a connected graph with no pendant vertices, 𝛿 ≥ 2.  Assume 𝛾𝑟(𝐺) = 𝛾𝑐𝑒𝑟(𝐺). Let 𝑆 be the 

restrained dominating set. 𝛾𝑟(𝐺) = 𝛾𝑐𝑒𝑟(𝐺) implies 𝑆 is a certified dominating set.  Now, every vertex in 𝑆 has 

atleast two neighbours in 𝑆 and each vertex in 𝑉 − 𝑆 has neighbours in 𝑉 − 𝑆 and 𝑆.Which means S itself is a 

restrained certified dominating set. Thus 𝛾𝑐𝑒𝑟(𝐺) = 𝛾𝑟𝑐𝑒𝑟(𝐺). In the case of 𝐶4, 𝛾𝑟(𝐺) = 𝛾𝑐𝑒𝑟(𝐺) = 2. But 

𝛾𝑟𝑐𝑒𝑟(𝐺) = 4. 

4  Relations with graph theoretical parameters: 

Theorem 4.1.   

 Let G be a connected graph of order n.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) + ∆(𝐺) ≤ 2𝑛 − 1. 

Proof.   

 For any graph, ∆(𝐺) ≤ 𝑛 − 1.  The upper bound of 𝛾𝑟𝑐𝑒𝑟(𝐺) is found to be n.  Therefore  𝛾𝑟𝑐𝑒𝑟(𝐺) +

∆(𝐺) ≤ 𝑛 − 1 + 𝑛 = 2𝑛 − 1. 

Theorem 4.2.  

  Let G be a graph that is connected of order n.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝜅(𝐺) ≤ 2𝑛 − 1. 

Proof.   

 Clearly 𝜅(𝐺) ≤ 𝑛 − 1.  Also 𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 𝑛.  Implies 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝜅(𝐺) ≤ 2𝑛 − 1. 

5 Nordhas Gaddum results 

The following theorems provide some values on nordhas - gaddum type results. 

Theorem 5.1.   

 If G is a complete graph on n vertices the nordhas - gaddum result is as follows: 

𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝑛 + 1 and 𝛾𝑟𝑐𝑒𝑟(𝐺).  𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝑛. 

Proof.   

 Since ∆(𝐺) = 𝑛 − 1, by theorem, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 𝐺 is the complement of G in which there will be no 

edges because G is a complete graph.  Therefore 𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝑛.  Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1 + 𝑛 and  
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𝛾𝑟𝑐𝑒𝑟(𝐺).  𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝑛. 

Theorem 5.2.  

 Let G be a cycle graph. Then 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 𝑛 + 2 and 𝛾𝑟𝑐𝑒𝑟(𝐺).  𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 2𝑛 where 𝑛 ≥ 6. 

Proof.  

 By theorem 2.2, 𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 𝑛. Since G is 2-regular, 𝐺 is n-3 regular. That is        𝛿(𝐺) = ∆(𝐺) = 𝑛 −

3. Therefore 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2, 𝑛 ≥ 6. Hence 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) ≤  𝑛 + 2, and 𝛾𝑟𝑐𝑒𝑟(𝐺).   𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 2𝑛, where 

𝑛 ≥ 6. 

Theorem 5.3.   

 When 𝑛 = 2,  for any graph G 

𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 4  and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 4. 

Proof.   

 If 𝐺 ≅ 𝐾2, then by theorem 3.1, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2. 

𝐺 ≅ 𝐾2 implies 𝐺 ≅ 2𝑘1. We have  𝛾𝑟𝑐𝑒𝑟(𝑘1) = 1.  Therefore 𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝛾𝑟𝑐𝑒𝑟(2𝑘1) = 2.  Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) +

𝛾𝑟𝑐𝑒𝑟(𝐺) = 4  and  𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 4.  Similarly if 𝐺 ≅ 𝑘2, we get the result. 

Theorem 5.4.   

 Let G be a connected graph of order 𝑛 = 3.  Then 

i) 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 4 and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 3 if either G or 𝐺 is isomorphic to 𝐾3. 

ii) 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 6 and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 9  if either G or 𝐺 is isomorphic to 𝑃3. 

Proof.   

Let {𝑣1, 𝑣2, 𝑣3} be the vertices of G.   

i) Let G be isomorphic to 𝐾3.  Then by theorem, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1.  Since 𝐺 ≅ 𝐾3, 𝐺 becomes a disconnected graph on 

3 vertices.  Therefore, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 3.  Thus we can see that if 𝐺 ≅ 𝐾3, then 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1+3 =4 

and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) =1.3 =3.  Similarly if 𝐺 ≅ 𝐾3, the result holds. 

ii) Let G be a connected graph that is isomorphic to 𝑃3.  Then by the theorem on path graphs, 𝛾𝑟𝑐𝑒𝑟(𝐺) = 3.  

Since 𝐺 ≅ 𝑃3, 𝐺 ≅ 𝑃2 ∪ 𝐾1. That is 𝛾𝑟𝑐𝑒𝑟(𝐺) = 𝛾𝑟𝑐𝑒𝑟(𝑃2 ∪ 𝐾1) = 3.  Therefore 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 6 and 

𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 9. 

Theorem 5.5.   

 For any graph on 4 vertices, 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 5 and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 4 only if 𝑖) G or 𝐺 ≅

𝐾4  𝑖𝑖) G or 𝐺 ≅ 𝐾4 − 𝑒. 

Proof: 

   𝑖) Let 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} be the vertices of G.  Suppose assume that G is isomorphic to 𝐾4.  Then 

𝑣1 is adjacent to 𝑣2, 𝑣3, 𝑣4.  Also 𝑣2 is adjacent to every other 𝑣𝑖.  Thus if we consider any pair of vertices in 

V(G) we can find an edge.  Therefore ∆(𝐺) = 𝑛 − 1.  By theorem 3.1 we have  𝛾𝑟𝑐𝑒𝑟(𝐺) = 1.   

 Now in 𝐺,  due to adjacency between every pair of vertices in G, there will be no edge in between 

vertices of 𝐺. The graph 𝐺 will be a disconnected graph with 4 vertices.  Therefore 𝛾𝑟𝑐𝑒𝑟(𝐺) = 4.   

 Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺) = 5 and 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 4.  Similarly we can prove the result if 𝐺 ≅
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𝐾4. 

𝑖𝑖) Suppose G ≅ K4 − e. Removing an edge e from K4 leads to decrease in the degree of two vertices. The 

remaining vertices will have a maximum degree n-1. Therefore, by theorem 3.1 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1.  

 In 𝐺̅, the vertices with degree n-1 in G, will be isolated. The removed edge e in G alone appear in 𝐺̅. 

That is 𝐺̅ ≅ 2𝑃1 ∪ 𝑃2. This implies 𝛾𝑟𝑐𝑒𝑟(2𝑃1 ∪ 𝑃2) = 2 ⟹ 2 𝛾𝑟𝑐𝑒𝑟(𝑃1)+ 𝛾𝑟𝑐𝑒𝑟(𝑃2) = 2 + 2 = 4. Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) +

𝛾𝑟𝑐𝑒𝑟(𝐺) = 5 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) = 4. 

Theorem 5.6.  

 Let G belongs to any one of the graphs 𝐺1, 𝐺2, … , 𝐺7 of order 𝑛 = 4. Then 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺̅) =

6 𝑜𝑟 8, 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺). 𝛾𝑟𝑐𝑒𝑟(𝐺̅) = 8 𝑜𝑟 16. 

Proof. 

 𝑖) 𝛾𝑟𝑐𝑒𝑟(𝐺1) = 4. Then  𝛾𝑟𝑐𝑒𝑟(𝐺1) = 2,  

we get 𝛾𝑟𝑐𝑒𝑟(𝐺1) + 𝛾𝑟𝑐𝑒𝑟(𝐺1
̅̅ ̅)  = 6 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺1). 𝛾𝑟𝑐𝑒𝑟(𝐺1

̅̅ ̅) = 8 

𝑖𝑖)𝛾𝑟𝑐𝑒𝑟(𝐺2) = 4. Then  𝛾𝑟𝑐𝑒𝑟(𝐺2) = 4,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺2) + 𝛾𝑟𝑐𝑒𝑟(𝐺2
̅̅ ̅)  = 8 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺2). 𝛾𝑟𝑐𝑒𝑟(𝐺2

̅̅ ̅) = 16 

𝑖𝑖𝑖) 𝛾𝑟𝑐𝑒𝑟(𝐺3) = 4. Then  𝛾𝑟𝑐𝑒𝑟(𝐺3) = 4,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺3) + 𝛾𝑟𝑐𝑒𝑟(𝐺3
̅̅ ̅)  = 8 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺3). 𝛾𝑟𝑐𝑒𝑟(𝐺3

̅̅ ̅) = 16. 

𝑖𝑣)𝛾𝑟𝑐𝑒𝑟(𝐺4) = 2. Then  𝛾𝑟𝑐𝑒𝑟(𝐺4) = 4,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺4) + 𝛾𝑟𝑐𝑒𝑟(𝐺4
̅̅ ̅)  = 6 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺4). 𝛾𝑟𝑐𝑒𝑟(𝐺4

̅̅ ̅) = 8. 

𝑣)𝛾𝑟𝑐𝑒𝑟(𝐺5) = 4. Then  𝛾𝑟𝑐𝑒𝑟(𝐺5) = 2,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺5) + 𝛾𝑟𝑐𝑒𝑟(𝐺5
̅̅ ̅) = 6 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺5). 𝛾𝑟𝑐𝑒𝑟(𝐺5

̅̅ ̅) = 8. 

𝑣𝑖)𝛾𝑟𝑐𝑒𝑟(𝐺6) = 4. Then  𝛾𝑟𝑐𝑒𝑟(𝐺6) = 4,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺6) + 𝛾𝑟𝑐𝑒𝑟(𝐺6
̅̅ ̅)  = 8 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺6). 𝛾𝑟𝑐𝑒𝑟(𝐺6

̅̅ ̅) = 16. 

𝑣𝑖𝑖)𝛾𝑟𝑐𝑒𝑟(𝐺7) = 2. Then  𝛾𝑟𝑐𝑒𝑟(𝐺7) = 4,  

we get  𝛾𝑟𝑐𝑒𝑟(𝐺7) + 𝛾𝑟𝑐𝑒𝑟(𝐺7
̅̅ ̅)  = 6 𝑎𝑛𝑑 𝛾𝑟𝑐𝑒𝑟(𝐺7). 𝛾𝑟𝑐𝑒𝑟(𝐺7

̅̅ ̅) = 8. 
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Fig. 4 

Result 5.7. 

 Let G be a connected graph of order 𝑛 ≥ 5. Then 𝛾𝑟𝑐𝑒𝑟(𝐺) + 𝛾𝑟𝑐𝑒𝑟(𝐺)  ≤ 𝑛 + 3 and 

𝛾𝑟𝑐𝑒𝑟(𝐺) .  𝛾𝑟𝑐𝑒𝑟(𝐺) ≤ 3𝑛. 

 

In the following theorems we gave the characterization of corona product of graphs. 

 

Theorem 5.8. 

  Let G be 𝐶𝑚  ∘  𝑃𝑛 of order mn.  Then 𝛾𝑟𝑐𝑒𝑟(𝐶𝑚  ∘ 𝑃𝑛) = m. 

Proof.  

 Let {𝑣1, 𝑣2, … , 𝑣𝑚} ∪ {𝑈𝑖} be the vertices of the corona graph G where each 𝑈𝑖 is a collection of the 

vertices of the path 𝑃𝑛 , 1 ≤ 𝑖 ≤ 𝑚.  Let S={𝑣1, 𝑣2, … , 𝑣𝑚} be such that the vertices of S are of degree n+2.  In G 

we have 𝛿(𝐺) = 2. 

 Consider 𝑣1 ∈ 𝑆.  In V-S, the vertex 𝑣1 has atleast two neighbours.  Similiarly each vertex in S has 

atleast two neighbours in V-S.  Thus S is a certified dominating set.  Now, the vertices in V-S has exactly one 

neighbour in S as well as V-S.  This implies that S is a minimum restrained certified dominating set.  Thus 

𝛾𝑟𝑐𝑒𝑟(𝐶𝑚 ∘  𝑃𝑛) = 𝑚. 

Observation 5.9.  

  𝛾𝑟𝑐𝑒𝑟(𝐾𝒎 ∘  𝑃𝒏) = 𝑚,  𝑛 ≥ 2. 

Note: 

   𝛾𝑟𝑐𝑒𝑟(𝐺) has a beautiful property over corona product of graphs.  The corona product of path with 

(cycle) complete graph is independent of the path we take. 

Theorem 5.10. 

 Let G be the connected corona graph 𝐶𝑛 ∘ 𝐾1.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2𝑛. 

Proof.   

 Let {𝑣1, 𝑣2, … , 𝑣𝑛 , 𝑢1, 𝑢2, … , 𝑢𝑛} be the vertices of the corona graph 𝐶𝑛  ∘  𝐾1  such that |𝑉(𝐶𝑛  ∘ 𝐾1)| =

2𝑛.  Let  S be the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  The vertices 𝑢𝑖′𝑠 are of degree one and 𝑣𝑖 ′𝑠 are of degree 3.  By theorem that 

pendant vertices belongs to the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡, we have 𝑢𝑖′𝑠, 1 ≤ 𝑖 ≤ 𝑛 belongs to the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  Consider 𝑢1 ∈

𝑆.  Now 𝑢1 has only one neighbour in V-S which implies the neighbour of  𝑢1 will also belongs to S.  Similarly 

for each vertex 𝑢𝑖 in S, there exists exactly one neighbour in V-S.  Hence each 𝑣𝑖 belongs to S.  Thus 

S={𝑢1, 𝑢2, … , 𝑢𝑛, 𝑣1, 𝑣2, … , 𝑣𝑛}  be the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  This implies |𝑆| = 𝑛 + 𝑛 = 2𝑛 
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  ∴ 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2𝑛 

Note:   i) 𝛾𝑟(𝐾𝑛) = 𝛾𝑐𝑒𝑟(𝐾𝑛) = 𝛾𝑟𝑐𝑒𝑟(𝐾𝑛) = 1 

ii)𝛾𝑟(𝐺) = 𝛾𝑟𝑐𝑒𝑟(𝐺) for star graph. 

Theorem 5.11. 

  Let G be a connected corona graph 𝐾1,𝑛 ° 𝐾1.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺)=2(n+1). 

Proof:   

 Let S be the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  G has n+1 vertices of degree one and n+1 vertices of degree ≥ 2. By theorem 

2.4 and 2.7 n+1 vertices  belongs to 𝑆 𝑎𝑛𝑑 𝑛 + 1 support vertex belong to S. Thus 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2(𝑛 + 1). 

Theorem 5.12.   

 Let G be a connected corona graph 𝑃𝑛 ∘  𝐾1.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 2𝑛. 

Proof.   

 Let {𝑣1, 𝑣2, … , 𝑣2𝑛} be the vertices of G such that 𝑣𝑖 is of degree one if i is odd and 𝑣𝑖 is of degree ≥ 2 

if i is even.  Let S  be the 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  By theorem pendant vertices belongs to 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡, we have 𝑣𝑖 with i is 

odd also belongs to 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  Now 𝑣𝑖 with odd i has only one neighbour in V-S which does not satisfy the 

restrained certified domination condition.  Hence 𝑣𝑖 with i even also belongs to 𝛾𝑟𝑐𝑒𝑟 − 𝑠𝑒𝑡.  Hence 𝛾𝑟𝑐𝑒𝑟(𝐺) =

2𝑛. 

Theorem 5.13.  

 Let G be the friendship graph.  Then 𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 

Proof. 

 G is a graph constructed by joining n copies of cycle graph 𝐶3 with a common vertex and this common 

vertex becomes a universal vertex.  Therefore,  𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. 

6 Conclusion 

In this paper we have discussed the restrained certified domination number of graphs. Upper and lower bounds 

were found. Also we have characterised the graphs with   𝛾𝑟𝑐𝑒𝑟(𝐺) = 1. Nordhas gaddum results on several 

graphs have been studied. Together with this the 𝛾𝑟𝑐𝑒𝑟(𝐺) values of some corona products are calculated. 
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