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Abstract: -In this article, we study the vibratory motion of structures in bending within the framework of the 

Euler-Bernoulli theory, presenting a work that concerns the dynamic response of geometrically linear beams, 

through a very relevant case rarely seen in the literature. This is a continuous system containing three identical 

FGM beams coupled by an elastic system consisting of double elastic masses vertically connecting each beam to 

the other. The main objective of this paper is to determine the natural vibration frequencies of such a structure. 

The first part of this work focuses on determining the natural linear vibration frequencies of two homogeneous 

and isotropic beams connected by a double mass-spring system, in order to validate the results with those found 

in the literature. The second part consists of finding the natural frequencies of the free vibrations of three FGM 

beams elastically connected by the double mass-spring linear mechanical system. Using the boundary conditions 

and continuity conditions, we obtain a system of equations that will be solved numerically by the Newton 

Raphson method, whose eigenvalues are the natural frequencies of the structure under study. The effects of the 

volume fration index and the positions of the coupling systems and boundary conditions will be presented and 

discussed. 

Keywords: FGM beam, Euler-Bernoulli, Beam coupled, Bending vibration, Spring-mass. 

 

1. Introduction 

The dynamics of structures is a vast and wide-ranging field, requiring in-depth study to find relevant ideas and 

information to provide experts in the field with the data they need to follow well-detailed recommendations to 

get rid of the damage that can occur or an unexpected problem if the structure has not been established 

according to the recommendations cited as a result of the wrong study. 

In various aspects of our daily lives, a multitude of beam structures can be encountered, with elastically 

connected beam structures being prevalent across diverse fields. These include civil engineering applications 

like high-rise buildings and bridges, aeronautical uses such as aircraft wing manufacturing, marine engineering 
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for ship construction, automotive part fabrication, medical devices, and even within advanced industries like the 

production of multi-layer carbon nanotubes. 

The present study represents a thorough investigation informed by a comprehensive review of various scholarly 

articles concerning the dynamic behavior of elastically connected beam structures. Notably, the pioneering work 

of [1]deserves recognition for its exploration of the natural free vibration frequencies of multiple elastically 

connected beams using the AMDM method. Similarly, [2]contributed significantly by employing the classical 

section method to analyze the free vibration frequencies of two beams coupled by a double spring-mass elastic 

system. Building upon this, [3]replicated [2]'s findings but introduced a mathematical approach that streamlined 

the system and facilitated the determination of free vibration frequencies. Additionally, [4]utilized an exact 

stiffness method to accurately determine the linear vibration frequencies of three elastically connected beams. 

[5]specifically focused on the case of the E-FGM beam, employing an exact method to derive adimensional 

vibration frequencies. Furthermore, [6] investigated an FGM beam on a Winkler and Pasternak type foundation, 

utilizing the power law and variable separation method to identify natural adimensional vibration frequencies. In 

a separate context, [7]examined the FGM beam within the framework of Rayleigh theory, while [8]extended the 

analysis to encompass both Euler-Bernoulli theory and Timoshenko theory. Outassafte, O. [9]delved into the 

detection of cracks in circular arches by analyzing variations in natural frequencies alongside employing the 

firefly hybrid algorithm. Similarly, El Khouddar, Y. [10]investigated the impact of hygro-thermal effects on the 

nonlinear free and forced vibrations of piezoelectric functional gradient beams, considering beams with an 

arbitrary number of concentrated masses. Additionally, Outassafte, O. [11] examined both linear and 

geometrically nonlinear free in-plane vibration characteristics of circular arches with damages. Finally, El 

Khouddar, Y.E. [11]conducted a comprehensive analysis of nonlinear forced vibrations in piezoelectric 

functionally graded beams operating in thermal environments. These cited studies serve as pivotal prior research 

in the field of vibration analysis pertaining to elastically connected beams, laying the groundwork for our own 

investigation.Finally, it is worth noting that the methodology presented in this study can be extended to other 

cases previously investigated in the literature. For instance, it can be applied to tapered beams [12], where the 

cross-sectional dimensions vary along the beam's length, or even to other structural configurations such as 

arches[13], [14]. By adapting the analytical framework and computational techniques outlined in this study, 

researchers can explore the dynamic behavior of these diverse structural systems, offering broader insights into 

their vibrational characteristics and enhancing the applicability of the analytical approach across different 

engineering contexts. 

2. Objectives 

In this study, we investigate the scenario involving three Functionally Graded Material (FGM) beams 

interconnected by two elastic mechanical systems, each comprising identical double spring-mass configurations 

linking one beam to another. Initially, we validate existing literature findings regarding the natural frequencies 

of free vibration for two isotropic beams coupled via a double spring-mass system. Subsequently, we delve into 

our primary objective of determining the natural frequencies of free vibration for the aforementioned 

configuration involving three FGM beams interconnected by the double spring-mass linear elastic system. Our 

analysis considers the material properties characteristic of FGM beams. Additionally, we generate plots 

illustrating the vibration modes and examine the impact of various parameters on the vibration frequencies. 

Through these investigations, we aim to deepen understanding of the vibrational characteristics and behavior of 

such interconnected FGM beam systems. 

3. Methods 

Problem formulation 

The problem considered is shown in Fig. 1, and consists of three identical FGM beams made of ceramic and 

another material. This type of beam has' specific properties and is characterized by a material distribution law 

given in the rest of this work. The three beams are connected by a double spring-mass linear elastic mechanical 

system such that each beam is linked to the other by this double spring-mass system, with the stiffness constants 
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K1 and K2 and the masses M1 and M2 being the same. Each FGM beam in Fig. 1 has length L, cross-section A, 

width b and thickness h, clamped in all its ends. 

 

Fig.1. Three FGM beams connected by two double spring-mass spring systems 

 

FGM beam theory 

We consider an FGM beam with a rectangular cross-section of length L, width b and thickness h as shown in the 

following figure: 

 

 

 

Fig.2. Rectangular cross-section FGM beam 

FGM beams are manufactured from two components placed one on top of the other, ceramic and metal, the 

percentage of which in relation to the entire beam varies according to requirements. FGM beams are considered 

to have a Young's modulus and density that vary continuously along the thickness axis, while the fish coefficient 

is considered to be constant. All the effective properties of this type of beam are therefore given by: 

P= PcVc+PmVm(1) 

Where Pc, Pm, Vc and Vm are the ceramic and material properties of the FGM beam and their volume fractions. 

And we also have the relationship that translates the distribution of the volume of ceramic and material in 

relation to the volume of the beam expressed by:     

Vc+Vm=1                                          (2) 

FGM beams are known by a ceramic distribution in the beam known by the distribution law its mass in the 

beam which can take different mathematical forms for this work we use the power law given by the expression: 

Vc = (
z

h
+

1

2
)

d

                      (3) 
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With z the dimension and h the thickness of the beam and d a power factor varying between 0 and +∞, if d=0 

i.e. the beam is entirely ceramic.   

The expressions for Young's modulus, density and poison coefficient are given by the following formulas: 

Young's modulus of the FGM beam is:               E(z)=(Ec-Em)Vc+Em.                                                   (4) 

The density of the FGM beam is :                ρ (z)=(ρc- ρm)Vc+ ρm  (5) 

The Poisson's ratio of the FGM beam is :   ν(z)=(ν c- ν m)Vc+ ν m (6) 

And the expression for the density of the FGM beam per unit length is given by : 

𝐼0 = ∫ 𝜌(𝑧)
+

ℎ

2

−
ℎ

2

𝑑𝐴  (7)                                                          

The equation governing the transverse displacement of the FGM beam, we work according to the classical 

Euler-Bernoulli theory, still within the framework of linear elasticity. The displacement field at a point M of the 

FGM beam within the framework of the Euler-Bernoulli theory is given by the following form [5,6]:  

𝑈(𝑀, 𝑡) = {
𝑤(𝑥, 𝑧) = 𝑤(𝑥, 𝑡)

𝑢(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥

(8) 

Where u(x,t) and w(x,t) are respectively the longitudinal and transverse displacements in the mid-plane of the 

beam, and t is time. 

We also have the expressions for the normal strain and normal stress undergone by the beam given by : 

𝜀𝑥 =
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2    (9) 

𝜎𝑥 = 𝐸(𝑧)𝜀𝑥 = 𝐸(𝑧) (
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 )         (10) 

This allows us to write the expressions concerning the resultant of the internal forces, i.e. the normal force, the 

bending moment and the transverse shear force, given by the following formulas: 

𝑁𝑥 = ∫ 𝜎𝑥𝑑𝐴
𝐴

= ∫ 𝐸(𝑧) (
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 ) 𝑑𝐴
𝐴

= 𝐴1
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝐵1

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2     (11) 

𝑀𝑥 = ∫ 𝜎𝑥𝑧𝑑𝐴
𝐴

= ∫ 𝐸(𝑧)𝑧 (
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 ) 𝑑𝐴
𝐴

= 𝐵1
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝐷1

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2    (12) 

𝑄𝑥 =
𝜕𝑀

𝜕𝑥
=

𝜕

𝜕𝑥
(𝐵1

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝐷1

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 ) = 𝐵1
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 − 𝐷1
𝜕3𝑤(𝑥,𝑡)

𝜕𝑥3      (13) 

Where:{𝐴1; 𝐵1; 𝐷1} = {∫ (1; (𝑧 − 𝑧0); (𝑧 − 𝑧0)2)𝐸(𝑧)𝑑𝑧
𝐴

}(14) 

Such that 𝑧0is the straight line defining the neutral axis of the FGM beam given by the formula :  

𝑧0 =
∫ 𝑧𝐸(𝑧)𝑑𝑧

ℎ/2
−ℎ/2

∫ 𝐸(𝑧)𝑑𝑧
ℎ/2
−ℎ/2

(15) 

Considering an element of length dx of the FGM beam and applying to it the law of dynamics and the 

equilibrium of moments, taking into account the expressions given previously and after some simplifications we 

find the differential equation of free vibration of an FGM beam verified by the transverse displacement within 

the framework of the Euler-Bernoulli theory, which gives the following equation: 

𝜒
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 + 𝐼0
𝑤(𝑥,𝑡)

𝜕𝑡2 = 0(16) 

Where:χ = (D1 −
B1

2

A1
) (17) 
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Equations of motion and solutions 

We now have fundamental relations that enable us to write the mathematical equations corresponding to the 

problem posed in Figure 1. The method of resolution used in this work for the search for natural frequencies of 

vibration is the tracer method as shown in Fig. 1. We use the method of separation of variables to solve the 

differential equation (16), which allows us to admit a general solution in the form:  

wij(x, t) = Wij(x)exp(iωt)    (18) 

where Wij(x)  is the transverse displacement of each section of three beams and ω is the temporal frequency of 

vibration of the entire system in s-1. By replacing the latter expression in equations (16) and (19) we find the 

differential equation verified by W(x) for each section, which is: 

For the upper FGM beam, the dynamic equations for each section are given by : 

χ
∂4W1j(x)

∂x4 − 𝐼0ω2W1j(x) = 0                ; (j=1,2)                                      (19) 

For the FGM beam in the middle, the dynamic equations for each section are given by : 

χ
∂4W2j(x,t)

∂x4 − 𝐼0ω2W2j(x) = 0         ; (j=1,2,3)                                         (20) 

For the lower FGM beam, the dynamic equations for each section are given by : 

χ
∂4W3j(x,t)

∂x4 − 𝐼0ω2W3j(x) = 0         ; (j=1,2)               (22) 

From equations (19), (20) and (21) we write the dimensionless differential equations for each beam as follows, 

where  W(x) = hW∗(x∗) and x = Lx∗with h is thikness of beam : 

∂4𝑊1𝑗
∗ (𝑥∗)

∂𝑥∗4 − 𝛽̅4𝑊1𝑗
∗ (𝑥∗) = 0  ; (j=1,2)                    (23) 

∂4𝑊2𝑗
∗ (𝑥∗)

∂𝑥∗4 − 𝛽̅4𝑊2𝑗
∗ (𝑥∗) = 0 ; (j=1,2,3)        (24) 

∂4𝑊3𝑗
∗ (x)

∂𝑥∗4 − 𝛽̅4𝑊3𝑗
∗ (𝑥∗) = 0   ; (j=1,2)                                                  (25) 

Where   𝛽̅4 =
𝐿4𝐼0ω2

χ
 ;     𝛽̅ is the dimensionless wave number                                               (26) 

The differential equations (23), (24) and (25) express the vibratory behavior of the FGM beam, and their 

solutions can be written as follows: 

𝑊1𝑗
∗ (𝑥∗) = 𝐶1𝑗 sin(𝛽̅𝑛(𝑥∗ − 𝜂1)) + 𝐶2𝑗 𝑐𝑜𝑠(𝛽̅𝑛(𝑥∗ − 𝜂1)) + 𝐶3𝑗 𝑠𝑖𝑛ℎ(𝛽̅𝑛(𝑥∗ − 𝜂1)) + 𝐶4𝑗𝑐𝑜𝑠ℎ(𝛽̅𝑛(𝑥∗ − 𝜂1)) ; 

(j=1,2).                

𝑊2𝑗
∗ (𝑥∗) = 𝐶5𝑗 sin(𝛽̅𝑛(𝑥∗ − 𝜂𝑘)) + 𝐶6𝑗 𝑐𝑜𝑠(𝛽̅𝑛(𝑥∗ − 𝜂𝑘)) + 𝐶7𝑗𝑠𝑖𝑛ℎ(𝛽̅𝑛(𝑥∗ − 𝜂𝑘)) + 𝐶8𝑗𝑐𝑜𝑠ℎ(𝛽̅𝑛(𝑥∗ − 𝜂𝑘)) ; 

(j=1,2) and (k=2,3). 

𝑊3𝑗
∗ (𝑥∗) = 𝐶9𝑗 sin(𝛽̅𝑛(𝑥∗ − 𝜂4)) + 𝐶10𝑗𝑐𝑜𝑠(𝛽̅𝑛(𝑥∗ − 𝜂4)) + 𝐶11𝑗𝑠𝑖𝑛ℎ(𝛽̅𝑛(𝑥∗ − 𝜂4)) + 𝐶12𝑗𝑐𝑜𝑠ℎ(𝛽̅𝑛(𝑥∗ −

𝜂4)) ; (j=1,2). 

The previous solutions present twenty-four unknowns, these are the integration constants, to which we add the 

vertical displacements z1 and z2 respectively of the masses M1 and M2, which are identical to the double spring-

mass systems. We therefore have twenty-six unknowns in total, which are determined by the boundary 

conditions and continuity conditions, in fact we write down all the conditions of the system illustrated in figure 

1 to completely solve the problem and find the natural vibration frequencies.    
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Wj1
∗ (0) = 0 ;  Wj1

∗′(0) = 0 ;                      (j = 1,2,3) 

W12
∗ (1) = 0 ;  W12

∗′ (1) = 0 ;  W23
∗ (1) = 0 ; 

W23
∗′ (1) = 0 ; W32

∗ (1) = 0 ;  W32
∗′ (1) = 0 ; 

Wj1
∗ (𝜂𝑗) − Wj2

∗ (𝜂𝑗) = 0 ;   Wj1
∗′

(𝜂𝑗) −  Wj2
∗′

(𝜂𝑗) = 0; 

Wj1
∗′′(𝜂𝑗) −  Wj2

∗′′(𝜂𝑗) = 0 ;(j=1,2) 

W22
∗ (𝜂3) − W32

∗ (𝜂3) = 0 ;   W22
∗′

(𝜂3) − W32
∗′

(𝜂3) = 0; 

W22
∗′′(𝜂3) −  W23

∗′′
(𝜂3) = 0 ;(27) 

W31
∗ (𝜂4) − W32

∗ (𝜂4) = 0 ;   W31
∗′

(𝜂4) − W32
∗′

(𝜂4) = 0; 

W31
∗′′(𝜂4) − W32

∗′′
(𝜂4) = 0 ; 

[W11
∗′′′(η

1
) −  W12

∗′′′(η
1

)] − αk[W11
∗ (𝜂1) − z1

∗] = 0 ; 

[W21
∗′′′(η

2
) − W22

∗′′′(η
2

)] + αk[z1
∗ − W22

∗ (𝜂2)] = 0 ; 

[W22
∗′′′(𝜂1) −  W23

∗′′′(𝜂1)] − αk[W22
∗ (𝜂3) − 𝑧2

∗] = 0 ; 

[W31
∗′′′(η

3
) − W32

∗′′′(η
3

)] + αk[z2
∗ − W32

∗ (𝜂4)] = 0 ; 

Where: αk = αk1 = αk2, because: K1=K2=K,  with : 𝛼𝐾 = 𝐾𝐿3 𝐸𝐼0⁄ .                                                                (28) 

The system of equations obtained by (27) can be written in the following matrix form: 

[𝑅]{𝐶𝑖𝑗} = {0}  (29) 

The non-trivial solution of (28) allows us to find the natural vibration frequencies by solving the nonlinear 

equation given by: 

det(R)=0        (30) 

Using MatLab software, we solve the nonlinear equation (29) following the Newthon-Raphson algorithm to find 

the dimensionless natural frequencies  𝛽̅𝑛. 

4. Results and discussion 

In this section, results are given in the form of examples, beginning with a comparison with results obtained 

from the literature, followed by results relating to the example shown in figure 1 and a study of the effect of 

some parameters.  

 

Comparative study 

We present in this work at the beginning a comparative study with references [2] and [3] which treated the case 

of two isotropic beams of same length and same section clamped in the two sides of the left and they are free on 

two sides of the right and supporting each respectively two masses M1 and M2 and they are linked by a system 

of double spring-mass such as 𝜂1=𝜂2=0.5 and 𝛼𝑘1 = 𝛼𝑘2 = 1000 and 𝛼𝑚1 = 𝛼𝑚2 = 2 and 𝛼𝑚 = 1.[2] 

The Table 1 shows that the first eight values of natural frequency obtained in this article. 
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Table 1. The first 8 non-dimensional frequency parameters of the system consisting by two beams coupled 

by double spring-mass. 

Mode No. 
Dimensionless frequencies 

Present Ref. [2] Ref. [3] 

1 1.07026267 1.07026286 1.07026290  

2 1.55878245 1.55878983 1.55878981 

3 3.30958283 3.30959152 3.30959149 

4 6.33425058 6.33425479 6.33425478 

5 6.81982112 6.81983036 6.81983042 

6 7.46937434 7.46938324 7.46938323 

7 7.92595032 7.92595594  7.92595591 

8 10.66672884 10.66673582 10.66673583 

 

it is clear that the results obtained in present by using the method of dividing the domain into sections    are 

identical to those already found in references [2] and [3]. 

Numerical examples 

The results concerning the case of three FGM beams coupled by a double spring-mass system as illustrated in 

figure 1 are given in the following tables, considering the following values of the physical quantities used in this 

work. The metal is Aluminium (Al) and the ceramic is Alumina (Al2O3). [5,6]  

𝐸𝑚 = 70 × 109𝑃𝑎 ; 𝐸𝑐 = 380 × 109𝑃𝑎 ;  𝜌𝑚 = 2702 𝐾𝑔 𝑚3⁄ ; 𝜌𝑐 = 3960 𝐾𝑔 𝑚3⁄  ;  𝜈𝑚 = 𝜈𝑐 = 0,3 

The dimensionless natural vibration frequencies 𝜔̅ of the system shown in Figure 1 are presented in Table 2 and 

are determined using its two relationships :  

ω = (β)2√
I0

χ
  = (

β̅

L
)

2

√
I0

χ
    and   ω̅ = ω

L2

h
√

ρ
m

Em

 

With β is the wavenumber in m-1 determined by solving the nonlinear equation (29) and ω̅ the natural vibration 

frequency of the FGM beam. 

The results we are about to present are all considered for positions 𝜂1 = 𝜂2 = 1/3 𝑒𝑡 𝜂3 = 𝜂4 = 2/3for the two 

double springs-mass. 

In the second table we give the natural vibration frequencies for the structure like in Figure 1 for three isotropic 

beams elastically connected.  

Table.2.The ten non-dimensional frequencies  𝜷̅ of the system shown in Figure 1 for the following values 

of the dimensionless quantities 𝜼𝟏=𝜼𝟐=1/3 𝜼𝟑=𝜼𝟒=2/3 and 𝜶𝒌𝟏 = 𝜶𝒌𝟐 = 𝟏𝟎𝟎𝟎. 

Mode No. 

Dimensionless 

frequencies 𝛽̅ 

present 

1 3.863917808814821 

2 4.633618680454015 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

4519 

3 6.251420340544633 

4 6.401255999098443 

5 8.001052208261319 

6 9.025631484016790 

7 9.123146475862988 

8 

9 

10 

9.552382882374978 

11.069919128156249 

14.330354590471110 

 

By comparing with the results of the previous table which includes only two coupled beams, the vibration 

frequencies obtained for three coupled beams are higher than those of table 1. 

We present in Table 3 the dimensionless natural frequencies ω̅  for a single FGM beam clamped in both ends 

using the data previously for different values of d. 

Mode No.  

result             

Dimensionless frequencies for ω̅   

Al2O3 d=1 d=2 d=10 Al 

1             

present 

12.4299 9.5683 8.7315 8.0675 6.4993 

             [6] 12.43 9.569 8.732 8.068 6.459 

2             

present 

34.2624 26.3745 24.0679 22.2377 17.9150 

  [6] 34.264 26.376 24.069 22.239 17.803 

3             present 67.1763 51.7110  47.1885 43.6001 35.0154 

[6] 67.172 51.707 47.185 43.597 34.902 

 

The results obtained in the present are the same as those obtained in the reference [6], and it is noted that the 

natural frequencies decrease as d increases and achieve a minimum value when the beam is made only of 

metal,so that we know what percentage we need to build an FGM beam according to our needs and 

requirements. 

We have in the table 4 the result obtained for searching the dimensionless frequencies of the figure 1 for the 

values of position 𝜂1 = 𝜂2 = 1/3 and 𝜂3 = 𝜂4 = 2/3. 

Table.4. The non-dimensional frequencies of the system shown in Fig. 1 for different values of geometric 

form factor d. 

Mode No. 
Dimensionless frequencies for ω̅  

d=0 d=1 d=10 d=100 

1 8.29474413 6.38513306 5.38362422 4.55305258 

2 11.92855443 9.18236971 7.74211398 6.54768063 

3 21.71224033 16.71366125 14.09212159 11.91802547 
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4 22.76552270 17.52445757 14.77574442 12.49618074 

5 35.56652568 27.37842124 23.08411277 19.52275548 

6 45.25873690 34.83929734 29.37474961 24.84288912 

 

As before, the natural vibration frequencies of FGM beams decrease as the geometrical factor d increases, i.e. as 

the metal percentage becomes greater than the ceramic one. 

The table below gives the dimensionless vibration frequencies of the system shown in Figure 1 for the value d=2 

for different values of position of the elastic system. 

Table.5. Values ofdimensionless frequencies 𝝎̅ for different values of position of system double spring-

mass. 

Mode No. 

 Dimensionless frequencies for ω̅ 

𝜂1 = 𝜂2 = 0.25 

𝜂3 = 𝜂4 = 0.50 

𝜂1 = 𝜂2 = 0.25 

𝜂3 = 𝜂4 = 0.75 

𝜂1 = 𝜂2

= 0.5 

𝜂3 = 𝜂4

= 0.5 

𝜂1 = 𝜂2 = 1/3 

𝜂3 = 𝜂4 = 2/3 

1 5.63841241 6.74620948 5.12768316 5.82670600 

2 8.97566240 8.47723221 11.311417997 8.37930363 

3 14.15840596 12.64060873 21.49534961 15.25192808 

4 20.59739538 14.06965940 23.29228514 15.99181428 

5 24.06915365 18.93941921 24.06723773 24.98397601 

6 24.56025047 30.10618833 27.07404103 31.79234337 

 

Table 5 gives some ideas on the best positions for the double-spring mass system according to design 

requirements.  

From the table, the best positions for low frequencies are 𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 0.5 , and the best positions for 

high frequencies are 𝜂1 = 𝜂2 = 1/3 𝑒𝑡 𝜂3 = 𝜂4 = 2/3. 

The table below gives six first dimensional vibration frequencies of the system in figure 1 for different boundary 

conditions and  d=5 and 𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 0.5.   

Table.6. Values ofdimensionless frequencies 𝜔̅ for different boundary conditions 

Mode No. 
 Dimensionless frequencies ω̅ 

CCC-CCC SSS-SSS CCC-FFF SSS-FFF 

1 4.88226804 2.37927226 1.13808926 3.12762800 

2 10.77004423 9.18542684 3.24221563 3.28984961 

3 20.46656451 14.66843081 3.51343387 4.45232598 

4 22.17749724 16.08369693 5.57681099 9.57625871 

5 22.91535996 18.93196007 10.63112016 15.56159199 

6 25.77825518 20.49629926 20.09252800 17.14833961 
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The previous table gives the variations of the natural frequencies for an FGM beam for different boundary 

conditions, it can be seen from these results that the CCC-CCC conditions which will be sensitive to high 

frequencies and the CCC-FFF structureswhich will be sensitive to low frequencies. 

The figure 3 shows the vibration modes for the first six values of the natural frequencies normalized to the 

problem posed in figure 1 for the following positions 𝜂1 = 𝜂2 = 1/3 et 𝜂3 = 𝜂4 = 2/3 for double spring-mass 

systems. 

 

Fig.3. The first six modes of vibrations of system illustrated in figure 1 with 𝜼𝟏 = 𝜼𝟐 = 𝟏/𝟑 et 𝜼𝟏 = 𝜼𝟐 =

𝟐/𝟑 

we have in figure 3 the first six modes of vibration of three FGM beams coupled by the mass-double spring 

system, which present the different ways of vibrating according to the resonance frequency, it is clear that these 

modes are in agreement with the boundary conditions. 

The figure 4 shows the variations of the first four dimensionless natural frequencies ω̅ of the problem of figure 1 

for different values of the geometrical factor d for the same position of the coupling elastic systems 𝜂1 = 𝜂2 =

1/3 et 𝜂1 = 𝜂2 = 2/3. 

 

Fig.4. The variations of first four natural frequencies for different values of geometric factor 
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The four curves shown in Figure 4 show that the natural vibration frequencies for an FGM beam decrease when 

the geometric factor increases, i.e. when the beam becomes richer in metal. 

5. Conclusion 

In this study, we have dealt with a case that is much in demand in civil engineering and very rare in the 

literature, namely the free vibration within the framework of Euler-Bernoulli theory of a structure of three FGM 

beams coupled by a double spring-mass, we have examined this case by investigating their natural 

dimensionless vibration frequencies through the application of the section method and taking into account the 

properties of the materials with which the FGM beam is constructed, considering the case where its properties 

vary continuously along the thickness axis based on the power law, All these data are taken into consideration 

and included in the equation governing the FGM beam's vibratory dynamics, and taking into account the effect 

of coupling and their addition, especially in the conditions we have also studied the influence of several 

parameters on the adimensional natural frequency parameters, as well as the effect of boundary conditions and 

the tracing of vibration modes.  
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