Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)

Split Geodetic Dominating Sets in Path
Graphs

P. Arul Paul Sudhahar! and A. Merin Sherly?
!Research Supervisor, Department of Mathematics,
Rani Anna Government College for Women,
Tirunelveli - 627 008, Tamilnadu, India.
2Research Scholar (Register No. 20211172092004),
Department of Mathematics,

Rani Anna Government College for Women,
Tirunelveli - 627 008,

Affiliated to Manonmaniam Sundaranar University,
Abishekapatti, Tirunelveli 627 012,
Tamilnadu, India.

Abstract

Let Dsg(PB,, i) be the family of split geodetic dominating sets of the path graph B,. with cardinality i and let
dsg(B,,i) =|Dsg(P,, 1) |. Then the split geodetic polynomial Dsg(P,,x) of Pn is defined as Dsg(Pn, x)
=Z?=ng(Pn) dsg(P,, i)x!, where ¥sg(B,) is the split geodetic domination number of Pn.In this paper we have
determined the family of split geodetic dominating sets of the path graph Pn with cardinality i.Also , we have

obtained the recursive formula to derive the split geodetic domination polynomials of paths and also obtain some
properties of this polynomial.
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1 Introduction

Let G = (V,E) be asimple graph of order | V| = n. A dominating set for a graph G = (V, E) is a subset D of
V such that every vertex not in D is adjacent to at least one member of D. The domination number y (G) is the
number of vertices in a smallest dominating set for G[1]. We call a set of vertices S in a graph G a geodetic
dominating set if S is both a geodetic set and a dominating set. The minimum cardinality of a geodetic dominating
set of G is its geodetic domination number, and is denoted by y,(G)[2] [3]. Split geodetic number of a graph was
studied by in [4]. A geodetic set S of a graph G = (V, E) is the split geodetic set if the induced subgraph (V — S)
is disconnected.The split geodetic number g¢(G) of G is the minimum cardinality of a split geodetic set. A set
S € V (G) is said to be a split geodetic dominating set of G if S is both a split geodetic set and a dominating set
of G.The minimum cardinality of the split geodetic dominating set of G is called the split geodetic domination
number of G and is denoted by y45(G).The concept of split geodetic domination number was introduced by P.Arul
Paul Sudhahar and J.Jeba Lisa in [5].A domination polynomial can be studied in [6][7][8][9] and the geodetic
domination polynomial was studied in [10]. A path is a connected graph in which two vertices have degree 1 and
the remaining vertices have degree 2.Let P, be a path with n vertices. Let Dsg (Pn, i) be the family of split geodetic
dominating sets of the graph Pn with cardinality i and let dsg(P,,i) = | Dsg(P,, i) ||- Then the split geodetic
polynomial Dsg(P,, x) of Pn is defined as Dsg(P,, x) =Z?=ysg(Pn) dsg(P,, )x', where Ysg(Pn) is the split

geodetic domination number of P,.
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In the next section we construct the families of the split geodetic dominating sets of paths by a recursive method.
In section 3, we use the results obtained in section 2 to study the split geodetic domination polynomial of paths.

Lemma 2.1. y54(P,) = [n+2]

Lemma 2.2. Dsg(B,,i) = @ ifand onlyifi > nori < [—] and Dsg(Pn i > 01f[

Lemma 2.3. IfY € Dsg(P,_4,i — 1) or Dsg(P,_,,i — 1) or Dsg(P,_3,i — 1) then Y U {x} € Dsg(PB,,i).
Lemma 2.4. (i) If Dsg(P,_1,i — 1) = Dsg(Pp_3,i — 1) =® thenDsg(Pp_,,i — 1) =@

() If Dsg(Pp_1,i — 1) # &, Dsg(P,_3,i — 1) # @ then Dsg(P,_,,i — 1) # @

(iii) If Dsg(Py_1,i — 1)=Dsg(P,_5,i — 1) = Dsg(P,_5,i — 1)=& then Dsg(P,, i)=&

Proof.

(i) If Dsg(P,_1,i — 1) =@ and Dsg(P,_3,i — 1) = theni—1>n—1lori — 1< [n—H] and i —

n+2]

1>n—30rz—1>n—10r1—1<[ ]:1—1<[]or1—1>n—2holdsTherefore
Dsg(Pn-2.1 1)—
(ii) If DSG(Pucy,i — 1) # @ Dsg(Pyg,i — 1) # @ then [ < i-1 <n-1and [*F|<i-1x<

n+1

N

n-3=>[2]<i-1<n-3ad[fz[2 <i-1<sn-3<n-29[<i-1<n-
Hence Dsg(P,_,,i — 1) # .

(iii) If Dsg(Pp_1,i — 1) = Dsg(Py_5,i — 1) = Dsg(Pp_3,i — 1) =@ thenl—1<[n—+1]orl—1>
n—1-i—1<[E]ori—1>n—2andi—1<["—‘1]ori—1>n—3=>l—1<["T‘l]ori—
1>n-3=1i <[ +1] ori >n =i <[—]0rl > n . Therefore Dsg(P,,i) = @

Lemma 2.5. Istg(Pn,l);t(Dthenwehave

(1) Dsg(P,_4,i — 1) =Dsg(P,_5,i — 1)=& and Dsg(P,_3,i — 1) # ®ifandonlyifn = 3k — 2,i =
k , for some posmve integer k .
(ii) Dsg(P,_,,i — 1) =Dsg(P,_3,i — 1)=& and Dsg(P,_,,i — 1) # @ ifandonly ifi = n

(ii1) Dsg(Py_q,i — 1) = ®@; Dsg(P,_,,i — 1) # ® and Dsg(P,_3,i — 1) =@ ifandonlyif i = n — 1

(iv) Dsg(P,_1,i — 1) =@; Dsg(P,_,,i — 1) # ® and Dsg(P,_3,i — 1) # @ ifandonlyifn = 3k andi=
[3k+3] forsome k € N

(V) Dsg(Py_y,i — 1) # ®; Dsg(Py_y,i — 1) # ® and Dsg(Py_s,i — 1) # & if and only if["TH] +t1<i<
n- 2.
Proof

()Since Dsg(Py_y,i — 1) =Dsg(Py_pi — 1) =0 =i—1>n—lori — 1n — 2ori — 1<E]=>i -1
< E]or i—1>n-1. If i —1>n—1then i > n and hence Dsg(P,i)=® which is a
contradiction.Therefore i — 1 < E] =>i< [§]+ 1 . Also since Dsg(P,_3,i — 1) #= @ , then [nT_l <i-

1<n- 3.Hence[nT_1] +1<i< E] + 1.Thisistrue only whenn = 3k — 2andi = k forsomek €

N. Conversely assume n = 3k — 2and i = k for some k € N then by lemma 2.2 Dsg(P,_1,i — 1) =&
Dsg(Pp,_,,i — 1)=® andDsg(P,_3i — 1)#®

(ii) Since Dsg(Pp_,,i — 1) =Dsg(P,_3,i — 1)=d,theni — 1 < E]ori— 1>n=-21Ifi-1< E] then
i—1< [T] , then Dsg(P,_,,i — 1) = &,which is a contradiction, so we have i — 1 >n — 2 =i >
n — 1 = i = n.Also since Dsg(P,_4,i — 1) # @ then [nTH] <i—1<n-1=1i<nHencei =

n.Conversely ifi = n, then Dsg(P,_,,i — 1)=Dsg(P,_;,n— 1) # @, Dsg(P,_3,i — 1)=Dsg(P,_3,n
1) # @ and Dsg(P,_,,i — 1)=Dsg(P,_;,n— 1) # & [Since Dsg(P,_,,n — 1) =1].
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(iii)Assume Dsg(P,_q,i — 1) # ®; Dsg(Pp_,,i — 1) # & and Dsg(P,_3,i — 1) =@. Since
Dsg(Pog,i— 1) =@ ,i—1>n—30ri—1< [ Since Dsg(Prpi - Dz, [ <i-1x
n — 2.Thatis,i — 1 < [nT_l]isnotpossible.Therefore,i—1>n—3=>i—12n—2,Buti -1<n-
2=>i—1=n-2=1i=n-—1Conversely suppose i =n — 1 , then Dsg(P,_,,i — 1) =
Dsg(Pp_1,n—2) # @, Dsg(P,_,,i — 1) = Dsg(P,_,,n—2) # ®, but Dsg(P,,_3,i — 1) = Dsg(P,_3,n
2)=d

(iv)Assume Dsg(P,_1,i — 1) = @; Dsg(P,_,,i — 1) # ® and Dsg(P,,_3,i — 1) # &. Since Dsg(P,_4,i —
D=d,i—-1>n—-1=2i—-1>n—-2>Dsg(P,_,,i — 1)and Dsg(P,_3,i — 1)are empty, which
is a contradiction. Therefore i — 1 < [nﬂl =>1i< [nﬂl + 1. Since Dsg(P,_,, i — 1) #* @ and
Dsg(P,_3,i — 1) #= ®,we have [—] <i—1<n-2and [T] < i—1 £ n—3 . Therefore [5] <i-

] for

3k+3

]+1.Thisholdsonlywhenn =3kandi = k + 1 =[ 3

n+1

1 <n-3. Hence[§]+1 1<[
3k+3

some k € N. Conversely , assume n = 3kandi = k+1 = [ ], then Dsg(P,_.,i — 1) =d;
Dsg(P,_,,i — 1) # @ and Dsg(P,,_3,i — 1) # ®.

(v) Assume Dsg(Py_1,i = 1) # ®; Dsg(Pyz,i — 1) # @ and Dsg(Py_3,i — 1) # ®. Then || <

n+1

IA

1<n-1;[<i-1<n-2ad [FY<i-1sn-3=[2 l_1<n_3=>[n+1]+

1

IA

i < n— 2. Conversely, suppose [HTH] +1<i<n-2 Therefore[T] <i-1<n-1; [;] <
1 <n-2and [nT_I] < i—1 < n— 3. From these we obtain Dsg(P,_1,i — 1) # ®; Dsg(P,_,,i — 1) # @

and Dsg(P,_5,i — 1) # @.

Lemma 2.6. If Dsg(P,,i) # &, then

(i) Dsg(P,_1,i — 1) = Dsg(Pp_pi — 1) =@ and Dsg(P,_3,i — 1) # @, then Dsg(B,i) =
{1,4,...,3k — 5,3k — 2}

(ii) Dsg(Py_p,i — 1) = Dsg(P,_3,i — 1) = ® and Dsg(P,_,i — 1) # @ then Dsg(P,,i) = {1,2,...,n}
(1)) Dsg(Py_q,i — 1) #= @; Dsg(P,_,,i — 1) #= ® and Dsg(P,_3,i — 1) =@  then Dsg(P,, i) = {[n] —
x/x € n — {1,n}}.

(iv) Dsg(Py_4,i — 1) = ®; Dsg(P,_,,i — 1) # @ and Dsg(P,_3,i — 1) # @ , then Dsg(P,,i) = {X; U
3k/X, € Py_p,k} U {X, U 3k/X, € Pyp_s, k}

(v) Dsg(P,_ 1,' — 1) #®;, Dsg(Pp_, i — 1) qt(D and Dsg(Pp_3,i — 1) # <D then Dsg(P,,i) ={X; U
n/Xy €EPpq,i — 13 U{X,Un/X, €Py 5,0 — 13 U{X; Un/X3€P, 3,i— 1}
Proof.

(i)Since Dsg(P,,_1,i — 1) =Dsg(Py_5,i — 1)=& andDsg(P,_3,i — 1) # & ,thenby Lemma2.5({)n =
3k — 2andi = k forsomek € N. HenceDsg(Pn,i)={1 4,. 3k — 53k — 2}.

(ii)Since Dsg(P,_,,i — 1) = Dsg(P,_3,i — 1) = ® and Dsg(Pn 1,1 — 1) # @, then by lemma 2.5 (ii) i
n .Therefore Dsg(P,,i)={1,2,...,n}.

(iii)Since Dsg(Py,_1,i — 1) # @; Dsg(P,_,i — 1) # @ and Dsg(P,,_3,i — 1) = @ , then by lemma 2.5 (iii)
i = n—1,then Dsg(Pn,i)—{[n] — x/x € [n] — {1,n}}.

(iv)Since Dsg(Pn vl — 1) =&;Dsg(Pp_y,i — 1) # ®and Dsg(P,_3,i — 1) # ® byLemma22.5(iv)n =
3kandi = k + 1forsomek € N.LetX, = {1,4,...,3k — 3} € P3,_3,kthen {X; U {3k} € P,k +1}.
Also if X, = {1,4,...,3k — 2} € P3,_,,k then X, U {3k} € P3, k + 1.Therefore {X; U {3k} /X, €
Py_3,k} U {X, U {3k} /X, € P35k} S Pg,k+1.NowletY € Psy,k + 1. Then the vertices labelled 1
and 3k must belong to Py, k + 1.Ifthe vertex 3k — 3isinY ,thenY = {X; U {3k} /X; € Ps,_3, k}. Similarly
if the vertex 3k — 2isin Y ,then ¥ = {X, U {3k} /X, € P;;_,,k}. Hence P3;, k+1 S = {X; U 3k/X, €
P3—z,k} U {X; U 3k/X, € P33, k}.

(v)Suppose Dsg(Py_1,i — 1) #®; Dsg(Pp_,i — 1)#® and Dsg(P,_5,i — 1) #dLet X; €
Dsg(P,_4,i — 1), then n—1,n—2 orn—3 is in X;. f n—1,n—2 orn—3 € X; then X; U {n} €
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Dsg(P,,i).Let X, € Dsg(P,_,,i — 1) ,thenn — 20rn — 3o0rn — 4isin X,.If n — 2,n — 3orn —
4 € X, then X, U {n} € Dsg(P,,i)Now let X3 € Dsg(P,_3,i — 1), thenn — 3,n — 40orn — 5 is in
X3Ifn —3,n—40rn —5 €X; then X3 U {n} € Dsg(PB,,i).Thus we have{X; U {n} /X, € P,_1,i —
13U {X, Uu{n}t/X, €P_,i—1} U {X3 U {n}/X; € P,_5,i — 1} € Dsg(P,,i)Ifn € Y thenY =
X; U {n} for some X; € Dsg(P,_,,i — 1).Ifn — 1 € YthenY = X, U {n}for some X, € Dsg(P,_,,i —
DIfn —2 € YthenY = X; U {n}, for some X3 € Dsg(P,_3,i — 1).So Dsg(B,,i) ={X; U n/X; €
P, i —1}u{X,un/X,€Pp_,,i — 1} U{X; Un/X3EP,_5,i—1}.

Example 2.7. Consider Py with V (Pg) = 6.

We use Lemma2.6, to construct Dsg(Pg, i) for 2 < i < 6. Dsg(Ps,2) = ¢ Since Dsg(Ps, 2) =
¢,Dsg(P,,2) = {1,4},Dsg(Ps,2) = {1,3} then by Lemma2.6 (iv) Dsg(Ps, 3) = {1,4,6},{1,3,6}. Since
Dsg(Ps,2) = {1,3,5},{1,2,5},{1,4,5},Dsg(P,,3) = {1,3,4},{1,2,4},Dsg(P;,3) = {1,2,3}. Therefore
by Lemma2.6 (v)Dsg(Ps,4) = {1,3,5,6},{1,2,5,6},{1,4,5,6},{1,3,4,6},{1,2,4,6},{1,2,3,6}. By
Lemma2.6(iii) Dsg(Ps, 5) = {1,3,4,5,6},{1,2,4,5,6},{1,2,3,5,6},{1,2,3,4,6}. By Lemma2.6
(i1),Dsg(Ps,6) = {1,2,3,4,5,6}.
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