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Abstract: Designing superior attributes using a combination of metals involves uncertainties and has lured the 

present  interest since the early age of the evolution. In the current era, as numerous AI-based models are being 

developed and implemented in different engineering fronts, similar attempts are under process in metallurgy as a 

plethora of data has been annulled and is available for modern researchers to access and innovate techniques to 

be used to evaluate such materials. This paper aims to provide one such deep learning based micro-mechanical 

computational model to estimate thermo-mechanical behavior of Al-SiC Particulate Reinforced Metal Matrix 

Composites during Friction Stir Welding. 
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LAMMPS 

ε0 : Strain 

𝜎0: uniform stress N/m2 

𝐸𝑚 : tensor of elastic modulus N/m2 

𝜎𝑉  : average stress across volume N/m2 

ε𝑣: strain due to 𝜎𝑣 

𝑃𝑉𝑓  : particle volume fraction 

𝑆𝑃:: stiffness module of particle N/m2 

𝜎𝑃: particle stress N/m2 

 ε𝐷: strain due to disturbance caused by 𝜎𝑃    

  
ε+

: average strain due to transformation 

𝐸𝑇 : Eshelby tensor m2 

ε𝑡𝑜𝑡𝑎𝑙: total volumetric strain  
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Γ : green’s function 

ε𝑎  : average strain 

 εΔt :
: thermal induced eigen strain 

 dp: diameter of particle. m 

Lvf : liquid volume fraction, 

 ρL : density of liquid at given temperature kg/m3 

Rep: Reynold’s number of particle 

μL : dynamic viscosity of Al at given temperature N/m s  

V∞ : called stokes settling velocity for a single particle.  

ρP  : particle density kg/m3 

𝜏 : Jacobian matrix 

1. Introduction 

Recent years have witnessed an increase in research interest in Particulate Reinforced Metal Matrix Composites 

(PRMMC's) and their machining process. Their ability to handle sudden impacts has made them a valuable 

substitute for numerous marine, aerospace, and automotive applications. With such a potential for wide 

applicability, engineers and researchers are focused on improving their machining capabilities. Usually, such 

composites are made of softer matrix like aluminum reinforced by harder carbides of silicon or tungsten. The 

combination Al-SiC based matrices is mostly studied for it’s easier to fabricate. Further, the feed-less welding 

techniques like Friction Stir Welding (FSW) are suggested to be apt for joining such material during fabrication.  

The reliability of any modern engineering design is often first evaluated using a computational model. It is 

paramount to understand the upper and lower limits of its properties before employing them in real-world 

applications. The presence of binary metals without chemical bonding in such matrix-particle combinations 

presents a unique problem while implementing conventional finite element techniques. This has laid the 

foundation for micro-mechanical models studying the molecular dynamics of these materials using representative 

unit volume elements. This gets further complicated while studying nonlinear attributes such as stress induced 

friction or temperature induced strain. Such studies often call for more complex methods demanding higher 

computational resources. 

Addition of particles helps to improve the resistance towards crack and increase the fracture toughness of matrix 

materials [1]. These particles are generally in micro and nano size. If the particle is of micro size, it is observed 

that size of particle and its volume fraction contribute towards affecting the mechanical properties of composite 

matrix [2]. In matrix composites with softer matrix and harder particles or vice versa at this particle scale, if 

volume fraction is to be fixedly maintained and size of particle is to be decreased, then the strength of material is 

found to increase and the increment is reversed if particle size is constant and volume fraction is to increased 

[3].whereas the effective moduli are found to be more dependent on volume fraction rather than on size of 

particulates[4,5] Further in such composites, the strain during failure is less dependent on particle size and is 

significantly improved by surface treatment due to increase in interfacial adhesion[6].  In nano sized particulate 

additives, they prominently influence both strength and property moduli’s of MMC's [7]. The thermo-rheological 

behavior and responses in visco-elastic state under high loading conditions of such reinforced MMC's is also 

dependent on particle size and distribution [8-11].The numerical in situ modeling of such matrix particle 

composites is often performed using two approaches primary. In case one, the existence of particulate is 

completely ignored and the MMC's are treated as single unit with continuous and constant stress-strain fields 

[12,13]. Where as in case two, the material is modelled as a homogenous distributed continuous mixture of matrix 

and particle[14,15]. A number of models have been presented to represent such homogenous composites, some of 

which are diluted distribution models, periodically distributed models and randomly distributed models [16-18]. 
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With recent developments in data science, many have suggested a new generation of models driven by AI 

supported microstructure analysis of MMC's using X-rays or SEM images and using the collected data to train 

machine learning models to generate representative finite elements of such matrix-particle combinations [19-22]. 

2. Numarical modelling 

2. 1.Mathematical Model for FSW process in PRMMCs 

The FSW process in PRMMCs can be divided into two stages. 

1. Strain induced due to temperature rise because of applied normal stress and frictional force. 

2. Cohesive debonding of particulate from matrix followed by solidification of matrix around displaced particulate. 

The first stage can be calculated using the following methodology. 

The uniform stress 𝜎0 and induced uniform strains ε0on an infinite elastic body is   

ε0 = 𝐸𝑚−1 × 𝜎0………………………..(1)[23] 

where 𝐸𝑚 is tensor of elastic modulus. 

In case of elliptical shaped inclusions in the matrix. The resultant stress is given by 

σn = 𝜎0 + 𝜎𝑣 = 𝐸m(ε0 + ε𝑣) 𝜎0………………………..(2) 

where 𝜎𝑉  is average stress across volume. Similarly, ε𝑣is strain due to 𝜎𝑣 . 

when integrated over total volume. 

𝐸𝑚[ε𝑣 + 𝑃𝑉𝑓(ε𝐷 − ε+)] = 0………………………..(3) 

𝜎𝑃 = 𝑆𝑃ε𝑃 = 𝑆𝑃( ε𝑉 + ε𝑂 + ε𝐷) = 𝐸𝑚( ε𝑉 + ε𝑂 + ε𝐷 − ε+) ………………………..(4) 

Where 𝑃𝑉𝑓  is particle volume fraction,𝑆𝑃is stiffness module of particle, 𝜎𝑃is particle stress, ε𝐷is strain due to 

disturbance caused by 𝜎𝑃,ε+is average strain due to transformation. 

ε𝐷 = 𝐸𝑇. ε+………………………..(5) 

Where 𝐸𝑇 is Eshelby tensor.  

Further total volumetric strain can be written as  

ε𝑡𝑜𝑡𝑎𝑙 = (𝐼 + 𝑚𝑣𝐵 ×  (𝐼 + 𝑚𝑣𝐶)−1 × ε0) ………………………..(6) 

Where    𝐵 = 𝐴𝑋𝑇, 𝐴 = 𝐼 − 𝐸𝑚−1 × 𝑆𝑃 , 𝑇 = (𝐼 + 𝐸𝑇 × 𝐸𝑚−1 × 𝑆𝑃 − 𝐸𝑇)−1  𝐶 = (𝐸𝑇 − 𝐼) × 𝐴 × 𝑇,  

I is identity matrix tensor 

If the elastic modulus tensor of both Aland SIC are given by 𝐸𝑚
𝐴𝑙  and 𝐸𝑚

𝑆𝑖𝑐   and overall thickness is T. If (𝑥, 𝑦, 𝑧) 

denote global coordinate system then using Eshelby equivalent inclusion , the local strain field at certain point 

(𝑥, 𝑦, 𝑧) for SIC embedded in Al under imposed normal stress and temperature change 𝛥𝑡 . 

ε(𝑥, 𝑦, 𝑧) =  ε0 +  𝜀’(𝑥, 𝑦, 𝑧) ………………………..(7) 

Where ε0 = (𝐸𝑚
𝑆𝑖𝑐)−1: 𝜎0 + α𝑆𝑖𝑐Δt δ 

where ‘:’ Is contraction between 4th and 2nd rank tensors , α𝑆𝑖𝑐 is CTE, δ is Kronecker delta tensor[24,25] 

ε’(𝑥, 𝑦, 𝑧) = ε0(𝑥, 𝑦, 𝑧) = ε0(𝑖) = ∫ Γ(i − il).
𝐼0

(𝐸𝑚
𝑆𝑖𝑐): [ε𝑎(il) + εΔt] 𝑑il………………………..(8) 

Where ‘.’ is tensor contraction between two 4th rank tensor’s. 

Γ is green’s function 

ε𝑎  is average strain and εΔt 
 is thermal induced Eigen strain ,εΔt  = (α𝐴𝑙 − α𝑆𝑖𝑐)Δt δ 
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For sufficiently small RVE in infinite domain 

Γ(i − i’) =
1

16𝜋μ𝑆𝑖𝑐(1−𝑃𝑉
sic)

[−ψ+(1+𝑃𝑉
sic)( ∑ δ φ)] ………………………..(9) 

 

Where ψ = |i − i’l, φ =
1

|i−i’l
   

μ𝑆𝑖𝑐 , 𝑃𝑉
sic are shear moduls and poison ratio matrices 

Γ(i − i’) is response strain at ith point due thermal eigen strain at i’th point  

The average eigen strain εa  is derived as 

εa  = (𝐸𝑚
𝑆𝑖𝑐)−1. (p𝑜 − 𝛥𝐸𝑚−1)−1.(εa  -αAl Δtδ-p𝑜𝐸𝑚

𝑆𝑖𝑐: εΔt) ………………………..(10) 

where 𝛥𝐸𝑚 = 𝐸𝑚
𝐴𝑙- 𝐸𝑚

𝑆𝑖𝑐  

𝑃𝑚𝑖𝑗𝑘𝑙
0 =

δ𝑖𝑗δ𝑖𝑗𝑘𝑙−(4−5𝑃𝑉
𝑆𝑖𝑐)(δ𝑖𝐾δ𝑗𝐿+δ𝑖𝑙δ𝑗𝑘)

30𝜇𝑆𝑖𝑐(1−(𝑃𝑉
𝑆𝑖𝑐)

………………………..(11) 

Thus local strain field is ε𝑙𝑜𝑐𝑎𝑙 = αAlΔtδ + (I − p6. 𝛥𝐸𝑚 )−1: ( ε0 − αAlΔtδ − p0. 𝐸𝑚
𝑆𝑖𝑐 : εΔt) 

whereI𝑖𝑗𝑘𝑙  is standard 4th rank 

δ𝑖𝐾δ𝑗𝐿+δ𝑖𝑙δ𝑗𝑘

2
= Unit tensor ………………………..(12) 

When additional particles are introduced the interaction between them and ith particle is given by 

< ε >Al  (0) = αAlΔtδ + (I − p𝑜. 𝛥𝐸𝑚 )−1: [ < 𝜀 >sic (0) − αAlΔtδ − p𝑜. 𝛥𝐸𝑚 𝑆𝑖𝑐: 𝐸Δt] +

∑ (𝛥𝐸𝑚 −1∞
L=1 . L(0, i)): (ε0 − αAlΔtδ − 𝛥𝐸𝑚 −1. 𝐸𝑚 𝑆𝑖𝑐: εΔt) ………………………..(13) 

L(0, i) = [𝛥𝐸𝑚 −1 − p𝑜 − p(i)]−1 − (𝛥𝐸𝑚 −1 − p𝑜)−1………………………..(14) 

Pijkl(i) = ∫  Γijkl(i’)di’………………………..(15) 

As the temperature rises the matrix material starts melting and starts forming a viscous fluid where the embedded 

particulate start to lose cohesion and deboned from the matrix[26]. If coefficient of momentum exchange at Al-

SiC interface due to drag created due to strain against dissipative stress is assumed as 'CME' then the value of 

such drag at all possible interfaces needs to be evaluated. In case of PRMMCs during FSW three interfaces can 

be identified namely between, solid Al and viscous Al or solid-liquid, viscous Al and Sic particle or liquid-particle 

and SiC particle and Solid Al or particle solid. Then CMElp, CMEls ,  can be derived as 

CME𝑙𝑝 =
3

4
×

Pvf

dp
×

LvfρLCD

f(h)
lVp – VLl………………………..(16) 

Pvf  is particle volume fraction,  dpis diameter of particle. 

Lvf  is liquid volume fraction, ρL is density at given temperature. 

lVp – VLlis relative velocity, CDis calculated using stokes law for creeping flow (Rep<.l) 

CD=24/ Rep 

Rep is Reynold’s number of particle. 

𝑅𝑒𝑝 =
ρLdplVp –VLl

μL
………………………..(17) 

μL is dynamic viscosity of Al at given temperature. f(h) is settling function hindrance caused due to multiple 

particles interaction on relative velocity. 
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f(hL) =
Lvf(Vp –VL)

V∞
………………………..(18) 

V∞ is called stokes settling velocity for a single particle.  

V∞ =
dp

2(ρL− ρP)g

18μL
………………………..(19) 

 

ρP  is particle density, hence 

CMELP =
18μLLvf

2Pvf
2

dp
2f(hL)

………………………..(20) 

Similarly for CMELS in analogous to Darey law using permeability KLS 

CMELS =
μLLvf

2

KLs
………………………..(21) 

Where KLs  is function of volume fraction, solidification pattern (i.e, equiaxial or columnar) and microstructure. 

Using kozney-carman theoryKLs = 
K0Lvf

3

svf
2  

Both Lvf
 and Svf are for Al and K0 is experimentally calculated.  CMEps is often assumed to be infinity or zero as 

particle and solid are relatively stationary locally.  

                                                   CMEps= ∞ if Svf  & Pvf  > 0 

                                                               = 0 if Svf  or Pvf  = 0………………………..(22) 

This is due to as vp approaches zero at solid interface locally it gets pulled into the viscous liquid due to rotation 

of the tool and also the solid dendrite micro size is larger when compared to nano scale particulate used in general.  

There are scenarios where in the hard particulate gets stuck into soft matrix due to speed of the tool resulting in 

clustering of particles then if dc   is diameter of such a cluster then dc  > dp  and it traps and drags small volume of 

liquid along[27]. Under such case resultant volume fraction is  

(
Pvf   

Cvf 
) + (1 −

Pvf   

Cvf 
)Cvf………………………..(23)                                                                                      

2.2 Deep Learning Model 

A meso scale 6×6 random stiffness tensor   Vk = σVkε(Vk)T ………………………..(24) 

σ is a row vector and εT is a column vector  

Vk where K=1,2,3,….n 

Denotes vector in n random dimensions of random space Rs denoting the matrix and particulate when the material 

RVE is subjected to stress with constant strain at all it boundaries. 

Then elastic tensor is given by eli
+((x1, x2, x3) − eli

−((x1, x2, x3) = aεij0  

Where −𝑎 ≤ x i ≤ +a and eli
+, eli

- are values at xi=+a and xi=-a respectively[28]. If RVE volume is V then 

1

𝑉
∫ ∫ εijvRs

 (x1, x2, x3vR)dvdvR = εij0
………………………..(25) 

If elq represents elastic parameters 𝑖. 𝑒  elq = [E11, E22, G12]q. for q=1, 2, 3, 4,…n. 

Then deep learning model approximate inputs and outputs using  

el^(Vk,w) = f(∑ wj
m
j=1 φj(vj)) = f(wTφvK) ………………………..(26) 

wT  = w0, w1,…..wm 
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Are adapted unknown weights for each layer of hidden artificial neural network. Where in φ represents nonlinear 

orthogonal functions set and f is identity function used for estimation. The w value is initially adapted and f is 

adjusted while calculating ‘w’ using φ. The cost function is defined using least squares of parametric estimation 

[29,30] 

𝐴𝑟𝑔 𝑚𝑖𝑛||l2(w)|| =
1

2
∑    [wTφ(Ci)

n 
i=1 − eli]

2 +
λ

2
||w||2………………………..(27) 

Arg min||l2(w)||=1/2 n∑i=1 [wT φ(ci)-eli]2 + λ/2 ||w||2 

λ is for regularization using over fitting to avoid values reaching large numbers 

During training the model aims to minimize cost function. It estimates w and descent it after each iteration k 

W(k+1) = 𝑊𝐾 − ղ(K)∇l 2
(k)

(W) ………………………..(28) 

ղ is step size also called learning rate.∇l 2
(k)

(W) is used to determine descent direction in order to converge cost 

function to local minimum. The descent gradient can be given by 

∇l 2
(k)(W) = τ (k)(w) τ θ………………………..(29) 

Where 

𝜏 is Jacobian matrix of derivative of network errors with respect to weight calculated using back propagation and 

θ is network error vector. 

 

Figure 1. Deep learning model for the prediction 

3.Numerical Simulation And  Validation                                               

3.1 Numerical Simulation 

The above theoretical micro-mechanical model was used to simulate molecular dynamics of PRMMCs during 

FSW using custom code of C++ which was processed using LAMMPS ( Large-scale Atomic/Molecular Massively 

Parallel Simulator). The resultant simulation was found to be resource hungry thus effecting the accuracy. In order 

to simplify the processing, a ANN model was introduced to identify the hidden patterns using generalized 

polynomial chaos model. 

 Property Al [matrix] SiC[particulate] 

Elastic modulus 72.1 431 
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Shear modulus 26.9 181.1 

Poissons ratio 0.34 0.19 

Coefficient of thermal expansion [10-

6/K] 

23.6 8.6 

Table  1. Material Constant 

 

Figure 2. LAMMPS Simulation 

A modified micro-mechanical model approximated using deep learning to predict the thermo-mechanical behavior 

of particulate reinforced metal matrix composite during friction stir welding process was tested. Initially 

LAMMPS based simulation was used to estimate the material behavior and the results were found to be in 

alignment with the published literature. The molecular dynamics study required large computational resources 

and took about 81 hours to estimate the RVE deformations. This was further tweaked using generalized 

polynomial chaos model to simplify the simulation. Initially the microstructures from different literature were 

used to train the model and predict a RVE configuration. This approach helped in limiting the RVE permutations. 

Following which the LAMMPS was used to predict the changes in thermo-mechanical properties of the matrix – 

particulate interface in form of temperature gradient distribution during FSW along the selected set RVEs  

Figure 3. Matrix-Particle interaction during FSW 

3.2.Validation 

RVEs were extrapolated and validated using an published article by Omar S Salih and H Ou (2019), where in the 

effects of tool rotation and transverse speed rates on friction stir welded Al-SiC MMC joints was studied and  
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presented. During their experimentation, the authors presented rate of temperature raise and thermal history during 

tool pass in nugget zone. It was found to be similar to results generated during thermo-mechanical simulation 

using the numerical model presented and found to validate it. 

 

(a)                                                                             (b) 

   Validation  

(a) From reference                                                     (b)Simulated result 

 

                             

 

 

 

Table 2. Tool parameter 

During the validation process, the rate of thermal conductivity was calculated using a combination of Maxwell, 

Brugheman, Hamilton and Crosser models discussed in S.M. Thahab (2016) work. 

RPM 1500 

Speed 25mm/min 

Density  7800 kg/m3 

Specific heat 460 j/kg/K 

Reference Correlation Conditions 

Maxwell’s 
𝐾𝑛𝑓 = 𝐾𝑓 + 3𝜑

𝐾𝑃 − 𝐾𝑓

2𝐾𝑓 + 𝐾𝑃

𝐾𝑓 
Spherical, low volume 

fractions, random 

distributed particles 
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Effective Thermal Conductivity Correlations for Nanofluids is  

𝐾 = −1𝑋10−8𝑇3 + 2𝑋10−5𝑇2 − 0.0068𝑇 + 25.333 ………………………..(31) 

4. Conclusions 

A simplified set of micro mechanical equations driven by deep learning artificial neural network to represent Sic 

particulate reinforced Al metal matrix composite was developed. Such an approach is found to be effective in 

conducting in situ studies of molecular dynamics of PRMMC's. Further the thermal rheological behavior during 

friction stir welding was studied with focus of matrix-particle interaction by simulating the material flow and 

temperature distribution in visco elastic state. The method is found to be numerically sound and is validated.  
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