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Abstract: Designing superior attributes using a combination of metals involves uncertainties and has lured the
present interest since the early age of the evolution. In the current era, as numerous Al-based models are being
developed and implemented in different engineering fronts, similar attempts are under process in metallurgy as a
plethora of data has been annulled and is available for modern researchers to access and innovate techniques to
be used to evaluate such materials. This paper aims to provide one such deep learning based micro-mechanical
computational model to estimate thermo-mechanical behavior of Al-SiC Particulate Reinforced Metal Matrix
Composites during Friction Stir Welding.
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€ : Strain

0, uniform stress N/m2

Em : tensor of elastic modulus N/m?

oy : average stress across volume N/m?
€, strain due to o,

Py : particle volume fraction

Sp.: stiffness module of particle N/m?
op: particle stress N/m?

€p: strain due to disturbance caused by agp
g, average strain due to transformation
ET : Eshelby tensor m?

€rotqr: total volumetric strain
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I' : green’s function

€4 average strain

€t - thermal induced eigen strain

dp: diameter of particle. m

Ly¢: liquid volume fraction,

py : density of liquid at given temperature kg/m?

Re,: Reynold’s number of particle

W, : dynamic viscosity of Al at given temperature N/m s
V. : called stokes settling velocity for a single particle.
pp : particle density kg/m?

7 : Jacobian matrix

1. Introduction

Recent years have witnessed an increase in research interest in Particulate Reinforced Metal Matrix Composites
(PRMMC's) and their machining process. Their ability to handle sudden impacts has made them a valuable
substitute for numerous marine, aerospace, and automotive applications. With such a potential for wide
applicability, engineers and researchers are focused on improving their machining capabilities. Usually, such
composites are made of softer matrix like aluminum reinforced by harder carbides of silicon or tungsten. The
combination Al-SiC based matrices is mostly studied for it’s easier to fabricate. Further, the feed-less welding
techniques like Friction Stir Welding (FSW) are suggested to be apt for joining such material during fabrication.

The reliability of any modern engineering design is often first evaluated using a computational model. It is
paramount to understand the upper and lower limits of its properties before employing them in real-world
applications. The presence of binary metals without chemical bonding in such matrix-particle combinations
presents a unique problem while implementing conventional finite element techniques. This has laid the
foundation for micro-mechanical models studying the molecular dynamics of these materials using representative
unit volume elements. This gets further complicated while studying nonlinear attributes such as stress induced
friction or temperature induced strain. Such studies often call for more complex methods demanding higher
computational resources.

Addition of particles helps to improve the resistance towards crack and increase the fracture toughness of matrix
materials [1]. These particles are generally in micro and nano size. If the particle is of micro size, it is observed
that size of particle and its volume fraction contribute towards affecting the mechanical properties of composite
matrix [2]. In matrix composites with softer matrix and harder particles or vice versa at this particle scale, if
volume fraction is to be fixedly maintained and size of particle is to be decreased, then the strength of material is
found to increase and the increment is reversed if particle size is constant and volume fraction is to increased
[3].whereas the effective moduli are found to be more dependent on volume fraction rather than on size of
particulates[4,5] Further in such composites, the strain during failure is less dependent on particle size and is
significantly improved by surface treatment due to increase in interfacial adhesion[6]. In nano sized particulate
additives, they prominently influence both strength and property moduli’s of MMC's [7]. The thermo-rheological
behavior and responses in visco-elastic state under high loading conditions of such reinforced MMC's is also
dependent on particle size and distribution [8-11].The numerical in situ modeling of such matrix particle
composites is often performed using two approaches primary. In case one, the existence of particulate is
completely ignored and the MMC's are treated as single unit with continuous and constant stress-strain fields
[12,13]. Where as in case two, the material is modelled as a homogenous distributed continuous mixture of matrix
and particle[14,15]. A number of models have been presented to represent such homogenous composites, some of
which are diluted distribution models, periodically distributed models and randomly distributed models [16-18].

5882



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

With recent developments in data science, many have suggested a new generation of models driven by Al
supported microstructure analysis of MMC's using X-rays or SEM images and using the collected data to train
machine learning models to generate representative finite elements of such matrix-particle combinations [19-22].

2. Numarical modelling

2. 1.Mathematical Model for FSW process in PRMMCs

The FSW process in PRMMCs can be divided into two stages.

Strain induced due to temperature rise because of applied normal stress and frictional force.
Cohesive debonding of particulate from matrix followed by solidification of matrix around displaced particulate.
The first stage can be calculated using the following methodology.

The uniform stress g, and induced uniform strains €,0n an infinite elastic body is

€0 = EM L X 0geerueeereeenieennnneennnen (1)[23]

where Em is tensor of elastic modulus.

In case of elliptical shaped inclusions in the matrix. The resultant stress is given by

Op = 0g + 0, = EM(€g + €,) Ogeeeeceeenerecnreniecennnn ?2)

where gy, is average stress across volume. Similarly, €,is strain due to g,,.

when integrated over total volume.

Eme, + Pyp(ep — €)] = Oervrvrvinreiiniiinnicnna, 3)

0p =Spep =Sp(ey+ €9+ €p) =EM( €y + €9 F ) —€L) cerrrnrurucecnnenininrrnnnns @

Where Py is particle volume fraction,Spis stiffness module of particle, opis particle stress, €pis strain due to
disturbance caused by op,€, is average strain due to transformation.

Where ET is Eshelby tensor.

Further total volumetric strain can be written as

Erotar = U+ MUB X (I + MUC) ™LX £)) eeuvrvneerneinerenereneennn 6)

Where B =AXT, A=1—Em xS, T=(I+ETXEm*xS, —ET)™* C=(ET—-1)xAXT,
I is identity matrix tensor

If the elastic modulus tensor of both Aland SIC are given by Eil and E5 and overall thickness is T. If (x, y, z)
denote global coordinate system then using Eshelby equivalent inclusion , the local strain field at certain point
(x,y, z) for SIC embedded in Al under imposed normal stress and temperature change 4;.

€(x,7,2) = €9+ E(X,Y,Z) cervererereiiiiininineincnnn @)

Where g, = (E3) ™ 0y + a5€AL S

where ‘:’ Is contraction between 4™ and 2" rank tensors , a®¢ is CTE, & is Kronecker delta tensor[24,25]
£(x,v,2) = go(x,v,2) = g,(i) = fIO T(i—1"). (E5E): [ea (i) + eacl dileernneeeieiiiiiiiiineene )
Where ¢.” is tensor contraction between two 4™ rank tensor’s.

I' is green’s function

€4 is average strain and g, is thermal induced Eigen strain g5, = (a4 — a5)At §
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For sufficiently small RVE in infinite domain

ri-1i) = m [—YHIHPSIO) (T8 0)] veverrerrreeisnreeernreenne )

Where y=li—-ile = =

uS PS¢ are shear moduls and poison ratio matrices

['(i — i) is response strain at i point due thermal eigen strain at i"" point
The average eigen strain €, is derived as
ga = (ESI)™1 (p° — AEM ™)L (gy 0™ AtS-POESIC: €AL) wuveeeeeerrvvnneeennnnnnnne (10)
where AEm - EA!- ESi¢
Sijsijkl_(4_spl§ic (6ix6;L+8i18 k)
PT?[L]kl = ) ............................. (11)

30uSic(1-(PFic)
Thus local strain field is £;pcq; = aA'AtS + (I — p®. AEm )™t (g, — oAlALS — pO. ESiC: ep,)
wherel, y, is standard 4™ rank

8ik8;L+8118jk

5 = Unit tenSOor ceevveveriiineiennrennnrennn 12)

When additional particles are introduced the interaction between them and i" particle is given by

<e>A (0) = A8 + (I — p°. AEm )1 [ < & >51€ (0) — aAlAtS — p°. AEm St EAY] +

¥ (AEm 71 L(0,1)): (g9 — aMAtS — AEM TLEM 51 850) terueeerrrneeeennneeennnnnne a3)
L(0,i)) =[AEm 1 —p° —p(D)] P — (AEm ™1 —p°) Lt 14)
Pija() = [ Tl eeeeeiiiiiiiiiiieenen, as)

As the temperature rises the matrix material starts melting and starts forming a viscous fluid where the embedded
particulate start to lose cohesion and deboned from the matrix[26]. If coefficient of momentum exchange at Al-
SiC interface due to drag created due to strain against dissipative stress is assumed as 'CME!' then the value of
such drag at all possible interfaces needs to be evaluated. In case of PRMMCs during FSW three interfaces can
be identified namely between, solid Al and viscous Al or solid-liquid, viscous Al and Sic particle or liquid-particle
and SiC particle and Solid Al or particle solid. Then CME;,, CMEls, can be derived as

_ 3 Pyr LvipCp _
CME,, = PRe 3 X i IVPp = Vilieiriiiiniiiiiinniiinnenninn (16)

Py¢ is particle volume fraction, dpis diameter of particle.

Lyf is liquid volume fraction, p;, is density at given temperature.

1Vp -V, lis relative velocity, Cpis calculated using stokes law for creeping flow (Rep<.l)
Cp=24/ Re,

Re, is Reynold’s number of particle.

pLdplVp -V 1
Re, = % ............................. a7

i, is dynamic viscosity of Al at given temperature. f(h) is settling function hindrance caused due to multiple
particles interaction on relative velocity.
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fhy) =PI e (18)

V., is called stokes settling velocity for a single particle.

dp*(pL- PP)E
V,, = % ............................. (19)

pp is particle density, hence

18y vaz l:’vfz
CME|p =——F—"—
LP dpzf(hL)

Similarly for CMELs in analogous to Darey law using permeability Kis

Where K| 4 is function of volume fraction, solidification pattern (i.e, equiaxial or columnar) and microstructure.

3
KoLyf
Syf?

Using kozney-carman theoryK; =
Both Lyrand Syrare for Al and Ky is experimentally calculated. CME; is often assumed to be infinity or zero as
particle and solid are relatively stationary locally.
CME,= o0 if Syp & Pyr >0
=01 Sur OF Pyf = 0uevennnennnreenneeennecenncn 22)

This is due to as v, approaches zero at solid interface locally it gets pulled into the viscous liquid due to rotation
of the tool and also the solid dendrite micro size is larger when compared to nano scale particulate used in general.

There are scenarios where in the hard particulate gets stuck into soft matrix due to speed of the tool resulting in
clustering of particles then if d. is diameter of such a cluster then d. > d, and it traps and drags small volume of
liquid along[27]. Under such case resultant volume fraction is

PV PV
(ﬁ) L C R o S 23)

2.2 Deep Learning Model

A meso scale 6x6 random stiffness tensor Vi = 6Vie(Vi)T eeevnnrerrnrerneeenneennnne 24)
o is a row vector and €' is a column vector

Viwhere K=1,23,...n

Denotes vector in n random dimensions of random space Rs denoting the matrix and particulate when the material
RVE is subjected to stress with constant strain at all it boundaries.

Then elastic tensor is given by el ((x1, X, X3) — eli (X, X5, X3) = agjo
Where —a < x; < +a and el;’, el are values at x;/=+a and xi-—-a respectively[28]. If RVE volume is V then
1
;fRS J, & (X1, X2, XgVR)AVAVR = €4 cenvernurrnuennennuennens 25)

If elq represents elastic parameters i.e elq = [E11,E22,G12]q. for q=1,2, 3,4,...n.

Then deep learning model approximate inputs and outputs using
el" Vi) = £, w; (V) = F(WT@VK) veerverrreirrirreienninenne (26)

WT:W(),Wl,.....Wm
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Are adapted unknown weights for each layer of hidden artificial neural network. Where in ¢ represents nonlinear
orthogonal functions set and f is identity function used for estimation. The w value is initially adapted and f is
adjusted while calculating ‘w’ using ¢. The cost function is defined using least squares of parametric estimation
[29,30]

Arg min||l,(w)|| = % N [wTe(C) —eli]? + %HWHZ ............................. Q7

Arg min|[L(w)||=1/2 %Y i1 [wT @(ci)-eli]* + A/2 ||w]|?

A is for regularization using over fitting to avoid values reaching large numbers

During training the model aims to minimize cost function. It estimates w and descent it after each iteration k

WD = K _ Oy O W) e, (28)

1 is step size also called learning rate.VI1 gk) (W) is used to determine descent direction in order to converge cost
function to local minimum. The descent gradient can be given by

VIOW) = TOW) T0urrerereereerrerreererenn, (29)
Where

Tis Jacobian matrix of derivative of network errors with respect to weight calculated using back propagation and
0 is network error vector.

Randam RVE Neural Network Model
) Tendam e input
?} ] €1 l
— e ’
1}(2) I ‘.
I EZ Tl B E
N R
: _..En" !
(n) ° l
T ,"-'
f en
E New prediction

Figure 1. Deep learning model for the prediction
3.Numerical Simulation And Validation
3.1 Numerical Simulation

The above theoretical micro-mechanical model was used to simulate molecular dynamics of PRMMCs during
FSW using custom code of C++ which was processed using LAMMPS ( Large-scale Atomic/Molecular Massively
Parallel Simulator). The resultant simulation was found to be resource hungry thus effecting the accuracy. In order
to simplify the processing, a ANN model was introduced to identify the hidden patterns using generalized
polynomial chaos model.

Property Al [matrix] SiC[particulate]

Elastic modulus 72.1 431
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Shear modulus 26.9 181.1
Poissons ratio 0.34 0.19
Coefficient of thermal expansion [10° 23.6 8.6
%/K]

Table 1. Material Constant
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e

Figure 2. LAMMPS Simulation

A modified micro-mechanical model approximated using deep learning to predict the thermo-mechanical behavior
of particulate reinforced metal matrix composite during friction stir welding process was tested. Initially
LAMMPS based simulation was used to estimate the material behavior and the results were found to be in
alignment with the published literature. The molecular dynamics study required large computational resources
and took about 81 hours to estimate the RVE deformations. This was further tweaked using generalized
polynomial chaos model to simplify the simulation. Initially the microstructures from different literature were
used to train the model and predict a RVE configuration. This approach helped in limiting the RVE permutations.
Following which the LAMMPS was used to predict the changes in thermo-mechanical properties of the matrix —
particulate interface in form of temperature gradient distribution during FSW along the selected set RVEs

.::.“?II.
i z-;

.}?.. ! .Il

I‘&. LLLL] ll'l?.‘.l‘l..” ‘... .I..Ol?lu{ X
R o T

Figure 3. Matrix-Particle interaction durmg FSW
3.2.Validation

RVEs were extrapolated and validated using an published article by Omar S Salih and H Ou (2019), where in the
effects of tool rotation and transverse speed rates on friction stir welded Al-SiC MMC joints was studied and
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O
TEMPERATURE
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presented. During their experimentation, the authors presented rate of temperature raise and thermal history during
tool pass in nugget zone. It was found to be similar to results generated during thermo-mechanical simulation
using the numerical model presented and found to validate it.
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Validation
(a) From reference (b)Simulated result
RPM 1500
Speed 25mm/min
Density 7800 kg/m?
Specific heat 460 j/kg/K

Table 2. Tool parameter

During the validation process, the rate of thermal conductivity was calculated using a combination of Maxwell,
Brugheman, Hamilton and Crosser models discussed in S.M. Thahab (2016) work.

Reference Correlation Conditions
Maxwell’s Kp — K¢ Spherical, low  volume
Knf =K + 390 ———-K .
ny = HKpt 3¢ 2Ky + Kp f fractions, random
distributed particles
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Hamilton and Kp +(n—DKp — (n—1)(Kp — K¢)o Spherical, low volume
Crosser nf = Kp + (n — DK; + (Kp — Kf)o fractions, random
distributed particles, for
non-spherical n=6
Bruggeman Kp — Ky Ky — Ky Binary mixture,
Knp = <p<—) ( —¢(—)

(Kp + 2K,;) (K; + 2K,,;) homogeneous, no
limitations on the
concentration, random
distributed particles

Effective Thermal Conductivity Correlations for Nanofluids is

K =—1X1078T3 4+ 2X107°T2 — 0.0068T + 25.333 cteuurrrrunnrrernnnneernnnns 31)

4. Conclusions

A simplified set of micro mechanical equations driven by deep learning artificial neural network to represent Sic
particulate reinforced Al metal matrix composite was developed. Such an approach is found to be effective in
conducting in situ studies of molecular dynamics of PRMMC's. Further the thermal rheological behavior during
friction stir welding was studied with focus of matrix-particle interaction by simulating the material flow and

temperature distribution in visco elastic state. The method is found to be numerically sound and is validated.
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