Strong and Weak 2-Vertex Duplication Self Switching of a Disconnected Graphs

K.S Shruthi¹, G.Sumathy²

¹Research Scholar, Reg No: 20123182092004, Sree Ayyappa College for Women, Nagercoil-629003, India.

²Assistant professor, Department of Mathematics, Sree Ayyappa College for Women, Nagercoil-629003, India.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012

Abstract: A vertex v' in G' is said to be a duplication of v in G, if all the vertices which are adjacent to v are also adjacent to v'. 2 —vertex duplication of a graph G is the duplication of any two vertices $u, v \in V(G)$ is u', v' such that u', v' are adjacent to all the vertices that are adjacent to u, v. The 2 —vertex duplication switching of G by $\sigma = \{x, y\}$ is the graph obtained by duplicating any two vertices u, v then by removing all existing edges between σ and its complement $V - \sigma$ in D((u, v)G) and also by adding edges between σ and $V - \sigma$ which are not in G, without affecting the adjacency and non-adjacency of vertices in σ .

Keywords: 2 –vertex duplication, 2 –vertex duplication switching, $D((u,v)G)^{\{u,v\}}$, $D((u,v)G)^{\{u,v\}}$, $dss_2(G)$

1. Introduction

For a finite undirected simple graph G(V, E) with |V(G)| = p and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement, $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. Switching has been defined by Seidel [6] and is also referred to as Seidel switching. The concept of duplication self vertex switching was introduced by C. Jayasekharan and V. Prabhavathy [1,2]. Duplication of a vertex v of a graph G produces a new graph adding vertex such N(v') = N(v). It is denoted by D(vG). A vertex v is called a duplication self vertex switching of a graph G if the resultant graph obtained after duplication of v has v as a self vertex switching. The concept of 2 -vertex duplication self switching introduced G. Sumathy and K.S Shruthi[4]. **2 -vertex duplication** of a connected graph G is the duplication of any two vertices $u, v \in V(G)$ is u', v' such that u', v' are adjacent to all the vertices that are adjacent to u, v. It is denoted by D((u,v)G). Let $\sigma = \{x,y\} \subseteq V(G)$ is called a **2** -vertex duplication self switching of a connected graph Gif $D((u,v)G) \cong D((u,v)G)^{\sigma}$. If $\sigma = \{u,v\} \subseteq V(G)$, then σ is called **strong 2 -vertex duplication self** switching of connected graph G. It is denoted by $D((u,v)G)^{\sigma}$. If $\lambda = \{\{x,y\}/\{x,y\} \neq \{u,v\}\} \subseteq V(G)$, then λ is called the weak 2 -vertex duplication self switching of G. It is denoted by $D((u,v)G)^{\lambda}$. The number of 2 -vertex duplication self switching is denoted by $dss_2(G)$.

A graph G is called **disconnected** if it is not connected. In this paper we analysed strong and weak 2 -vertex duplication self switching of a disconnected graphs with examples.

Theorem[1.1]: If $\sigma = \{u, v\} \subseteq V(G)$ is a strong 2 -vertex duplication self switching of a graph G, then $d_G(u) + d_G(v) = p$.

2. Characterization of strong and weak 2 -vertex duplication self switching of a disconnected graphs.

Definition 2.1: The strong 2 -vertex duplication switching of a disconnected graph G by σ is the graph obtained by duplicating any two vertices u, v and by removing all edges between σ and its complement $V - \sigma$ also by adding all edges between σ and $V - \sigma$ which are not in G, without affecting the adjacency and non-adjacency of vertices in σ .

Example 2.2: A disconnected graph G, the duplicated graph D((u,v)G) of G and the strong 2 -vertex duplication switching are given in figures 2.2.1 to 2.2.3

Definition 2.3: If $D((u,v)G) \cong D((u,v)G)^{\{u,v\}}$, then $\sigma = \{u,v\}$ is a strong 2-vertex duplication self switching of a disconnected graph G.

Theorem 2.4: If G is a disconnected graph, then $dss_2(G) = 0$, for a strong 2 -vertex duplication self switching.

Proof: Let G be a disconnected graph. Then G has at least two components. Let the k components of G be $G_1, G_2, \ldots, G_k, k \ge 2$. Consider any two vertices u, v of G. Let u', v' be the duplication of (u, v). Since G has k components, D((u, v)G) also has k components. Without loss of generality let us assume that,

Case (i): $u, v \in V(G_i)$, $1 \le i \le k$

Let $G_1, G_2, ..., D((u, v)G_i),, G_k$ be the duplication of k components of G. Clearly $u, u', v, v' \in V(D(u, v)G_i)$. Since $u, v \in V(D(u, v)G_i)$, u and v are non-adjacent to all the vertices in G_j , $1 \le j \le k, j \ne i$. Therefore, u, v is non-adjacent to at least one vertex in each and every of component of D((u, v)G) other than G_i . This implies that $D((u, v)G)^{\{u,v\}}$ is connected. That is, $D((u, v)G) \ncong D((u, v)G)^{\sigma}$. Hence $dss_2(G) = 0$.

Case (ii): $u \in V(G_i) \& v \in V(G_i), 1 \le i < j \le k$.

Let $G_1, G_2, ..., D((u)G_i) ..., D((v)G_j), ..., G_k$ be the duplication of k components of G. Clearly $u, u' \in V(D(u)G_i) \otimes v, v' \in V(D(v)G_j)$. Therefore, u and v is non-adjacent to at least one vertex in each component of D((u,v)G) other than $D(u)G_i$ and $D(v)G_j$. This implies that $D((u,v)G)^{\{u,v\}}$ is connected. That is, $D((u,v)G) \ncong D((u,v)G)^{\sigma}$. Hence $dss_2(G) = 0$.

Definition 2.5: If $\lambda = \{\{x,y\}/\{x,y\} \neq \{u,v\}\} \subseteq V(G)$. Then λ is called a **weak 2 -vertex duplication self switching of a disconnected graph** G(ie) $D((u,v)G) \cong D((u,v)G)^{\{x,y\}}$.

Example 2.6: The graph given in the figures 2.6.1 to 2.6.3 has weak 2 -vertex duplication self switching of a disconnected graph G.

Theorem 2.7: If $\lambda = \{x, y\} \subseteq V(G)$ is a weak 2 -vertex duplication self switching of a disconnected graph G, then $d_G(x) + d_G(y) = p - 2$, where x and y lies in two different components of G.

Proof: Let $\lambda = \{x, y\} \subseteq V(G)$ be a disconnected weak 2 -vertex duplication self switching of a graph G. Then G has at least two components, let it be $G_1, G_2, \dots, G_k, k \ge 2$. Consider any two vertices u, v of G_i . Let u', v' be the duplication of u, v. Since G has k components, duplication of G also has k components. Without loss of generality let us we assume that,

Case (i): $x, y \in V(G_i)$

Let $G_1, G_2, ..., D((u, v)G_i)...., G_k$ be the duplication of k components of G. Clearly $x, u', y, v' \in V(D(u, v)G_1)$. Since $x, y \in V(D(u, v)G_i)$, Clearly $xu', yu' \in V(D(u, v)G_i)$ or $xu', yv' \in V(D(u, v)G_j)$. Here x and y is non-adjacent to the vertices in G_i for all $i \neq j$. Therefore $D((u, v)G) \ncong D((u, v)G)^{\{x,y\}}$.

Case (ii):
$$x \in V(G_i) \& y \in V(G_j), i \neq j$$
.

Let $G_1, G_2, ...D((u)G_i), D((v)G_j),, G_k$ be the duplication of k components of G and $xu \in E(G_i)$ and $yv \in E(G_j)$. Clearly xu' and $yv' \in D((u)G_i)$ and $D((v)G_j)$ respectively. In $D((u,v)G)^{\{x,y\}}$ x is adjacent to v,v' and y is adjacent to u,u'. Therefore $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Hence $|E(D(u,v)G)| = |E(D(u,v)G)^{\lambda}|$.

This implies that,

$$q + d_{G}(x) + d_{G}(y) = q + d_{G}(x) + d_{G}(y) + \left[p + 2 - 1 - d_{D((u,v)G)}(x)\right] - d_{D((u,v)G)}(x) + \left[p + 2 - 1 - d_{D((u,v)G)}(y)\right] - d_{D((u,v)G)}(y) - 2.$$

$$1 - \left[d_{G}(x) + 1\right] - \left(d_{G}(x) + 1\right) + p + 1 - \left[d_{G}(y) + 1\right] - \left(d_{G}(y) + 1\right) - 2.$$

$$0 = 2p + 2 - 2d_{G}(x) - 2 - 2d_{G}(y) - 2 - 2.$$

$$0 = 2p - 2d_{G}(x) - 2d_{G}(y) - 4$$

$$p - 2 = d_{G}(x) + d_{G}(y).$$

Theorem 2.8: If G is a weak 2 –vertex duplication self switching disconnected graph, then for $2 \le n \le 3$, $(1) dss_2(P_2 \cup P_2) = \begin{cases} 1, & \text{if } xy \notin E(P_2 \cup P_2) \\ 0 & \text{otherwise.} \end{cases}$

$$(2) dss_2(P_3 \cup P_3) = \begin{cases} 1, & if \ xy \notin E(P_3 \cup P_3) \\ 0 & otherwise. \end{cases}$$

$$(3)dss_2(P_2 \cup P_3) = \begin{cases} 1 & if \ xy \notin E(P_2 \cup P_3) \\ 0 & otherwise. \end{cases}$$

Proof: Let G be the disconnected graph consists of two components G_1 and G_2 . Let $u, v \in V(G)$ be the duplication of G. Let D((u, v)G) be the duplicated components of G and $\lambda = \{x, y\}$ be a weak 2 – vertex duplication self switching of G. There arises three cases.

Case(1):
$$G_1 = G_2 = P_2$$
.

There arises two subcases.

Subcase(
$$\mathbf{1}(i)$$
): If $xy \in E(G)$

Clearly $x, y \in V(G_1)$. Here the graph gets connected after switching x and y. Then $D((u, v)G) \ncong D((u, v)G)^{\lambda}$. Therefore $\lambda = \{x, y\}$ is not a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 0$.

Subcase(
$$\mathbf{1}(ii)$$
): If $xy \notin E(G)$

Then $x \in V(G_1)$ and $y \in V(G_2)$. Also u and v lies in the two different components of G. Clearly $xu \in E(G_1)$ and $yv \in E(G_2)$. The duplicated vertices u' and v' lies in G_1 and G_2 respectively. This implies that $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Therefore, $\lambda = \{x,y\}$ be a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 1$.

Case(2):
$$G_1 = P_3$$
 and $G_2 = P_3$

There arises two subcases.

Subcase(
$$2(i)$$
): If $xy \in E(G)$

Clearly $x \in V(G_1)$ and $x \in V(G_2)$. Here the graph gets connected after switching x and y. Then $D((u,v)G) \ncong D((u,v)G)^{\lambda}$. Therefore $\lambda = \{x,y\}$ is not a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 0$

Subcase(2(ii)): If
$$xy \notin E(G)$$

Then $x \in V(G_1)$ and $y \in V(G_2)$. Also u and v lies in the two different components of G. Clearly $xu \in E(G_1)$ and $yv \in E(G_2)$. The duplicated vertices u' and v' lies in G_1 and G_2 respectively. This implies that $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Therefore, $\lambda = \{x,y\}$ be a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 1$.

Case(3):
$$G_1 = P_2$$
 and $G_2 = P_3$

There arises two subcases.

Subcase(3(i)): If
$$xy \in E(G)$$

Clearly $x \in V(G_1)$ and $x \in V(G_2)$. Here the graph gets connected after switching x and y. Then $D((u,v)G) \ncong D((u,v)G)^{\lambda}$. Therefore $\lambda = \{x,y\}$ is not a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 0$.

Subcase(3(
$$ii$$
)): If $xy \notin E(G)$

Then $x \in V(G_1)$ and $y \in V(G_2)$. Also u and v lies in the two different components of G. Clearly $xu \in E(G_1)$ and $yv \in E(G_2)$. The duplicated vertices u' and v' lies in G_1 and G_2 respectively. This implies that $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Therefore, $\lambda = \{x,y\}$ be a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 2$.

Theorem 2.9: If G is a weak 2 -vertex duplication self switching disconnected graph, then for $2 \le n \le 3$, (1) $dss_2(K_2 \cup P_2) = \begin{cases} 1, & \text{if } xy \notin E(K_2 \cup P_2) \\ 0 & \text{otherwise.} \end{cases}$

$$(2) \ dss_2(K_3 \cup P_2) = \begin{cases} 2, & if \ xy \notin E(K_3 \cup P_2) \\ 0 & otherwise. \end{cases}$$

$$(3) \ dss_2(K_3 \cup P_3) = \begin{cases} 2, & if \ xy \notin E(K_3 \cup P_3) \\ 0 & otherwise. \end{cases}$$

Proof: Let G be the disconnected graph consists of two components G_1 and G_2 . Let $u, v \in V(G)$ be the duplication of G. Let D((u, v)G) be the duplicated components of G and $\lambda = \{x, y\}$ be a weak 2 – vertex duplication self switching of G. There arises three cases.

Case(1): $G_1 = K_2$ and $G_2 = P_2$.

Since $K_2 \cong P_2$. By theorem 2.4 $dss_2(K_2 \cup P_2) = 1$

Case(2): $G_1 = K_3$ and $G_2 = P_2$.

There arises two subcases.

Subcase(2(i)): If $xy \in E(G)$

Either $xy \in G_1$ or G_2 . Here the graph gets connected after switching x and y. Then $D((u, v)G) \ncong D((u, v)G)^{\lambda}$. Therefore $\lambda = \{x, y\}$ is not a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 0$.

Subcase(2(ii)): If $xy \notin E(G)$

Then $x \in V(G_1)$ and $y \in V(G_2)$. Also u and v lies in the two different components of G. Clearly $xu \in E(G_1)$ and $yv \in E(G_2)$. The duplicated vertices u' and v' lies in G_1 and G_2 respectively. This implies that $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Therefore, $\lambda = \{x,y\}$ be a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 2$.

Case(3): $G_1 = K_3$ and $G_2 = P_3$.

There arises two subcases.

Subcase(3(i)): If $xy \in E(G)$

Either $xy \in G_1$ or G_2 . Here the graph gets connected after switching x and y. Then $D((u, v)G) \ncong D((u, v)G)^{\lambda}$. Therefore $\lambda = \{x, y\}$ is not a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 0$.

Subcase(3(ii)): If $xy \notin E(G)$

Then $x \in V(G_1)$ and $y \in V(G_2)$. Also u and v lies in the two different components of G. Clearly $xu \in E(G_1)$ and $yv \in E(G_2)$. The duplicated vertices u' and v' lies in G_1 and G_2 respectively. This implies that $D((u,v)G) \cong D((u,v)G)^{\lambda}$. Therefore, $\lambda = \{x,y\}$ be a weak 2 – vertex duplication self switching of G. Hence $dss_2(G) = 2$.

2. Conclusion

In this paper we have discussed about strong and weak 2 –vertex duplication self switchings of disconnected graphs and further we are analyzing more in disconnecting graphs.

3. References

- [1] C. Jayasekaran, and J. Christabel Sudha, M.Ashwin Shijoʻ, 2 vertex self switchings of some special graphs', International Journal of Scientific Research and Review, vol.7, Issue 12, 2018. ISSN No:2279 543X.
- [2] C. Jayasekaran & V. Prabavathy, 'Some results on Duplication self vertex switchings', International Journal of Pure and Applied Mathematics, vol. 116, No. 2, 427 435.
- [3] C. Jayasekaran & V. Prabavathy, 'A characterization of duplication self vertex switching in graphs', International Journal of Pure and Applied Mathematics, vol. 118, No.2.

[4] J.J Seidal, A survey of two graphs, Proceedings of the international Coll. Theorie Combinatorie (Rome 1973). Tomo I, Acca, Naz. Lincei pp. 481-511,1976.

- [5] K.S. Shruthi and G. Sumathy "Weak 2 -vertex duplication self Switching of some special graphs", Conference Proceedings of National Conference on Advances in Graph theory(MACMAS-23) organised by Malankara Catholic College in Collaboration with Kerala Mathematical Association, ISBN-978-81-908388,pp-182-187, March (2023).
- [6] K.S Shruthi and G.Sumathy ,"Some results of weak 2-vertex duplication self Switching graphs", Applied Mathematics Letters, communicated
- [7] G.Sumathy and K.S Shruthi, "Some results on strong 2 -vertex duplication self Switching of some connected graphs", Malaya journal of Mathematik, Vol.8, No.4,ISSN No.2319-3786,2020.