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Abstract:- In this paper, we develop a predictor-corrector scheme based on a semi-open and closed-cotes 

quadrature process for solving an initial value problem of ordinary differential equation. The analysis showed 

that the method is stable, of order O(h5), and accurate. Numerical examples are given to demonstrate the 

validity and applicability of the proposed scheme. In addition, the numerical results show that the proposed 

scheme is very accurate and efficient. 
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1. Introduction 

Many real-life problems in applied science and engineering are modeled by a differential equation. Some of 

these problems need the solution of the Initial-value problems (IVP) of the form 

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑥(𝑡0) =  𝑥0          (1)  

This type of equation often has difficulty to find an analytical solution, so the use of numerical scheme to find 

an approximate solution would be an excellent approach. Usually, there are two types of numerical schemes 

being used to solve equation (1). First, schemes called the one step methods since the solution at 𝑡𝑖+1 involves 

information only from the one point 𝑡𝑖 . Also, may these methods use functions evaluation at points in [𝑡𝑖 , 𝑡𝑖+1 ], 

(e.g. see [1]-[9]). These methods are simple, but have relatively low accuracy. The other methods called multi-

steps methods, where the integral of (1) can be computed over several intervals, so the solution will be available 

at some points before computing the solution at 𝑡𝑖+1 . Integrate both sides of (1) over the interval [𝑡𝑖−𝑘 , 𝑡𝑖+1 ], 

we get  

𝑥𝑖+1 = 𝑥𝑖−𝑘 + ∫ 𝑓(𝑡,  𝑥(𝑡))𝑑𝑡.
𝑡𝑖+1

𝑡𝑖−𝑘
                 (2) 

Equation (2) called k-step method uses values of x(t) and f(t, x(t)) at k previous points 𝑡𝑖−𝑘, k =0,1,2,…, 𝑖,  

such as the well-known Adams-Moulton implicit method, the explicit Adams-Bashforth method, and other 

methods using some variation of Runge-Kutta method. For example, [10]-[13] presented what they call it 

“interval methods of Runge-Kutta type and multistep methods of Adams type”. The authors concluded that the 

explicit interval methods are more accurate than Adams-Bashforth type. And the implicit of Milne-Simpson 

type has more accuracy than Adams-Moulton type.  

The implicit methods have a weakness of converting it to explicit one, and this is not always possible. However, 

the implicit multi-step methods are used to improve the accuracy 

of a multi-step method for the solution of equation (1) approximated by the explicit methods. This combination 

is called a predictor-corrector method, such as Milne-Simpson, Adams-Bashforth-Moulton, (e.g. see [14], [15]).  

Recently, several methods were proposed for the solution of (1) (e.g. see [16]- [18]). In addition, many 

numerical techniques have been improved for solving fractional differential equations, such as, in [19], the 

authors used quadratic Lagrange interpolant to approximate the nonlinear part of  Volterra integral equation 

using Adams type predictor corrector method. In [20] followed [19] by suggesting a higher order numerical 

scheme of the predictor corrector scheme for solving fractional differential equations using Lagrange interpolant 
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to approximate the numerical part of Volterra integral. In [21], the author proposed a predictor corrector scheme 

for solving the IVP involving Caputo fractional derivative. For further reading see [22], [23]. 

In this work, we will develop a predictor-corrector method based on a semi-open and closed-cotes quadrature 

formula to improve the solution of (1). 

The paper organized as follows; in section two we introduce the proposed method, in section three we give some 

numerical examples to demonstrate the efficiency and applicability of the method, we conclude the paper in 

section IV. 

2. The proposed method 

We begin by assuming that the solution of the initial value problem (1) exists and is unique. 

To drive the proposed method, we follow the following procedures: 

1. Integrate (1) over the interval [𝑡𝑖−3, 𝑡𝑖+1], that is 

𝑥𝑖+1 = 𝑥𝑖−3 + ∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡
𝑡𝑖+1

𝑡𝑖−3
                                    (3) 

2. Assume that the x(t) is known at the four equally spaced nodes 𝑡𝑖−3, 𝑡𝑖−2, 𝑡𝑖−1, and 𝑡𝑖, then we 

approximate the integral of (3), using a semi-open-cote quadrature formula 

∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡
𝑡𝑖+1

𝑡𝑖−3
≅ ∑ 𝑤𝑘𝑓(𝑡𝑘, 𝑥𝑘)𝑖

𝑘=𝑖−3                 (4) 

Using Lagrange polynomials over the interval [𝑡𝑖−3, 𝑡𝑖+1] to estimate the weights, that is  

𝑤𝑗 = ∫ 𝐿𝑗(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡𝑖−3
, 𝑗 = 𝑖 − 3, … , 𝑖,  we obtain 

𝑤𝑖−3 = 2.2917ℎ, 𝑤𝑖−2 = 0.2083 ℎ, 𝑤𝑖−1 = 0.2083 ℎ, and 𝑤𝑖 = 2.2917 ℎ.  

Substitute the weights in (4), then in (3), we obtain the predictor formula  

𝑥̂𝑖+1 = 𝑥𝑖−3 + ℎ[2.2917𝑓(𝑡𝑖, 𝑥𝑖) + 0.2083𝑓(𝑡𝑖−1, 𝑥𝑖−1) + 0.2083𝑓(𝑡𝑖−2, 𝑥𝑖−2) +  2.2917𝑓(𝑡𝑖−3, 𝑥𝑖−3)].       (5) 

It is easy to see the formula is of order five (O(h5)). 

3. To improve the accuracy of the solution approximated by equation (4), we develop a corrector implicit 

multi-step method as follows: 

3.1.  Integrate equation (1) over the interval [𝑡𝑖−2, 𝑡𝑖+1], we obtain  

𝑥𝑖+1 = 𝑥𝑖−2 + ∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡
𝑡𝑖+1

𝑡𝑖−2
                      (6) 

3.2.  Approximate the integral in (6), using a closed -cote quadrature formula 

∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡
𝑡𝑖+1

𝑡𝑖−2
≅ 𝑤0𝑓(𝑡𝑖−2, 𝑥𝑖−2) + 𝑤1𝑓(𝑡𝑖−1, 𝑥𝑖−1) +  𝑤2𝑓(𝑡𝑖 , 𝑥1) + 𝑤3𝑓(𝑡𝑖+1, 𝑥𝑖+1)             (7) 

3.3.  We estimate the values of the weights using Lagrange polynomials over the interval [𝑡𝑖−2, 𝑡𝑖+1] , 

we get 𝑤0 = 0.375ℎ, 𝑤1 = 1.125 ℎ, 𝑤2 = 1.125ℎ, and 𝑤3 = 0.375 ℎ. 

Now, substitute the weights in (7) then in (6),  we obtain the corrector formula: 

𝑥𝑖+1 = 𝑥𝑖−2 +  0.375ℎ𝑓(𝑡𝑖+1, 𝑥̂𝑖+1)   + 1.125 ℎ𝑓(𝑡𝑖 , 𝑥𝑖) +  1.125ℎ𝑓(𝑡𝑖−1, 𝑥𝑖−1) + 0.375 ℎ𝑓(𝑡𝑖−2, 𝑥𝑖−2)         (8) 

     You can see easily that the order term of this formula is five (O(h5)). 

4. Hence, the algorithm for finding an approximate solution for the IVP (1) at equally spaced n 

subintervals is as follows: 

- Start with initial condition 𝑥0, then use one step method to calculate 𝑥1, 𝑥2, and 𝑥3       

- For i = 3, 4, 5, … do the following:  
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- Compute the predictor using (5).  

- Compute the corrector using (8). 

3. Numerical Demonstration 

In this section, we consider some examples to illustrate the accuracy, efficiency, and to confirm the validity of 

our proposed technique (nppc).  

Example 1: Consider the IVP, 𝑥′(𝑡) =  
1

1+𝑡2 − 2𝑥2(𝑡), 𝑥(0) = 0 on the interval [0, 1]. The exact solution is 

𝑥(𝑡) =  
𝑡

1+𝑡2 . 

First, we used modified Euler’s method to predicate 𝑥1, 𝑥2, 𝑎𝑛𝑑 𝑥3, then we used Mathematica to generate 

𝑥𝑖  , 4 ≤ 𝑖 ≤ 19, using ℎ =  0.05. The results shown in table 1 and figure 1. 

Table 1. Comparison between the exact solution and the nppc solution of example 1 

ti 𝒙𝒊_𝒆𝒙𝒂𝒄𝒕 𝒙𝒊_𝒏𝒑𝒑𝒄 𝑨𝒃𝒔_𝑬𝒓𝒓𝒐𝒓 

0 0 0 0 

0.05 0.04987531172 0.04981265586 6.26558607*10-5 

0.1 0.09900990099 0.09888430787 1.255931201*10-4 

0.15 0.1466992665 0.1465112488 1.880177037*10-4 

0.2 0.1923076923 0.1921904729  1.172193654*10-4 

0.25 0.2352941176 0.2351149985  1.791191191*10-4 

0.3 0.2752293578 0.2751267151  1.02642712*10-4 

0.35 0.3118040089 0.3116387738  1.652351296*10-4 

0.4 0.3448275862 0.3447421199 8.546632525*10-5 

0.45 0.3742203742 0.3740702132 1.501610033*10-4 

0.5 0.4 0.3999325711 6.742889751*10-5 

0.55 0.4222648752 0.4221295246 1.353506175*10-4 

0.6 0.4411764706 0.4411266764 4.979417895*10-5 

0.65 0.4569420035 0.4568202402 1.217632899*10-4 

0.7 0.4697986577 0.4697652931 3.336460077*10-5 

0.75 0.48 0.4798900559  1.099440871*10-4 

0.8 0.487804878 0.4877863229 1.855513215*10-5 

0.85 0.4934687954 0.4933686826 1.001127399*10-4 

0.9 0.4972375691 0.497232077 5.492026496*10-6 

0.95 0.4993429698 0.4992507093  9.226043154*10-5 

1 0.5 0.5000058895 5.889488083*10-6 
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Fig. 1. Comparison between the exact solution and nppc of example 1 

Example 2: Consider the following IVP  

𝑥′(𝑡) = (2 − 𝑡)𝑥(𝑡), 2 ≤ 𝑡 ≤ 3, 𝑥(2) = 1. The exact solution is 𝑥(𝑡) =  𝑒−0.5(𝑡−2)2
.  

We used the modified Euler’s method to predicate 𝑥1, 𝑥2, 𝑎𝑛𝑑 𝑥3, then we used Mathematica to generate 𝑥𝑖  , 4 ≤

𝑖 ≤ 49, using ℎ =  0.02. The results for some selected points are shown in table 2 and figure 2. 

Table 2. Comparison between the exact solution and the nppc solution of example 2 

ti 𝐱𝐢−𝐞𝐱𝐚𝐜𝐭 𝐱𝐢−𝐧𝐩𝐩𝐜 Abs-Error 

2 1. 1 0. 

2.02 0.99980002 0.9998 1.999866672*10-8 

2.04 0.9992003199 0.99920028 3.991468367*10-8 

2.06 0.998201619 0.9982015539 6.512843731*10-8 

2.08 0.9968051145 0.9968050747 3.98321135*10-8 

2.1 0.9950124792 0.9950124141 6.50471168*10-8 

2.12 0.9928258579 0.9928258182 3.965951045*10-8 

2.18 0.9839305143 0.9839304496 6.465946256*10-8 

2.2 0.9801986733 0.9801986342 3.911012914*10-8 

2.22 0.9760904721 0.9760904078 6.438433386*10-8 

2.28 0.9615583782 0.9615583399 3.829224748*10-8 

2.3 0.9559974818 0.9559974182 6.367466476*10-8 

2.32 0.9500886338 0.950088596 3.778417179*10-8 

2.38 0.9303448082 0.9303447455 6.275750652*10-8 

2.4 0.9231163464 0.9231163098 3.657336101*10-8 

2.42 0.9155777429 0.9155776806 6.222334714*10-8 

2.48 0.8911878885 0.8911878534 3.510874003*10-8 

2.5 0.8824969026 0.8824968416 6.10092844*10-8 

2.52 0.873541186 0.8735411517 3.428378448*10-8 
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2.58 0.8451847808 0.8451847212 5.960972327*10-8 

2.6 0.8352702114 0.835270179 3.245476554*10-8 

2.62 0.8251418236 0.8251417648 5.884430454*10-8 

2.64 0.8148102622 0.8148102307 3.145363225*10-8 

2.66 0.8042862828 0.8042862248 5.803758951*10-8 

2.68 0.793580734 0.7935807036 3.039699059*10-8 

2.7 0.7827045382 0.7827044811 5.719168061*10-8 

2.72 0.7716686739 0.7716686446 2.928675435*10-8 

2.74 0.7604841569 0.7604841006 5.630889732*10-8 

2.76 0.7491620228 0.7491619947 2.81250343*10-8 

2.78 0.737713309 0.7377132536 5.539178372*10-8 

2.8 0.7261490371 0.7261490102 2.691414469*10-8 

2.82 0.7144801955 0.714480141 5.444311379*10-8 

2.84 0.7027177229 0.7027176972 2.565660484*10-8 

2.86 0.6908724913 0.6908724379 5.346589205*10-8 

2.88 0.6789552903 0.6789552659 2.43551378*10-8 

2.9 0.6669768109 0.6669767584 5.246335055*10-8 

2.92 0.6549476305 0.6549476075 2.301266455*10-8 

2.94 0.6428781982 0.6428781468 5.143894299*10-8 

2.96 0.6307788205 0.6307787989 2.163229551*10-8 

2.98 0.6186596475 0.6186595971 5.039633444*10-8 

3 0.6065306597 0.6065306395 2.021731604*10-8 

 

 

Fig. 2. Comparison of the exact solution and the nppc solution of example 2 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 6 (2023) 

__________________________________________________________________________________ 

5837 

The results of examples 1 and 2 shown the comparison of the absolute error of the exact solution and the 

proposed methods in tables 1 and 2, which indicates that our proposed scheme is efficient and accurate. 

Moreover, figures 1 and 2 show that the proposed scheme match with the exact solution. 

4. Conclusion 

We derive a predictor-corrector method for solving the IVP of ODEs based on a Gaussian quadrature process. 

We have shown that the derived method has a local truncation error of order five. We gave some numerical 

examples to demonstrate the efficiency, accuracy, and applicability of the proposed method. 
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