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Abstract 

 For a simple graph 𝐺 , a subset 𝐷 ⊆ 𝑉(𝐺)  is a dominating set if 𝑁(𝐷) = 𝑉 , where 𝑁(𝐷)  denote the open 

neighborhood of the set 𝐷. The Sombor index 𝑆𝑂(𝐺) of a graph 𝐺 is the sum of square root of squares of degrees 

of every end-vertex of an edge 𝐸(𝐺) in 𝐺. In this paper, these two classical concepts are combined and initiated the 

study of Sombor-domination number 𝛾𝑠𝑜(𝐺) of a graph 𝐺. Further, some upper and lower bounds are obtained for 

𝛾𝑠𝑜(𝐺) in terms of other graph theocratical parameters. Finally, we conclude this paper by showing applications of 

𝛾𝑠𝑜(𝐺) in QSPR-studies of alkanes. 

 

Keywords: Domination number; Sombor index; Sombor domination number.  

 

1  Introduction 

  All graphs considered in this paper are finite, simple and undirected. In particular, these graphs do not possess 

loops. Let 𝐺 = (𝑉, 𝐸)  be a graph with the vertex set 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛}  and the edge set 𝐸(𝐺) =
{𝑒1, 𝑒2, 𝑒3, ⋯ , 𝑒𝑚} , that is |𝑉(𝐺)| = 𝑛  and |𝐸(𝐺)| = 𝑚 . The vertex 𝑢  and 𝑣  are adjacent if 𝑢𝑣 ∈ 𝐸(𝐺) . The 

open(closed) neighborhood of a vertex 𝑣 ∈ 𝑉(𝐺) is 𝑁(𝑣) = {𝑢: 𝑢𝑣 ∈ 𝐸(𝐺)} and 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣} respectively. 

The degree of a vertex 𝑣 ∈ 𝑉(𝐺) is denoted by 𝑑𝐺(𝑣) and is defined as 𝑑𝐺(𝑣) = |𝑁(𝑣)|. A vertex 𝑣 ∈ 𝑉(𝐺) is 

pendant if |𝑁(𝑣)| = 1 and is called support vertex if it is adjacent to pendant vertex. Any vertex 𝑣 ∈ 𝑉(𝐺) with 

|𝑁(𝑣)| > 1 is called internal vertex. If 𝑑𝐺(𝑣) = 𝑟  for every vertex 𝑣 ∈ 𝑉(𝐺), where 𝑟 ∈ ℤ+  then 𝐺  is called 

r-regular. If 𝑟 = 2 then it is called cycle graph 𝐶𝑛  and for 𝑟 = 3 it is called the cubic graph. A graph 𝐺  is 

unicyclic If |𝑉| = |𝐸|. For undefined terminologies we refer the reader to [7].  

Molecular descriptors give hope that the journey throughout endless chemical space won’t be a random wandering 

but a methodical voyage toward substances of importance to mankind. Nowadays, there is a myriad of molecular 

descriptors, and among them, the topological indices have a prominent place. Topological index is simply a numeric 

associated with the molecular graph. So far, large number of such quantities are put forward by many researchers 

right from 1972[6]. An useful topological index is one which has a good predicting power in QSPR studies. 

Therefore, topological indices can be categorized into two categories useful and not so useful TI’s. One of the most 

useful topological index is the Sombor index 𝑆𝑂(𝐺) which is put forward by I Gutman[4]:  

 𝑆𝑂(𝐺) = ∑𝑢𝑣∈𝐸(𝐺) [√𝑑𝑒𝑔(𝑢)
2 + 𝑑𝑒𝑔(𝑣)2] (1) 

 

A set 𝑆 ⊆ 𝑉 is a dominating set of 𝐺 if each vertex in 𝑉 − 𝑆 is adjacent to some vertex in 𝑆. The domination 

number 𝛾(𝐺) is the smallest cardinality of a dominating set. A dominating set is said to be minimal, if no proper 

subset of 𝑆  is a dominating set of 𝐺 . It is well known that, a maximal independent set of 𝐺  is a minimal 

dominating set of 𝐺. An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. 

[9]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [10]. Various 

types of domination have been defined and studied by several authors and more than 75 models of domination are 

listed in the appendix of Haynes et al.[8].  

In this paper, we define the Sombor domination in graphs as follow: 

Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝐷 ⊆ 𝑉 of vertex set of 𝐺 is said to be Sombor-dominating set if   

    1.  for every 𝑣 ∈ 𝐷 there exist 𝑢 ∈ 𝑉 − 𝐷 such that 𝑢𝑣 ∈ 𝐸(𝐺).  

    2.  ∑𝑢𝑣∈𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2.  
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The minimum cardinality among all Sombor dominating sets in the graph 𝐺  is called the Sombor-domination 

number 𝛾𝑠𝑜(𝐺).  

For example consider the following graph 𝐺 on five vertices which is depicted in Figure 1. 

 

 

 
 

In figure 1, it can be observed that 𝑑𝑒𝑔(𝑎) = 𝑑𝑒𝑔(𝑏) = 𝑑𝑒𝑔(𝑐) = 2, 𝑑𝑒𝑔(𝑑) = 3 and 𝑑𝑒𝑔(𝑒) = 1. Clearly, 𝐷 =
{𝑏, 𝑑} is a dominating set and 𝐷 is also a Sombor dominating set. Because 𝑉 − 𝐷 = {𝑎, 𝑐, 𝑒} here the only existing 

edge is 𝑎𝑐 ∈ 𝐸(𝐺). Therefore,  

 ∑𝑢𝑣∈𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 = √𝑑𝑒𝑔(𝑏)2 + 𝑑𝑒𝑔(𝑑)2 

 = √22 + 32 

 = 3.3166. 
 and 

 

 ∑𝑢𝑣∈𝑉−𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 = √𝑑𝑒𝑔(𝑎)2 + 𝑑𝑒𝑔(𝑐)2 

 = √22 + 22 

 = 2.828. 
 

Hence, ∑𝑢𝑣∈𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 > ∑𝑢𝑣∈𝑉−𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2. Therefore, 𝐷 is a minimum Sombor 

dominating set with 𝛾𝑠𝑜(𝐺) = 2. 

 

2  Results 

 

First, we calculate the Sombor-domination number of some standard class of graphs such as complete graph 𝐾𝑝, 

cycle graph 𝐶𝑝, Path Graph 𝑃𝑝 etc. 

 

Proposition 1  

 

    1.  . For Complete graph 𝐾𝑝, 𝛾𝑠𝑜(𝐾𝑝) =
𝑝

2
 

 

    2.  . For cycle graph 𝐶𝑝, 𝛾𝑠𝑜(𝐶𝑝) =
𝑝

2
 

 

    3.  . For path graph 𝑃𝑝, 𝛾𝑠𝑜(𝑃𝑝) =
𝑝

2
 

Proof. 
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1.  Let 𝐺 = 𝐾𝑝  be a complete graph of order 𝑝 ≥ 2 . Let 𝐷 = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣 𝑝

2
}  and clearly, 𝑉 − 𝐷 =

{𝑣1, 𝑣2, 𝑣3,⋯ , 𝑣 𝑝

2
. Since 𝐾𝑝 is a (𝑝 − 1) −regular graph. Therefore, it can be easily check that  

 ∑𝑢𝑣∈𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐷⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

Hence, 𝐷 is a minimal Sombor-dominating set. Therefore, 𝛾𝑠𝑜(𝐾𝑝) = |𝐷| =
𝑝

2
.  

 

2.  The proof follows from the same lines as in (i) due to the fact that for cycle graph  

𝐶𝑝, 2 −regular graph.  

 

3.  Let 𝐺 = 𝑃𝑝 be a path of even order. Let 𝐷 be an independent dominating set of 𝐺 such that 𝐷 contains the 

every alternate vertices of 𝑃𝑝. Clearly, neither 〈𝐷〉 nor 〈𝑉 − 𝐷〉 contains an edge. Now, we shall convert 𝐷 into a 

Sombor-dominating set by by including the vertex 𝑣𝑛−2  to 𝐷 . Now the Sombor-dominating set 𝐹 =
{𝑣2, 𝑣4, 𝑣6, ⋯ , 𝑣𝑛−2, 𝑣𝑛−1} = |𝐷| + 1 contains an edge 𝑣𝑛−2𝑣𝑛−1 ∈ 𝐸(𝑃𝑝). Hence,  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 > ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

 

 

Proposition 2 For any k-regular graph 𝐺 with at least two vertices, 𝛾𝑠𝑜(𝐺) =
𝑝

2
.  

 

Proof. Let 𝐺 be a 𝑘 −regular graph of order 𝑝 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑝}. Let 𝐷 be a dominating set with 

|𝐷| =
𝑝

2
. Then clearly, |𝐷| ≥ |𝑉 − 𝐷|. Since, 𝑑𝑒𝑔(𝑣𝑖) = 𝑘 for 1 ≤ 𝑖 ≤ 𝑝 therefore, it can be easily check that  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

Hence 𝐷 is a minimal Sombor-dominating set with 𝛾𝑠𝑜(𝐺) =
𝑝

2
.  

 

 

Theorem 1  For any connected (𝑝, 𝑞)-graph satisfying Sombor-dominating set,  

 𝛾𝑠𝑜(𝐺) ≤
𝑝

2
 

 

Further, the upper bound is attained if and only if 𝐺 has a perfect matching with equal distribution of degrees of 

vertices.  

 

Proof. Let 𝐺  be a connected graph with vertex set 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑝}  and let 𝐷  be a minimum 

Sombor-dominating set. Then clearly 𝑉 − 𝐷 is also a Sombor-dominating set. Hence |𝐷| + |𝑉 − 𝐷| = 𝑝 . Thus 

𝛾𝑠𝑜(𝐺) ≤ 𝑚𝑖𝑛{|𝐷|, |𝐷′|} ≤
𝑝

2
. 

 

For equality of an upper bound, let us assume that 𝛾𝑠𝑜(𝐺) =
𝑝

2
 and 𝐺 does not contain a perfect matching with 

unequal degree distribution. Then clearly,  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 < ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

a contradiction to our assumption. Hence 𝐺 must have perfect matching with equal degree distribution.  

 

Theorem 2  Let 𝐺 be a connected graph satisfying Sombor-dominating set 𝐷. If 𝐷 is a minimal 

Sombor-dominating set, then 𝑉 − 𝐷 is also a Sombor-dominating set of 𝐺.  

 

Proof. Let 𝐷 be a minimal Sombor-dominating set of 𝐺. Suppose 𝑉 − 𝐷 is not an Sombor-dominating set. Then 

clearly,  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 < ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

Then there exists a vertex 𝑢 such that 𝑢 is not dominated by any vertex in 𝑉 − 𝐷. Since 𝐺, a non-trivial connected 

graph satisfies Sombor-dominating set, 𝑢  is dominated by at least one vertex in 𝐷 − {𝑢}. Thus 𝐷 − {𝑢}  is a 

Sombor-dominating set with  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 
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a contradiction. Hence 𝑉 − 𝐷 is a Sombor-dominating set of a graph 𝐺.  

 

Observation 3 For a star graph 𝐾1,𝑝−1; 𝑝 ≥ 4, 𝛾𝑠𝑜(𝐾1,𝑝−1) = 2.  

 

Proof. Let 𝐺 be a star graph 𝐾1,𝑝−1;𝑝 ≥ 4 with central vertex 𝑣1. Then clearly dominating sets are 𝐷1 = {𝑣1} or 

𝐷2 = {𝑣2, 𝑣3, 𝑣4,⋯ , 𝑣𝑝}. These dominating sets can be extended to the Sombor dominating sets as follows:   

    • 𝐷1 = {𝑣1, 𝑣2} 
    • 𝐷2 = {𝑣1, 𝑣3} 
    • 𝐷3 = {𝑣1, 𝑣4} 
and so on 𝐷𝑛 = {𝑣1, 𝑣𝑛−1} . Then clearly, 〈𝑉 − 𝐷𝑖〉  contains no edges. Hence, all these are minimal 

Sombor-dominating sets. Hence, 𝛾𝑠𝑜(𝐾1,𝑝−1) = 2.  

 

Theorem 4 For any connected graph 𝐺 with maximum degree 𝛥(𝐺) ≤
𝑝

2
, 

𝛾𝑠𝑜(𝐺) ≤ 𝑝 − 𝛥(𝐺). 
 

Proof. Let 𝐺 be any connected graph of order 𝑝 with maximum degree Δ(𝐺) ≤
𝑝

2
. Let 𝑣 be a vertex of maximum 

degree Δ(𝐺) such that 𝑑𝑒𝑔(𝑣) ≤
𝑝

2
. Then 𝑣 is adjacent to its neighborhood vertices such that Δ(𝐺) = 𝑁(𝑣) and  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

 Hence 𝑉 − 𝑁(𝑣) is Sombor-dominating set. Therefore  

 𝛾𝑠𝑜(𝐺) ≤ |𝑉 − 𝑁(𝑉)| 
 = 𝑝 − Δ(𝐺). 
 

Theorem 5 Let 𝐺 = 𝐻 ∘ 𝐾1 where 𝐻 is any connected graph of even order. Then 𝛾𝑠𝑜(𝐺) =
𝑝

2
.  

 

Proof. Consider the corona operation between the connected graph 𝐻  of even order and 𝐾1 . Let 𝑉(𝐻) =

{𝑣1, 𝑣2, 𝑣3,⋯ , 𝑣𝑝
2
} and consider 

𝑝

2
 copies of 𝐾1 . Then clearly degree of each vertex 𝑣 ∈ 𝑉(𝐻)  is 𝑑𝑒𝑔

𝐺
(𝑣) =

𝑑𝑒𝑔
𝐻
(𝑣) + 1 and 𝐺 has 

𝑝

2
 pendant vertices. Let 𝐷 be a minimum Sombor-dominating set of 𝐺 with  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

. 

Such that 𝐷  contains exactly half of the vertices of 𝐻  together with their pendant vertices. i.e 𝐷 =

{𝑣1, 𝑣2, 𝑣3,⋯ , 𝑣𝑝
4
} ∪

𝑝

4
- copies of pendant vertices. Since the order of 𝐺 is even therefore, 𝑉 − 𝐷 also contains same 

number of vertices with same degree pattern. Hence clearly  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

Thus 𝐷 satisfies the conditions of Sombor-dominating set. Therefore, we have  

 𝛾𝑠𝑜(𝐺) = |𝐷| 

 = |{𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑝
4
} ∪

𝑝

4
| 

 =
𝑝

4
+

𝑝

4
 

 =
𝑝

2
. 

 

Theorem 3  A dominating set 𝐷 of a graph 𝐺 is minimal FD-set if and only if it satisfies the following conditions,   

    1.  𝑃𝑁(𝑣, 𝐷) ≠ ∅ for every 𝑣 ∈ 𝐷 

    2.  ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2.  

 

Proof. Let 𝐷 be a minimal Sombor-dominating set. Then every vertex 𝑣 ∈ 𝐷, 𝐷 − {𝑣} not a Sombor-dominating 

set, there exists a vertex 𝑢 ∈ 𝑉 − (𝐷 − {𝑣}). Therefore 𝑢 ∈ 𝑃𝑁(𝑣,𝐷). Hence for every vertex 𝑣 ∈ 𝐷 has at least 

one neighbor. Thus 𝑃𝑁(𝑣, 𝐷) ≠ ∅. Also,  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 
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Conversely, suppose 𝑃𝑁(𝑣, 𝐷) ≠ ∅ and  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

Now we have to prove that 𝐷  is a minimal Sombor-dominating set. Assume 𝐷  is not a minimal 

Sombor-dominating set which implies that there exists a vertex 𝑣 ∈ 𝐷 such that 𝐷 − {𝑣} a dominating set. Then 𝑣 

is adjacent to at least one vertex in 𝐷 − {𝑣} and also every vertex in 𝑉 − 𝐷 is adjacent to at least one in 𝐷 − {𝑣}. 
Therefore, neither (i) nor (ii) holds, which is a contradiction.  

 

Theorem 4  Let 𝐺 be any connected graph having minimum Sombor-dominating set 𝐷. Then 𝐺 is a minimal 

Sombor-dominating set.  

 

Proof. Let 𝐷 be any Sombor-dominating set. If for each vertex 𝑣 ∈ 𝐷, then there exist  

 ∑𝑢𝑣∈𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 ≥ ∑𝑢𝑣∈𝑉−𝐹⊆𝐸(𝐺) √𝑑𝐺(𝑢)
2 + 𝑑𝐺(𝑣)

2 

such that 𝑢𝑣 ∈ 𝐸(𝐺). Hence 𝐷 is a minimal Sombor-dominating set.  

 

 

Theorem 6 Let 𝐺 be a simple connected graph with 𝑝 vertices and 𝑞 edges with 𝛾𝑠𝑜(𝐺) = 𝑘 for some positive 

integer 𝑘. Then  

𝛾𝑠𝑜(𝐺) ≥
2𝑘𝑝

√𝑝𝑀1(𝐺)
, 

 where 𝑀1(𝐺) is the first Zagreb index.  

 

Proof. Let 𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑝  be the vertices of a simple graph 𝐺 . Let 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛  and 𝑏1, 𝑏2, 𝑏3, ⋯ , 𝑏𝑛  be 

non-negative integers. Then by Cauchy-Schrwz inequality we have  

 (∑
𝑝
𝑖=1 𝑎𝑖𝑏𝑖)

2 ≤ (∑
𝑝
𝑖=1 𝑎𝑖

2) ⋅ (∑
𝑝
𝑖=1 𝑏𝑖

2) (2) 

 by setting 𝑎𝑖 = 𝑑𝑒𝑔(𝑣𝑖) and 𝑏𝑖 = 𝛾𝑠𝑜 = 𝑘 we have  

 (∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖) ⋅ 𝛾

𝑠𝑜)2 ≤ (∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖)

2) ⋅ (∑
𝑝
𝑖=1 𝛾

𝑠𝑜2) 

 𝑘2(∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖))

2 ≤ 𝑀1(𝐺)(𝑝𝛾
𝑠𝑜2) 

 𝑝𝛾𝑠𝑜
2
≥

𝑘2(2𝑝)2

𝑀1(𝐺)
 

 𝛾𝑠𝑜
2
(𝐺) ≥

𝑘2(2𝑝)2

𝑝𝑀1(𝐺)
 

 𝛾𝑠𝑜(𝐺) ≥
2𝑘𝑝

√𝑝𝑀1(𝐺)
 

 as asserted.  

We get the similar bound by applying the following inequalities: 

 

Lemma 1 Let 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 and 𝑏1, 𝑏2, 𝑏3, ⋯ , 𝑏𝑛 be non-negative integers. Then  

∑𝑛
𝑖=1 𝑎𝑖

𝑟 ≥ 𝑛1−𝑟(∑𝑛
𝑖=1 𝑏𝑖)

𝑟 (3) 

 

 

Lemma 2 Let 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 and 𝑏1, 𝑏2, 𝑏3, ⋯ , 𝑏𝑛 be non-negative integers. Then  

 ∑𝑛
𝑖=1

𝑎𝑖
𝑟+1

𝑏𝑖
𝑟 ≥

(∑𝑛𝑖=1𝑎𝑖)
𝑟+1

(∑𝑛𝑖=1𝑏𝑖)
𝑟  (4) 

 

Lemma 3 Let 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛 and 𝑏1, 𝑏2, 𝑏3, ⋯ , 𝑏𝑛 be non-negative integers. Then  

 (∑𝑛
𝑖=1 𝑏𝑖)

𝛼−1(∑𝑛
𝑖=1 𝑏𝑖𝑎𝑖

𝛼) ≥ (∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖)

𝛼 (5) 

Theorem 7 Let 𝐺 be a simple connected graph with 𝑝 vertices and 𝑞 edges with 𝛾𝑠𝑜(𝐺) = 𝑘 for some positive 

integer 𝑘 . Then  

 𝛾𝑠𝑜 ≤
𝛼(𝑛)(Δ−𝛿)2

2𝑝(𝑝−1)
. 

 where 𝛼(𝑛) = 𝑛
𝑛

2
(1 −

1

𝑛

𝑛

2
). where 𝑥  smallest integer less than or equal to 𝑥.  
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Proof. Let 𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑝  be the vertices of a simple graph 𝐺 . Let 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛  and 𝑏1, 𝑏2, 𝑏3, ⋯ , 𝑏𝑛  be 

non-negative integers for which there exist real constants 𝑎, 𝑏, 𝐴 and 𝐵, so that for each 𝑖, 𝑖 = 1,2,⋯ , 𝑛, 𝑎 ≤ 𝑎𝑖 ≤
𝐴 and 𝑏 ≤ 𝑏𝑖 ≤ 𝐵. Then the following inequality is valid  

 |𝑝 ∑
𝑝
𝑖=1 𝑎𝑖𝑏𝑖 − ∑𝑝

𝑖=1 𝑎𝑖 ∑
𝑝
𝑖=1 𝑏𝑖| ≤ 𝛼(𝑛)(𝐴 − 𝑎)(𝐵 − 𝑏) (6) 

 We choose 𝑎𝑖 = 𝑑𝑒𝑔𝑤(𝑣𝑖)𝑏𝑖 = 𝛾𝑠𝑜 = 𝑘, 𝐴 = Δ = 𝐵 and 𝑎 = 𝛿 = 𝑏, inequality (2.5), becomes  

 𝑝∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖) ⋅ 𝛾

𝑠𝑜 − (∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖) ⋅ 𝛾

𝑠𝑜) ≤ 𝛼(𝑛)(Δ − 𝛿)(Δ − 𝛿) 

 𝑝𝛾𝑠𝑜(2𝑝) − 𝛾𝑠𝑜(2𝑝) ≤ 𝛼(𝑛)(Δ − 𝛿)2 

 2𝑝𝛾𝑠𝑜(𝑝 − 1) ≤ 𝛼(𝑛)(Δ − 𝛿)2 

 𝛾𝑠𝑜 ≤
𝛼(𝑛)(Δ−𝛿)2

2𝑝(𝑝−1)
 

Theorem 8 Let 𝐺 be a simple connected graph with 𝑝 vertices and 𝑞 edges with 𝛾𝑠𝑜(𝐺) = 𝑘 for some positive 

integer 𝑘. Then  

 𝛾𝑠𝑜(𝐺) ≤ √
(𝛿+Δ)(2𝑝)−𝑀1(𝐺)

𝛿Δ
. 

 

Proof. Let 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 and 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 be real numbers for which there exist real constants 𝑟 and 𝑅 so that for 

each 𝑖, 𝑖 = 1,2,⋯ , 𝑛 holds 𝑟𝑎𝑖 ≤ 𝑏𝑖 ≤ 𝑅𝑎𝑖. Then the following inequality is valid.  

 ∑𝑝
𝑖=1 𝑏𝑖

2 + 𝑟𝑅 ∑
𝑝
𝑖=1 𝑎𝑖

2 ≤ (𝑟 + 𝑅)∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 . (7) 

 We choose 𝑏𝑖 = 𝑑𝑒𝑔(𝑣𝑖), 𝑎𝑖 = 𝛾𝑠𝑜 = 𝑘, 𝑟 = 𝛿 and 𝑅 = Δ in inequality (2.6), then  

 ∑𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖)

2 + 𝛿Δ∑
𝑝
𝑖=1 𝛾𝑓𝑧

2 ≤ (𝛿 + Δ)∑
𝑝
𝑖=1 𝑑𝑒𝑔(𝑣𝑖) 

 𝑀1(𝐺) + 𝛿Δ𝑝𝛾𝑓𝑧
2 ≤ (𝛿 + Δ)(2𝑝) 

 𝛿Δ𝑝𝛾𝑓𝑧
2 ≤ (𝛿 + Δ)(2𝑝) − 𝑀1(𝐺) 

 𝛾𝑓𝑧
2 (𝐺) ≤

(𝛿+Δ)(2𝑝)−𝑀1(𝐺)

𝛿Δ
 

 𝛾𝑠𝑜(𝐺) ≤ √
(𝛿+Δ)(2𝑝)−𝑀1(𝐺)

𝛿Δ
 

 as desired.  

 

3  Applicability of the 𝜸𝒔𝒐 in QSPR-Analysis 

 

  In this section we examine the applicability of the 𝛾𝑠𝑜  with the set of 67 alkanes. For this, we consider the 

physical properties like [boiling points(BP), molar volumes(mv)at 20∘C, molar refractions (mr) at 20∘C, heats of 

vaporization (hv) at 25∘C, surface tensions(st) 20∘C, melting points(mp), acentric factor(AcentFac) and DHVAP] 

of octane isomers. The values are compiled in Table 1.  
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    1.  Linear Model  

 

 𝑏𝑝 = 0.321 + [𝛾𝑠𝑜(𝐺)]3.1 (8) 

 𝑚𝑣 = 18.7 + [𝛾𝑠𝑜(𝐺)]2.8 (9) 

 𝑚𝑟 = 38.5 + [𝛾𝑠𝑜(𝐺)]1.2 (10) 

 ℎ𝑣 = 48.9 + [𝛾𝑠𝑜(𝐺)]3.8 (11) 

 𝑐𝑡 = 87.8 + [𝛾𝑠𝑜(𝐺)]4.2 (12) 

 𝑐𝑝 = 56.3 − [𝛾𝑠𝑜(𝐺)]2.9 (13) 

 𝑠𝑡 = 29.6 + [𝛾𝑠𝑜(𝐺)]3.1 (14) 

 𝑚𝑝 = −137.7 + [𝛾𝑠𝑜(𝐺)]2.7 (15) 

 

 

    2.  Quadratic Model  

 𝑏𝑝 = 6.7[𝛾𝑠𝑜(𝐺)]2 − 0.4[𝛾𝑠𝑜(𝐺)] − 54.8 (16) 

 𝑚𝑣 = 6.8[𝛾𝑠𝑜(𝐺)]2 − 0.32[𝛾𝑠𝑜(𝐺)] + 53.4 (17) 

 𝑚𝑟 = 5.3[𝛾𝑠𝑜(𝐺)]2 − 0.17[𝛾𝑠𝑜(𝐺)] + 44.3 (18) 

 ℎ𝑣 = 6.5[𝛾𝑠𝑜(𝐺)]2 − 0.72[𝛾𝑠𝑜(𝐺)] + 46.4 (19) 

 𝑐𝑡 = 12.3[𝛾𝑠𝑜(𝐺)]2 − 0.12[𝛾𝑠𝑜(𝐺)] + 73.7 (20) 

 𝑐𝑝 = −4.1[𝛾𝑠𝑜(𝐺)]2 + 0.6[𝛾𝑠𝑜(𝐺)] + 59.3 (21) 

 𝑠𝑡 = 4.5[𝛾𝑠𝑜(𝐺)]2 − 0.57[𝛾𝑠𝑜(𝐺)] + 42.2 (22) 

 𝑚𝑝 = 6.8[𝛾𝑠𝑜(𝐺)]2 − 0.79[𝛾𝑠𝑜(𝐺)] − 144.8 (23) 

 

 

    3.  Logarithmic Model  

 𝑏𝑝 = −121.4 + ln[𝛾𝑠𝑜(𝐺)]53.5 (24) 

 𝑚𝑣 = 33.4 + ln[𝛾𝑠𝑜(𝐺)]38.3 (25) 

 𝑚𝑟 = 0.7 + ln[𝛾𝑠𝑜(𝐺)]26.8 (26) 

 ℎ𝑣 = 36.9 + ln[𝛾𝑠𝑜(𝐺)]0.9 (27) 

 𝑐𝑡 = −49.5 + ln[𝛾𝑠𝑜(𝐺)]127.6 (28) 

 𝑐𝑝 = 42.7 − ln[𝛾𝑠𝑜(𝐺)]9.6 (29) 

 𝑠𝑡 = 11.4 + ln[𝛾𝑠𝑜(𝐺)]8.3 (30) 

 𝑚𝑝 = −137.9 + ln[𝛾𝑠𝑜(𝐺)]36.9 (31) 

 

 

Table 2: Model summary for the boiling point of alkanes and weighted 𝜸𝒔𝒐(𝑮) 
 Equation  𝑅2  F   Sig 

Linear   0.91   110.5   0.000  

Logarithmic   0.88   97.8   0.000  

Quadratic   0.93   115.6   0.000  

 

 The above Table 2 revealed that the prediction power of the 𝛾𝑠𝑜(𝐺) is good in predicting the boiling points as the 

correlation coefficient value 𝑟 = 0.93 for quadratic model. i.e. our result  

show 93.0% of accuracy in predicting the boiling points of alkanes.  

 

Table 3: Model summary for the critical pressure of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.84   67.8   0.000  

Logarithmic   0.70   22.8   0.000  

Quadratic   0.85   60.3   0.000  

 

 

 The above Table 3 shows that the prediction power of the 𝛾𝑠𝑜(𝐺) is good in predicting the critical pressure of 
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alkanes as the correlation coefficient value 𝑟 = 0.85 for quadratic model. i.e. our result show 85.0% of accuracy in 

predicting the critical pressure of alkanes.  

 

Table 4: Model summary for the critical temperature of alkanes and 𝜸𝒔𝒐(𝑮) 
 Equation  𝑅2  F   Sig 

Linear   0.039   0.62   0.671  

Logarithmic   0.172   2.12   0.153  

Quadratic   0.57   47.3   0.000  

 

 

 The above Table 4 revealed that the prediction power of the weighted first Zagreb index is good in predicting the 

critical temperature of alkanes as the correlation coefficient value 𝑟 = 0.57 for quadratic model. i.e. our result show 

57% of accuracy in predicting the critical temperature of alkanes.  

 

Table 5: Model summary for the heats of vaporization of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.89   67.8   0.000  

Logarithmic   0.88   66.9   0.000  

Quadratic   0.91   76.3   0.000  

 

 

 The above Table 5 shows that the prediction power of the 𝛾𝑠𝑜(𝐺) is good in predicting the heats of vaporization of 

alkanes as the correlation coefficient value 𝑟 = 0.91 for quadratic model. i.e. our result show 91.0% of accuracy in 

predicting the heats of vaporization of alkanes.  

 

Table 6: Model summary for the melting point of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.82   68.4   0.000  

Logarithmic   0.613   56.7   0.000  

Quadratic   0.631   58.1   0.000  

 

 

 The above Table 6 shows that the prediction power of the 𝛾𝑠𝑜(𝐺) is not so good in predicting the melting point of 

alkanes as the correlation coefficient values for all models are less than 0.9.  

 

Table 7: Model summary for the molar refraction of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.32   27.3   0.004  

Logarithmic   0.38   33.7   0.001  

Quadratic   0.27   25.8   0.003  

 

 

 The above Table 7 shows that the prediction power of the 𝛾𝑠𝑜(𝐺) is not so good in predicting the molar refraction 

of alkanes as the correlation coefficient value for all models is less than 0.7. 

 

 

Table 8: Model summary for the molar volume of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.82   54.2   0.000  
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Logarithmic   0.63   28.7   0.000  

Quadratic   0.86   61.5   0.000  

 

 

  The above Table 8 revealed that the prediction power of the 𝛾𝑠𝑜(𝐺) is good in predicting molar volume of 

alkanes as the correlation coefficient value 𝑟 = 0.86 for quadratic model. i.e. our result show 86.0% of accuracy in 

predicting the molar volume of alkanes.  

 

Table 9: Model summary for the surface tension of alkanes and 𝜸𝒔𝒐(𝑮) 
 

 Equation  𝑅2  F   Sig 

Linear   0.21   0.43   0.42  

Logarithmic   0.11   0.276   0.9  

Quadratic   0.28   0.49   0.48  

 

The above Table 9 shows that the prediction power of the 𝛾𝑠𝑜(𝐺) is not so good in predicting the surface tension of 

alkanes as the correlation coefficient value for all models is less than 0.7.  
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