ISSN: 1001-4055 Vol. 45 No.1 (2024)

On Sombor Domination in Graphs

¹Girish Yadav K P, ²Shailaja Shirkol

¹Department of Mathematics Vedavathi Government First Grade College Vishweshwaraiah Technological University, Belagavi ²Department of Mathematics S D M College of Engineering and Technology, Dharwad

Abstract

For a simple graph G, a subset $D \subseteq V(G)$ is a dominating set if N(D) = V, where N(D) denote the open neighborhood of the set D. The Sombor index SO(G) of a graph G is the sum of square root of squares of degrees of every end-vertex of an edge E(G) in G. In this paper, these two classical concepts are combined and initiated the study of Sombor-domination number $\gamma^{so}(G)$ of a graph G. Further, some upper and lower bounds are obtained for $\gamma^{so}(G)$ in terms of other graph theocratical parameters. Finally, we conclude this paper by showing applications of $\gamma^{so}(G)$ in QSPR-studies of alkanes.

Keywords: Domination number; Sombor index; Sombor domination number.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In particular, these graphs do not possess loops. Let G = (V, E) be a graph with the vertex set $V(G) = \{v_1, v_2, v_3, \cdots, v_n\}$ and the edge set $E(G) = \{e_1, e_2, e_3, \cdots, e_m\}$, that is |V(G)| = n and |E(G)| = m. The vertex u and v are adjacent if $uv \in E(G)$. The open(closed) neighborhood of a vertex $v \in V(G)$ is $N(v) = \{u: uv \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$ respectively. The degree of a vertex $v \in V(G)$ is denoted by $d_G(v)$ and is defined as $d_G(v) = |N(v)|$. A vertex $v \in V(G)$ is pendant if |N(v)| = 1 and is called support vertex if it is adjacent to pendant vertex. Any vertex $v \in V(G)$ with |N(v)| > 1 is called internal vertex. If $d_G(v) = r$ for every vertex $v \in V(G)$, where $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ is called r-regular. If $v \in \mathbb{Z}^+$ then $v \in \mathbb{Z}^+$ is called the cubic graph. A graph $v \in \mathbb{Z}^+$ is unicyclic If $v \in \mathbb{Z}^+$ for undefined terminologies we refer the reader to [7].

Molecular descriptors give hope that the journey throughout endless chemical space won't be a random wandering but a methodical voyage toward substances of importance to mankind. Nowadays, there is a myriad of molecular descriptors, and among them, the topological indices have a prominent place. Topological index is simply a numeric associated with the molecular graph. So far, large number of such quantities are put forward by many researchers right from 1972[6]. An useful topological index is one which has a good predicting power in QSPR studies. Therefore, topological indices can be categorized into two categories useful and not so useful TI's. One of the most useful topological index is the Sombor index SO(G) which is put forward by I Gutman[4]:

$$SO(G) = \sum_{uv \in E(G)} \left[\sqrt{deg(u)^2 + deg(v)^2} \right]$$
 (1)

A set $S \subseteq V$ is a dominating set of G if each vertex in V - S is adjacent to some vertex in S. The domination number $\gamma(G)$ is the smallest cardinality of a dominating set. A dominating set is said to be minimal, if no proper subset of S is a dominating set of G. It is well known that, a maximal independent set of G is a minimal dominating set of G. An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [9]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [10]. Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [8].

In this paper, we define the Sombor domination in graphs as follow:

Let G = (V, E) be a graph. A subset $D \subseteq V$ of vertex set of G is said to be Sombor-dominating set if

- 1. for every $v \in D$ there exist $u \in V D$ such that $uv \in E(G)$.
- 2. $\sum_{uv \in D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$.

The minimum cardinality among all Sombor dominating sets in the graph G is called the Sombor-domination number $\gamma^{so}(G)$.

For example consider the following graph G on five vertices which is depicted in Figure 1.

Figure 1: A simple graph on 5-vertices

In figure 1, it can be observed that deg(a) = deg(b) = deg(c) = 2, deg(d) = 3 and deg(e) = 1. Clearly, $D = \{b, d\}$ is a dominating set and D is also a Sombor dominating set. Because $V - D = \{a, c, e\}$ here the only existing edge is $ac \in E(G)$. Therefore,

$$\begin{split} & \sum_{uv \in D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} = \sqrt{deg(b)^2 + deg(d)^2} \\ & = \sqrt{2^2 + 3^2} \\ & = 3.3166. \end{split}$$

and

$$\begin{split} & \sum_{uv \in V - D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} = \sqrt{deg(a)^2 + deg(c)^2} \\ & = \sqrt{2^2 + 2^2} \\ & = 2.828. \end{split}$$

Hence, $\sum_{uv \in D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} > \sum_{uv \in V - D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$. Therefore, D is a minimum Sombor dominating set with $\gamma^{so}(G) = 2$.

2 Results

First, we calculate the Sombor-domination number of some standard class of graphs such as complete graph K_p , cycle graph C_p , Path Graph P_p etc.

Proposition 1

? ?

1. For Complete graph
$$K_p$$
, $\gamma^{so}(K_{p_{\overline{Z}}}) = \frac{p}{2}$

2. For cycle graph
$$C_p$$
, $\gamma^{so}(C_p) = \frac{p}{2}$

3. For path graph
$$P_p$$
, $\gamma^{so}(P_p) = \frac{p}{2}$

Proof.

ISSN: 1001-4055 Vol. 45 No.1 (2024)

1. Let $G=K_{\mathbb{F}}$ be a complete graph of order $p\geq 2$. Let $D=\{v_1,v_2,v_3,\cdots,v_{\frac{p}{2}}\}$ and clearly, $V-D=\{v_1,v_2,v_3,\cdots,v_{\frac{p}{2}}\}$ $\{v_1, v_2, v_3, \dots, v_{\underline{p}}\}$. Since K_p is a (p-1) -regular graph. Therefore, it can be easily check that

$$\sum_{uv \in D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - D \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

 $\sum_{uv\in D\subseteq E(G)} \sqrt{d_G(u)^2+d_G(v)^2} \geq \sum_{uv\in V-D\subseteq E(G)} \sqrt{d_G(u)^2+d_G(v)^2}$ Hence, D is a minimal Sombor-dominating set. Therefore, $\gamma^{so}(K_p)=|D|=\frac{p}{2}$.

2. The proof follows from the same lines as in (i) due to the fact that for cycle graph C_p , 2 –regular graph.

3. Let $G = P_p$ be a path of even order. Let D be an independent dominating set of G such that D contains the every alternate vertices of P_p . Clearly, neither $\langle D \rangle$ nor $\langle V - D \rangle$ contains an edge. Now, we shall convert D into a Sombor-dominating set by by including the vertex v_{n-2} to D. Now the Sombor-dominating set F = $\{v_2, v_4, v_6, \cdots, v_{n-2}, v_{n-1}\} = |D| + 1 \text{ contains an edge } v_{n-2}v_{n-1} \in E(P_p). \text{ Hence,}$

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} > \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Proposition 2 For any k-regular graph G with at least two vertices, $\gamma^{so}(G) = \frac{p}{2}$.

Proof. Let G be a k-regular graph of order p with $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$. Let D be a dominating set with $|D| = \frac{p}{2} \text{ . Then clearly, } |D| \geq |V - D| \text{. Since, } deg(v_i) = k \text{ for } 1 \leq i \leq p \text{ therefore, it can be easily check that } \sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \geq \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Hence D is a minimal Sombor-dominating set with $\gamma^{so}(G) = \frac{p}{2}$.

Theorem 1 For any connected (p,q)-graph satisfying Sombor-dominating set, $\gamma^{so}(G) \leq \frac{p}{2}$

$$\gamma^{so}(G) \leq \frac{\rho}{2}$$

Further, the upper bound is attained if and only if G has a perfect matching with equal distribution of degrees of vertices.

Proof. Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$ and let D be a minimum Sombor-dominating set. Then clearly V - D is also a Sombor-dominating set. Hence |D| + |V - D| = p. Thus $\gamma^{so}(G) \leq min\{|D|, |D'|\} \leq \frac{p}{2}$

For equality of an upper bound, let us assume that $\gamma^{so}(G) = \frac{p}{2}$ and G does not contain a perfect matching with unequal degree distribution. Then clearly,

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} < \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

a contradiction to our assumption. Hence G must have perfect matching with equal degree distribution.

Theorem 2 Let G be a connected graph satisfying Sombor-dominating set D. If D is a minimal Sombor-dominating set, then V-D is also a Sombor-dominating set of G.

Proof. Let D be a minimal Sombor-dominating set of G. Suppose V - D is not an Sombor-dominating set. Then clearly,

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} < \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Then there exists a vertex u such that u is not dominated by any vertex in V-D. Since G, a non-trivial connected graph satisfies Sombor-dominating set, u is dominated by at least one vertex in $D - \{u\}$. Thus $D - \{u\}$ is a Sombor-dominating set with

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

ISSN: 1001-4055 Vol. 45 No.1 (2024)

a contradiction. Hence V-D is a Sombor-dominating set of a graph G.

Observation 3 For a star graph $K_{1,p-1}$; $p \ge 4$, $\gamma^{so}(K_{1,p-1}) = 2$.

Proof. Let G be a star graph $K_{1,p-1}$; $p \ge 4$ with central vertex v_1 . Then clearly dominating sets are $D_1 = \{v_1\}$ or $D_2 = \{v_2, v_3, v_4, \dots, v_p\}$. These dominating sets can be extended to the Sombor dominating sets as follows:

- $D_1 = \{v_1, v_2\}$
- $D_2 = \{v_1, v_3\}$
- $D_3 = \{v_1, v_4\}$

and so on $D_n = \{v_1, v_{n-1}\}$. Then clearly, $\langle V - D_i \rangle$ contains no edges. Hence, all these are minimal Sombor-dominating sets. Hence, $\gamma^{so}(K_{1,p-1}) = 2$.

Theorem 4 For any connected graph G with maximum degree $\Delta(G) \leq \frac{p}{2}$,

$$\gamma^{so}(G) \leq p - \Delta(G)$$

Proof. Let G be any connected graph of order p with maximum degree $\Delta(G) \leq \frac{p}{2}$. Let v be a vertex of maximum degree $\Delta(G)$ such that $\deg(v) \leq \frac{p}{2}$. Then v is adjacent to its neighborhood vertices such that $\Delta(G) = N(v)$ and

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Hence V - N(v) is Sombor-dominating set. Therefore

$$\gamma^{so}(G) \le |V - N(V)|$$

$$= p - \Delta(G).$$

Theorem 5 Let $G = H \circ K_1$ where H is any connected graph of even order. Then $\gamma^{so}(G) = \frac{p}{s}$.

Proof. Consider the corona operation between the connected graph H of even order and K_1 . Let V(H) = $\{v_1,v_2,v_3,\cdots,v_{\frac{p}{2}}\}$ and consider $\frac{p}{2}$ copies of K_1 . Then clearly degree of each vertex $v\in V(H)$ is $\deg_G(v)=$ $deg_{H}(v) + 1$ and G has $\frac{p}{2}$ pendant vertices. Let D be a minimum Sombor-dominating set of G with $\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$

$$\sum_{uv \in F \subseteq E(G)}^{2} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Such that D contains exactly half of the vertices of H together with their pendant vertices. i.e D = $\{v_1, v_2, v_3, \dots, v_{\underline{p}}\} \cup \frac{p}{4}$ copies of pendant vertices. Since the order of G is even therefore, V - D also contains same number of vertices with same degree pattern. Hence clearly

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Thus D satisfies the conditions of Sombor-dominating set. Therefore, we have

$$\begin{split} & \gamma^{so}(G) = |D| \\ & = |\{v_1, v_2, v_3, \cdots, v_{\frac{p}{4}}\} \cup \frac{p}{4}| \\ & = \frac{p}{4} + \frac{p}{4} \\ & = \frac{p}{2}. \end{split}$$

Theorem 3 A dominating set D of a graph G is minimal FD-set if and only if it satisfies the following conditions,

- 1. $PN(v, D) \neq \emptyset$ for every $v \in D$
- 2. $\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$.

Proof. Let D be a minimal Sombor-dominating set. Then every vertex $v \in D$, $D - \{v\}$ not a Sombor-dominating set, there exists a vertex $u \in V - (D - \{v\})$. Therefore $u \in PN(v, D)$. Hence for every vertex $v \in D$ has at least one neighbor. Thus $PN(v, D) \neq \emptyset$. Also,

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

ISSN: 1001-4055 Vol. 45 No.1 (2024)

Conversely, suppose $PN(v, D) \neq \emptyset$ and

$$\textstyle \sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \geq \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Now we have to prove that D is a minimal Sombor-dominating set. Assume D is not a minimal Sombor-dominating set which implies that there exists a vertex $v \in D$ such that $D - \{v\}$ a dominating set. Then vis adjacent to at least one vertex in $D - \{v\}$ and also every vertex in V - D is adjacent to at least one in $D - \{v\}$. Therefore, neither (i) nor (ii) holds, which is a contradiction.

Theorem 4 Let G be any connected graph having minimum Sombor-dominating set D. Then G is a minimal Sombor-dominating set.

Proof. Let D be any Sombor-dominating set. If for each vertex $v \in D$, then there exist

$$\sum_{uv \in F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2} \ge \sum_{uv \in V - F \subseteq E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

such that $uv \in E(G)$. Hence D is a minimal Sombor-dominating set.

Theorem 6 Let G be a simple connected graph with p vertices and q edges with $\gamma^{so}(G) = k$ for some positive integer k. Then

$$\gamma^{so}(G) \ge \frac{2kp}{\sqrt{pM_1(G)}},$$

where $M_1(G)$ is the first Zagreb index.

Proof. Let $v_1, v_2, v_3, \cdots, v_p$ be the vertices of a simple graph G. Let $a_1, a_2, a_3, \cdots, a_n$ and $b_1, b_2, b_3, \cdots, b_n$ be non-negative integers. Then by Cauchy-Schrwz inequality we have

$$(\sum_{i=1}^{p} a_i b_i)^2 \le (\sum_{i=1}^{p} a_i^2) \cdot (\sum_{i=1}^{p} b_i^2)$$
 (2)

 $(\sum_{i=1}^p a_i b_i)^2 \le (\sum_{i=1}^p a_i^2) \cdot (\sum_{i=1}^p b_i^2)$ by setting $a_i = deg(v_i)$ and $b_i = \gamma^{so} = k$ we have

$$\begin{aligned} & (\sum_{i=1}^{p} deg(v_{i}) \cdot \gamma^{so})^{2} \leq (\sum_{i=1}^{p} deg(v_{i})^{2}) \cdot (\sum_{i=1}^{p} \gamma^{so^{2}}) \\ & k^{2} (\sum_{i=1}^{p} deg(v_{i}))^{2} \leq M_{1}(G)(p\gamma^{so^{2}}) \\ & p\gamma^{so^{2}} \geq \frac{k^{2}(2p)^{2}}{M_{1}(G)} \\ & \gamma^{so^{2}}(G) \geq \frac{k^{2}(2p)^{2}}{pM_{1}(G)} \\ & \gamma^{so}(G) \geq \frac{2kp}{\sqrt{pM_{1}(G)}} \end{aligned}$$

as asserted.

We get the similar bound by applying the following inequalities:

Lemma 1 Let
$$a_1, a_2, a_3, \dots, a_n$$
 and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then
$$\sum_{i=1}^n a_i^r \ge n^{1-r} (\sum_{i=1}^n b_i)^r \tag{3}$$

Lemma 2 Let
$$a_1, a_2, a_3, \dots, a_n$$
 and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then
$$\sum_{i=1}^{n} \frac{a_i^{r+1}}{b_i^r} \ge \frac{(\sum_{i=1}^{n} a_i)^{r+1}}{(\sum_{i=1}^{n} b_i)^r}$$
(4)

Lemma 3 Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then

$$(\sum_{i=1}^{n} b_i)^{\alpha-1} (\sum_{i=1}^{n} b_i a_i^{\alpha}) \ge (\sum_{i=1}^{n} a_i b_i)^{\alpha}$$
(5)

Theorem 7 Let G be a simple connected graph with p vertices and q edges with $\gamma^{so}(G) = k$ for some positive integer k. Then

ISSN: 1001-4055 Vol. 45 No.1 (2024)

Proof Let n_1, n_2, \dots, n_r be the vertices of a simple graph G. Let g_1, g_2, \dots, g_r and h_1, h_2, \dots, h_r be

Proof. Let $v_1, v_2, v_3, \cdots, v_p$ be the vertices of a simple graph G. Let $a_1, a_2, a_3, \cdots, a_n$ and $b_1, b_2, b_3, \cdots, b_n$ be non-negative integers for which there exist real constants a, b, A and B, so that for each $i, i = 1, 2, \cdots, n, a \le a_i \le A$ and $b \le b_i \le B$. Then the following inequality is valid

We choose
$$a_i = deg_w(v_i)b_i = \gamma^{so} = k$$
, $A = \Delta = B$ and $a = \delta = b$, inequality (2.5), becomes
$$p\sum_{i=1}^p deg(v_i) \cdot \gamma^{so} - (\sum_{i=1}^p deg(v_i) \cdot \gamma^{so}) \leq \alpha(n)(\Delta - \delta)(\Delta - \delta)$$
$$p\gamma^{so}(2p) - \gamma^{so}(2p) \leq \alpha(n)(\Delta - \delta)^2$$
$$\gamma^{so} \leq \frac{\alpha(n)(\Delta - \delta)^2}{2p(p-1)}$$

Theorem 8 Let G be a simple connected graph with p vertices and q edges with $\gamma^{so}(G) = k$ for some positive integer k. Then

$$\gamma^{so}(G) \leq \sqrt{\frac{(\delta+\Delta)(2p)-M_1(G)}{\delta\Delta}}.$$

Proof. Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n be real numbers for which there exist real constants r and R so that for each $i, i = 1, 2, \dots, n$ holds $ra_i \le b_i \le Ra_i$. Then the following inequality is valid.

We choose
$$b_i = deg(v_i)$$
, $a_i = \gamma^{so} = k$, $r = \delta$ and $R = \Delta$ in inequality (2.6), then
$$\sum_{i=1}^p deg(v_i), \ a_i = \gamma^{so} = k, \ r = \delta \text{ and } R = \Delta \text{ in inequality } (2.6), \text{ then }$$

$$\sum_{i=1}^p deg(v_i)^2 + \delta \Delta \sum_{i=1}^p \gamma_{fz}^2 \le (\delta + \Delta) \sum_{i=1}^p deg(v_i)$$

$$M_1(G) + \delta \Delta p \gamma_{fz}^2 \le (\delta + \Delta) (2p)$$

$$\delta \Delta p \gamma_{fz}^2 \le (\delta + \Delta) (2p) - M_1(G)$$

$$\gamma_{fz}^2(G) \le \frac{(\delta + \Delta)(2p) - M_1(G)}{\delta \Delta}$$

$$\gamma^{so}(G) \le \sqrt{\frac{(\delta + \Delta)(2p) - M_1(G)}{\delta \Delta}}$$

as desired.

3 Applicability of the γ^{so} in QSPR-Analysis

In this section we examine the applicability of the γ^{so} with the set of 67 alkanes. For this, we consider the physical properties like [boiling points(BP), molar volumes(mv)at 20°C, molar refractions (mr) at 20°C, heats of vaporization (hv) at 25°C, surface tensions(st) 20°C, melting points(mp), acentric factor(AcentFac) and DHVAP] of octane isomers. The values are compiled in Table 1.

ISSN: 1001-4055 Vol. 45 No.1 (2024)

$mp(^{\circ}C)$	-138.35	-159.60	-129.72	-159.90	-16.55	-95.35	-153.67	-118.00	-99.87	-128.54	-90.61	-118.28	-119.40	-118.60	-123.81	-119.10	-119.24	-134.46	-56.79	-109.04	-120.50	-120.95
st(dyne/cm) 1			16.00	15.00		18.42	17.38	18.12	16.30	17.37	20.26	19.29	19.79	20.44	18.02	19.96	18.15	19.59	21.76	20.60	21.17	21.00
cp(atm)	37.47	36	33.31	32.9	31.57	29.92	29.92	30.83	30.67	30.99	27.01	27.2	28.1	28.6	28.4	29.2	27.4	30	24.64	24.8	25.6	25.6
$ct(^{\circ}C)$	152.01	134.98	196.62	187.70	160.60	234.70	224.90	231.20	216.20	227.10	267.55	257.90	262.40	267.60	247.70	264.60	247.10	263.00	296.20	288.00	292.00	290.00
hv(kJ)			26.42	24.59	21.78	31.55	29.86	30.27	27.69	29.12	36.55	34.80	35.08	35.22	32.43	34.24	32.88	33.02	41.48	39.68	39.83	39.67
$mr(cm^3)$			25.2656	25.2923	25.7243	29.9066	29.9459	29.8016	29.9347	29.8104	34.5504	34.5908	34.4597	34.2827	34.6166	34.3237	34.6192	34.3323	39.1922	39.2316	39.1001	39.1174
$mv(cm^3)$			115.205	116.426	112.074	130.688	131.933	129.717	132.744	130.240	146.540	147.656	145.821	143.517	148.695	144.153	148.949	144.530	162.592	163.663	161.832	162.105
$pb(^{\circ}C)$	-0.500	-11.730	36.074	27.852	9.503	68.740	60.271	63.282	49.741	57.988	98.427	90.052	91.850	93.475	79.197	89.784	80.500	86.064	125.665	117.647	118.925	117.709
Alkane	Butane	2-methyl propane	Pentane	2-methyl butane	2,2 dimethylpropane	Hexane	2-methylpentane	3-methyalpentane	2,2-methylbutane	2,3-dimethylbutane	Heptanes	2-methylhexane	3-methylhexane	3-ethylpentane	2,2-dimethylpentane	2,3-dimethylpentane	2,4-dimethylpentane	3,3-dimethylpentane	Octane	2-methylheptane	3-methylheptane	4-methylheptane
S.No.	Н	2	က	4	22	9	7	_∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22

n) mp(°C)		-121.18		-137.50	-91.20	-126.10		-114.96	-90.87	-112.27	-107.38	-100.70	-109.21	-53.52	-80.40	-107.64	-113.20	-114.90		-113.00	-116.00			-102.90
st(dyne/cm)	21.51	19.60	20.99	20.02	19.73	20.63	21.64	21.52	21.99	20.67	18.77	21.56	21.14	22.92	21.88	22.34	22.34	22.81	22.81	20.80	22.34	23.30	21.30	20.83
cp(atm)	25.74	25.6	26.6	25.8	25	27.2	27.4	27.4	28.9	28.2	25.5	53	27.6	22.74	23.6	23.7	23.06	23.98	23.98	22.8	23.79	22.7	22.7	23.7
$^{\mathrm{ct}}(^{\circ}C)$	292.00	279.00	293.00	282.00	279.00	290.84	298.00	295.00	305.00	294.00	271.15	303.00	295.00	322.00	315.00	318.00	318.30	318.00	318.30	302.00	315.00	306.00	307.80	306.00
hv(kJ)	39.40	37.29	38.79	37.76	37.86	37.93	39.05	38.52	37.99	36.91	35.13	37.22	37.61	46.44	44.65	44.75	44.75	44.81	44.81	42.28	43.79	42.87	43.87	42.82
$mr(cm^3)$	38.94	39.25	38.98	39.13	39.25	39.00	38.84	38.83	38.71	38.92	39.26	38.76	38.86	43.84	43.87	43.72	43.76	43.64	43.49	43.91	43.63	43.73	43.84	43.92
$mv(cm^3)$	160.07	164.28	160.39	163.09	164.69	160.87	158.81	158.79	157.02	159.52	165.08	157.29	158.85	178.71	179.77	177.95	178.15	176.41	175.68	180.50	176.65	179.12	179.37	180.91
$pb(^{\circ}C)$	118.53	10.84	115.607	109.42	109.10	111.96	117.72	115.65	118.25	109.84	99.23	114.76	113.46	150.79	143.26	144.18	142.48	143.00	141.20	132.69	140.50	133.50	136.00	135.21
Alkane	3-ethylhexane	2,2-dimethylhexane	2,3-dimethylhexane	2,4-dimethylhexane	2,5-dimethylhexane	3,3-dimethylhexane	3,4-dimethylhexane	3-ethyl-2-methylpentane	3-ethyl-3-methylpentane	2,2,3-trimethylpentane	2,2,4-trimethylpentane	2,3,3-trimethylpentane	2,3,4-trimethylpentane	Nonane	2-methyloctane	3-methyloctane	4-methyloctane	3-ethylheptane	4-ethylheptane	2,2-dimethylheptane	2,3-dimethylheptane	2,4-dimethylheptane	2,5-dimethylheptane	2,6- dimethylheptane
S.No.	23	24	22	56	22	28	53	30	31	32	33	34	32	36	37	38	33	40	41	42	43	44	45	46

$\operatorname{st}(\operatorname{dyne/cm}) \mid \operatorname{mp}(^{\circ}C) \mid$	22.01	22.80	21.77	22.01	22.80	21.77	00 00	23.22	20.51 -120.00												
-																					
cp(atm)	24.19	24.77	23.59	24.18	24.77	25.56	25.66		23.39	23.39	23.39	23.39 22.41 25.56 25.46	23.39 22.41 25.56 25.46 23.49	23.39 22.41 25.56 25.46 23.49 26.45	23.39 22.41 25.56 25.46 25.46 23.49 26.45 26.45	23.39 22.41 25.56 25.46 23.49 26.45 26.94 26.94	23.39 22.41 25.56 25.46 23.49 26.94 26.94 26.94 26.94	23.39 22.41 25.56 25.46 23.49 26.94 26.94 26.94 26.94 26.94 26.94	23.39 22.41 25.56 25.46 23.49 26.34	23.39 22.41 22.41 25.46 25.46 26.94 26.94 26.94 26.94 26.94 25.96 26 26 26 26 26 26 26 26 26 26 26 26 26	23.39 22.41 22.41 25.56 25.46 26.94
$ct({}^{\circ}C)$	314.00	322.70	312.30	317.80	322.70	330.30	327.20		301.00	301.00	301.00 296.60 326.10	301.00 296.60 326.10 324.20	301.00 296.60 326.10 324.20 309.40	301.00 296.60 326.10 324.20 309.40 330.60	301.00 296.60 326.10 324.20 309.40 330.60 342.80	301.00 296.60 324.20 309.40 330.60 342.80 322.60	301.00 296.60 326.10 324.20 309.40 330.60 342.80 322.60 338.60	301.00 296.60 326.10 324.20 309.40 330.60 342.80 332.60 338.60	301.00 296.60 326.10 324.20 309.40 330.60 342.80 324.20 334.20	301.00 296.60 326.10 326.10 330.40 330.60 342.80 322.60 334.50 334.50	301.00 296.60 326.10 326.10 309.40 330.60 342.80 332.60 334.50 319.60 301.60
$hv(kJ) \mid ct(^{\circ}C)$	42.66	43.84	42.98	42.66	43.84	42.98	44.04		40.57	40.57	40.57	40.57 40.17 42.23 42.93	40.57 40.17 42.23 42.93 41.42	40.57 40.17 42.23 42.93 41.42 42.28	40.17 42.23 42.93 41.42 42.28 43.36	40.57 40.17 42.23 42.93 41.42 42.28 43.36 42.02	40.17 42.23 42.23 42.28 42.28 43.36 42.02 42.02	40.17 40.17 42.23 42.93 41.42 42.28 43.36 42.02 42.02 42.03	40.17 40.17 42.23 42.93 41.42 42.28 43.36 42.02 42.02 42.55 42.55 42.53	40.57 40.17 42.23 42.28 42.28 42.02 42.02 42.02 42.03 42.03 42.55 42.53 42.53 42.93 41.00	40.17 40.17 42.23 42.93 41.42 42.02 42.02 42.05 42.05 42.03 41.00 41.00 38.10
$mr(cm^3)$	43.6870	43.5473	43.6379	43.6022	43.6550	43.6472	43.2680		43.7638	43.7638	43.7638 43.9356 43.4347	43.7638 43.9356 43.4347 43.4917	43.7638 43.9356 43.4347 43.4917 43.6474	43.9356 43.9356 43.4347 43.4917 43.6474 43.3407	43.7638 43.9356 43.4347 43.4917 43.6474 43.3407	43.7638 43.9356 43.4347 43.6474 43.3407 43.1134 43.1134	43.7638 43.9356 43.4347 43.4917 43.6474 43.3407 43.1134 43.4571 42.9542	43.7638 43.9356 43.4347 43.4917 43.6474 43.3407 43.31134 43.4571 42.9542	43.7638 43.9356 43.4347 43.4917 43.6474 43.3407 43.1134 42.9542 43.4037 43.2147	43.7638 43.9356 43.4347 43.4917 43.3407 43.1134 43.4571 42.9542 43.4571 43.4571 43.4571	43.7638 43.9356 43.4347 43.4917 43.6474 43.3407 43.4134 42.9542 43.4037 43.2147 43.4359
$mv(cm^3)$	176.897	175.349	177.386	176.897	175.445	177.386	173.077		179.220	179.220 181.346	179.220 181.346 173.780	179.220 181.346 173.780 173.498	179.220 181.346 173.780 173.498 177.656	179.220 181.346 173.780 173.498 177.656 177.055	179.220 181.346 173.780 173.498 177.656 172.055	179.220 181.346 173.780 173.498 177.656 177.055 170.185	179.220 181.346 173.780 177.656 177.055 170.185 174.537	179.220 181.346 173.780 173.498 177.656 172.055 170.185 174.537 170.093	179.220 181.346 173.780 173.498 177.656 172.055 170.185 174.537 170.093 173.804	179.220 181.346 173.780 177.656 177.656 177.055 170.093 173.804 169.495	179.220 181.346 173.780 173.498 177.656 172.055 170.185 174.537 170.093 173.804 169.495 173.557
$pb({}^{\circ}C)$	137.300	140.600	136.000	135.200	138.000	133.800	140.600	01 4 00 1	126.540	126.540	126.540 124.084 137.680	126.540 124.084 137.680 139.000	126.540 124.084 137.680 139.000 131.340	126.540 124.084 137.680 139.000 131.340 140.460	126.540 124.084 137.680 139.000 131.340 140.460	126.540 124.084 137.680 139.000 131.340 140.460 146.168	126.540 124.084 137.680 139.000 131.340 140.460 146.168 133.830 142.000	126.540 124.084 137.680 139.000 131.340 140.460 146.168 133.830 142.000	126.540 124.084 137.680 139.000 131.340 140.460 146.168 133.830 142.000 142.000 136.730	126.540 124.084 137.680 139.000 131.340 140.460 146.168 133.830 142.000 142.000 142.000 133.016	126.540 124.084 137.680 139.000 131.340 140.460 146.168 133.830 142.000 136.730 140.274 133.016
Alkane	3,3- dimethylheptane	3,4 dimethylheptane	3,5- dimethylheptane	4,4 dimethylheptane	3-ethyl-2-methylhexane	4-ethyl-2-methylhexane	3-ethyl-3-methylhexane		2,2,4- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylhexane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane 3,3-diethylpentane 2,2-dimethyl-3-ethylpentane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylpentane 2,2-dimethyl-3-ethylpentane 2,2-dimethyl-3-ethylpentane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,4- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylhexane 2,3-dimethyl-3-ethylpentane 2,3-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane	2,2,4- trimethylhexane 2,3,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 2,3,5- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylhexane 2,2-dimethyl-3-ethylpentane 2,3-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane	2,2,4- trimethylhexane 2,2,3- trimethylhexane 2,3,4- trimethylhexane 2,3,5- trimethylhexane 2,3,4- trimethylhexane 3,3,4- trimethylhexane 3,3-diethylpentane 2,2-dimethyl-3-ethylpentane 2,3-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane 2,2,3,3-tetramethylpentane 2,2,3,4- tetramethylpentane	2,2,4- trimethylhexane 2,2,5- trimethylhexane 2,3,4- trimethylhexane 2,3,4- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylhexane 3,3,4- trimethylhexane 2,2-dimethyl-3-ethylpentane 2,3-dimethyl-3-ethylpentane 2,4-dimethyl-3-ethylpentane 2,2,3,4- tetramethylpentane 2,2,3,4- tetramethylpentane 2,2,3,4- tetramethylpentane
S.No.	47	48	49	20	51	52	53	27	-	55	55	55 56 57	55 55 55 55 55 55 55 55 55 55 55 55 55	55 55 55 55 55 55 55 55 55 55 55 55 55	55 55 56 56 60 60 60 60 60 60 60 60 60 60 60 60 60						

1. Linear Model

$bp = 0.321 + [\gamma^{so}(G)]3.1$	(8)
$mv = 18.7 + [\gamma^{so}(G)]2.8$	(9)
$mr = 38.5 + [\gamma^{so}(G)]1.2$	(10)
$hv = 48.9 + [\gamma^{so}(G)]3.8$	(11)
$ct = 87.8 + [\gamma^{so}(G)]4.2$	(12)
$cp = 56.3 - [\gamma^{so}(G)]2.9$	(13)
$st = 29.6 + [\gamma^{so}(G)]3.1$	(14)
$mp = -137.7 + [\gamma^{so}(G)]2.7$	(15)

2. Quadratic Model

$$\begin{array}{lll} bp &= 6.7[\gamma^{so}(G)]^2 - 0.4[\gamma^{so}(G)] - 54.8 & (16) \\ mv &= 6.8[\gamma^{so}(G)]^2 - 0.32[\gamma^{so}(G)] + 53.4 & (17) \\ mr &= 5.3[\gamma^{so}(G)]^2 - 0.17[\gamma^{so}(G)] + 44.3 & (18) \\ hv &= 6.5[\gamma^{so}(G)]^2 - 0.72[\gamma^{so}(G)] + 46.4 & (19) \\ ct &= 12.3[\gamma^{so}(G)]^2 - 0.12[\gamma^{so}(G)] + 73.7 & (20) \\ cp &= -4.1[\gamma^{so}(G)]^2 + 0.6[\gamma^{so}(G)] + 59.3 & (21) \\ st &= 4.5[\gamma^{so}(G)]^2 - 0.57[\gamma^{so}(G)] + 42.2 & (22) \\ mp &= 6.8[\gamma^{so}(G)]^2 - 0.79[\gamma^{so}(G)] - 144.8 & (23) \end{array}$$

3. Logarithmic Model

$$\begin{array}{lll} bp = -121.4 + \ln[\gamma^{so}(G)]53.5 & (24) \\ mv = 33.4 + \ln[\gamma^{so}(G)]38.3 & (25) \\ mr = 0.7 + \ln[\gamma^{so}(G)]26.8 & (26) \\ hv = 36.9 + \ln[\gamma^{so}(G)]0.9 & (27) \\ ct = -49.5 + \ln[\gamma^{so}(G)]127.6 & (28) \\ cp = 42.7 - \ln[\gamma^{so}(G)]9.6 & (29) \\ st = 11.4 + \ln[\gamma^{so}(G)]8.3 & (30) \\ mp = -137.9 + \ln[\gamma^{so}(G)]36.9 & (31) \end{array}$$

Table 2: Model summary for the boiling point of alkanes and weighted $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.91	110.5	0.000
Logarithmic	0.88	97.8	0.000
Quadratic	0.93	115.6	0.000

The above Table 2 revealed that the prediction power of the $\gamma^{so}(G)$ is good in predicting the boiling points as the correlation coefficient value r = 0.93 for quadratic model. i.e. our result show 93.0% of accuracy in predicting the boiling points of alkanes.

Table 3: Model summary for the critical pressure of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.84	67.8	0.000
Logarithmic	0.70	22.8	0.000
Quadratic	0.85	60.3	0.000

The above Table 3 shows that the prediction power of the $\gamma^{so}(G)$ is good in predicting the critical pressure of

Vol. 45 No.1 (2024)

alkanes as the correlation coefficient value r = 0.85 for quadratic model. i.e. our result show 85.0% of accuracy in predicting the critical pressure of alkanes.

Table 4: Model summary for the critical temperature of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.039	0.62	0.671
Logarithmic	0.172	2.12	0.153
Quadratic	0.57	47.3	0.000

The above Table 4 revealed that the prediction power of the weighted first Zagreb index is good in predicting the critical temperature of alkanes as the correlation coefficient value r = 0.57 for quadratic model. i.e. our result show 57% of accuracy in predicting the critical temperature of alkanes.

Table 5: Model summary for the heats of vaporization of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.89	67.8	0.000
Logarithmic	0.88	66.9	0.000
Quadratic	0.91	76.3	0.000

The above Table 5 shows that the prediction power of the $\gamma^{so}(G)$ is good in predicting the heats of vaporization of alkanes as the correlation coefficient value r=0.91 for quadratic model. i.e. our result show 91.0% of accuracy in predicting the heats of vaporization of alkanes.

Table 6: Model summary for the melting point of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.82	68.4	0.000
Logarithmic	0.613	56.7	0.000
Quadratic	0.631	58.1	0.000

The above Table 6 shows that the prediction power of the $\gamma^{so}(G)$ is not so good in predicting the melting point of alkanes as the correlation coefficient values for all models are less than 0.9.

Table 7: Model summary for the molar refraction of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.32	27.3	0.004
Logarithmic	0.38	33.7	0.001
Quadratic	0.27	25.8	0.003

The above Table 7 shows that the prediction power of the $\gamma^{so}(G)$ is not so good in predicting the molar refraction of alkanes as the correlation coefficient value for all models is less than 0.7.

Table 8: Model summary for the molar volume of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.82	54.2	0.000

ISSN: 1001-4055 Vol. 45 No.1 (2024)

Logarithmic	0.63	28.7	0.000
Quadratic	0.86	61.5	0.000

The above Table 8 revealed that the prediction power of the $\gamma^{so}(G)$ is good in predicting molar volume of alkanes as the correlation coefficient value r=0.86 for quadratic model. i.e. our result show 86.0% of accuracy in predicting the molar volume of alkanes.

Table 9: Model summary for the surface tension of alkanes and $\gamma^{so}(G)$

Equation	R^2	F	Sig
Linear	0.21	0.43	0.42
Logarithmic	0.11	0.276	0.9
Quadratic	0.28	0.49	0.48

The above Table 9 shows that the prediction power of the $\gamma^{so}(G)$ is not so good in predicting the surface tension of alkanes as the correlation coefficient value for all models is less than 0.7.

References

- [1] M. S. Ahemad, W. Nazeer, S. M. Kang, M. Imran, W. Gao, *Calculating degree-based topological indices of dominating David derived networks*, Open phys. 15, 1015-1021 (2017).
- [2] W Gao, M. K. Jamil, A. Javed, M. R. Farahani, M. Imran, *Inverse Sum Indeg Index of the Line Graphs of Subdivision Graphs of Some Chemical Structures*, U.P.B. Sci. Bull., Series B, Vol. 80(3), 97–104 (2018).
- [3] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. Po'lya–G.Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963) 415–418.
- [4] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
- [5] I. Gutman, K. C. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem., **50** (2004), 83–92.
- [6] I. Gutman, N. Trinajstic', Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
- [7] F. Harary, Graph Theory, Addison-Wesley, Reading Mass (1969).
- [8] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning (eds.,), Topics in Domination in Graphs. Springer International Publishing AG, 2020.
- [9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York (1998).
- [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs (Advanced Topics), Marcel Dekker, New York (1998).
- [11] I. Ž. Milovanovc', E. I. Milovanovc', A. Zakic', A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72(2014)179–182.
- [12] Mitrnovic' D. S., Pečaric' J. E, Fink A. M., Classical and new inequalities in analysis, Springer, Dordrecht

ISSN: 1001-4055 Vol. 45 No.1 (2024)

(1993).

- [13] Mitrnovic' D. S, Vasic' P. M, Analytical inequalities, Springer-Berlin, (1970).
- [14] V. Nikiforov, G. Pasten, O. Rojo and R. L. Soto, On the A_{α} –spectra of trees, Linear Algebra Appl. 520 (2017) 286–305.
- [15] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ. 5(1968), 199;203, in Japanese.
- [16] D. Plavsic', S. Nikolic', N. Trinajstic', On the Harary index for the characterization of chemical graphs, J. Math. Chem 12(1993) 235–250.
- [17] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, Theory of Functions, Springer, Berlin, 1972.