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Abstract-An evolving mathematical model is presented in this study to fully explain the complex dynamics of
tumor population increase under radiation. In order to document the interplay between normal cells, cancer
cells, and radiotherapy-impacted cells, the research makes use of a system of ODEs. Separate parts of the model
for each population— H(t) for healthy cells, T(t) for tumor cells, and R(t) for cells impacted by radiation—
allow for in-depth investigation of the changing dynamics as time progresses. Radiation therapy's effect on
tumor growth can be modelled and studied using the complex system of differential equations controlling the
dynamics of tumor, healthy, and treated cell populations. This method helps us better understand the intricate
relationship between the tumor microenvironment and radiation, which in turn helps us improve our treatment
plans. The results of this mathematical model show potential for improving our knowledge of how tumor
population dynamics are altered by radiation therapy. In the long run, oncology could benefit from the
application of such mathematical methods to cancer research, which could lead to better, more tailored treatment
options.

Keywords:Tumor growth modeling, Population dynamics, Radiotherapy effects, Treatment response modeling,
Tumor-immune interactions

1. Introduction: Cancer is still a major problem in world health, and finding new ways to treat cancer that are
both effective and gentle on healthy cells is essential. Radiotherapy, which uses ionizing radiation to destroy
cancer cells, is a cornerstone of the cancer treatment arsenal. Optimizing treatment outcomes and developing the
profession of oncology hinge on comprehending the complex dynamics of tumor population expansion in
response to radiotherapy.Mathematical modeling has recently grown in importance as a means of understanding
the intricacies of cancer development and response to treatment. The goal of this research is to provide a
methodical way to understand the tumor microenvironment by including radiation into mathematical models.
This study aims to quantitatively characterize the population dynamics of healthy cells, tumor cells, and
radiotherapy-affected cells over time by applying a mathematical framework based on ordinary differential
equations (ODEs).The need for a more complex understanding of the dynamic interactions that occur during
radiotherapy is the driving force behind using a mathematical approach. The development of effective treatment
solutions is impeded by traditional models' tendency to oversimplify these complex processes. To fill this need,
this study introduces a dynamic mathematical model that can mimic the complex radiation reactions of tumor
populations.Our basic understanding of the underlying dynamics is enhanced and new treatment scenarios can
be explored by the introduction of radiotherapy into mathematical models. The goal of this research is to help
design more focused and effective treatments by modeling the impact of radiation on tumor population
dynamics.
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Powathil et al. (2013) examined radiation therapy's myriad side effects using a multiscale mathematical
model that takes into account both the behavior of individual cells during the cell cycle and the impact of a
dynamic microenvironment. Since hypoxic cells are less radiosensitive, their oxygenation state is thought of as a
significant prognostic indicator when deciding on radiation treatment. Radiation sensitivity is also greatly
impacted by cell-cycle regulation.

Instead of looking at cancer through the conventional lens of faulty genes leading to unchecked cell
proliferation, Oxford scientist Eric Werner has come up with a notion of defective developmental regulatory
networks. A mathematical model representing the behavior described by this new paradigm of cancer growth
was suggested by Manley (2014) after examining one such control network.If we want to know how radiation
affects cancer cells, healthy cells, and immune-cell-triggered cells, we can look to a three-part mathematical
description of the Lotka-Volterra competition model type proposed by Isea and Lonngren (2015). To achieve
this, scientists expanded the model to incorporate cells involved in the immune response after studying it in a
setting where the only contact is between cancer and normal cells. Lastly, we take a look at radiation therapy's
consequences Via the lens of three distinct mathematical models.

Neurocrine tumor development dynamics in conjunction with radiation effects were the subject of a
clinical and numerical investigation by Nawrocki and Zubik-Kowal (2015). We compared numerical
simulations to a mathematical model of radiation treatment's effect on the growth of brain tumor cell
populations with clinical data collected from a sample of patients receiving radiation for brain cancer. In their
2017 review, Rockne and Frankel not only examine the literature on mathematical models of tumor growth and
response to radiation therapy (RT), but they also talk about how these models have been useful in clinical
practice and offer some future-looking thoughts on how these models could improve patient outcomes in well-
designed clinical trials.Using medication delivery to specific cell sites, Unni and Seshaiyer (2019) created a
novel mathematical model that incorporates critical interactions between tumor cells and immune system cells,
such as dendritic cells, cytotoxic CD8+ T cells, and natural killer cells.

Spatiotemporal dynamics of tumor volume fraction, blood volume fraction, and response to radiation
therapy were described by a family of ten mathematical models created by Hormuth Il et al. (2020) based on
biological principles. A novel model for the dynamic growth of tumors incorporating radiation was created by
Pang et al. (2021). They looked into the ways tumor radiotherapy is affected by reoxygenation of hypoxic cells
and radiosensitivity of radiotherapy.In their review of pre-clinical data and clinical trials aimed at answering
these concerns, Bekker et al. (2022) covered the immune modulatory effects of radiation and the biological
response to it. Lastly, they combed through mathematical models that had previously been published about the
effects of radiation on tumor-immune interactions. The mathematical modeling framework to explore ideas about
radiation-induced effects on bone metastases was presented by Camacho et al. (2022). They used a Komarova
model to explain how cancer cells and bone cells interact at one particular spot during bone remodeling, and
then they presented an optimal control problem for that site.Using a fractional-order mathematical model, Amilo
et al. (2023) investigated the dynamics of immunotherapy and surgical combination treatment for lung cancer.
Examining how immunotherapy and surgery influence tumor growth rate and immune response to cancer cells
is the main contribution of their work.

The parameters that indicate the birth rate of healthy cells, the intrinsic growth rate of tumor cells, the
carrying capacity for tumor cells, and the coefficients that define the influence of healthy cells on tumor cells are
some of the key components that make up the mathematical model. Furthermore, the model takes into
consideration aspects that are unique to radiotherapy, such as the efficacy of the treatment and the rate at which
cells that have been harmed by radiotherapy continue to degrade. This study adds to the growing body of work in
precision medicine by providing a quantitative basis for improving patient outcomes in the complicated terrain
of cancer treatment and further blurring the lines between mathematical modeling and clinical oncology. It also
helps to refine radiotherapy strategies.

2. Mathematical formulation of the model:
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A set of differential equations that captures the dynamics of the tumor cell population and the effects of
radiotherapy is usually used in dynamic mathematical models for tumor growth with radiotherapy treatment. A
more complex dynamic model that accounts for treated cells, tumor cells, and healthy cells is shown here:

We will indicate:

H (t):Cell population in a healthy state at position t

T(t): At the given timet, the population of tumor cells

R(t):At time t, the population of cells that have been treated (affected by radiation)

A collection of ordinary differential equations (ODES) can be used to define the dynamic model, which includes
the following:

(i) Healthy Cell Dynamics:
d
S8 = AyH — By HT 1)

In this case, A, stands for the rate of healthy cell birth and g; for the rate at which tumor cells impact healthy
cells.

(ii) Tumor Cell Dynamics:

dar T+R

L= 2,7 (1-58) = g,HT — 6T @)

The variables A7, K, B,, and & reflect the tumor cells' intrinsic growth rate, carrying capacity, effect of healthy
cells on tumor cells, and mortality rate, respectively.

(iii) Treated Cell Dynamics:

drR _ ..
e aT —yR )

In this case, y stands for the rate of cell breakdown after radiotherapy and a reflects the efficacy of the
treatment.

When compared to the prior model, these equations show more detail. Each set of equations explains a different
aspect of cell dynamics; the first two deal with normal cells, the second with tumor cells, and the third with cells
impacted by radiation.

3. Stability Analysis:The purpose of a stability analysis is to identify stable or unstable equilibrium points by
studying the system's behavior around those points. The steady states when all variables have zero rates of
change are called equilibrium points in the dynamic mathematical model of tumor growth with radiation
treatment. The behavior of the system under various conditions and parameter values can be better understood
with the help of the stability analysis. Please be informed that while this work sheds light on local stability at
equilibrium points, it does not address the need for additional investigation into global stability. To summarize,
understanding the dynamics of tumor populations affected by radiation requires an investigation of this dynamic
model's stability, which in turn yields useful information for forecasting the treatment's long-term effects.

3.1. Local Stability:To find out if a system's equilibrium points are stable or unstable, stability analysis looks at
how the system behaves around them. The equilibrium points are steady states in the dynamic mathematical
model of tumor growth with radiation treatment, when the rates of change of all variables are zero.

The equilibrium points can be represented by the symbols (H*,T*,R*). We solve the system of differential
equations by setting all of the derivatives to zero in order to locate these locations of equilibrium:

Z_0E=0%=p (4)
dt dt dt
AyH — BLHT = 0 )
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T+R

2T (1= 58) = HT — 6T = 0 (6)

aT —yR=0 @)
In the case of equation (5), we obtain

An

1
For the equation (7), aT —yR =0 = R = %T 9)
What follows from the application of equations (8) and (9) is it
_ @l
k= B1y (10)
Finding the new equation (6) by plugging in the values of T and R from (8) and (9), we obtain
T+R
ATT(l —T>—ﬁ2HT—6T =0
An Ay aly Ay Ay
SNV PR TR A NPE P T
R R 0 A
Ao _ g Mg A @ Au
= pH B1 Ar B1 ( Kp1 Kﬁﬂ’) B1
Ay aly
= pB,H=2 (1————)—
k- ! KB, KBy
H J_T(l_l_ﬂ_&)_ﬁ
B KBy KBiy/ B
Hzl_T_i_M_M (11)

B2 B2 KP1B2  KPB1Pay

g =2t _ 8 _ Ardm _ aduir (12)
B2 B2 KBiB2  KPi1Bay

Y

T =2 (13)

R = 6;/1_1; (14)
1

The Jacobian matrix yields insights into the local dynamics of a dynamical system in the vicinity of its
equilibrium points. The given equations are represented by the system (1)-(3):

The Jacobian matrix J is defined as the matrix of partial derivatives of the right-hand sides with respect to the
variables H, TandR.

fi=AyH— BHT =0 (15)
£ =/1TT(1—¥) — B,HT — 8T =0 (16)
fs=al —yR =0 an

Now, we can determine the Jacobian matrix:

o oh Ofi
0H 0T OR
0H 0T OR
O0H 0T OR
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A — BiT —p.H 0
J=| =BT A (1-EE)-pH-5 - (18)
0 a -y

We will now evaluate it at the equilibrium points by substituting the values of H,T and R into this matrix. We
will numerically investigate the local stability.

Ay = 0.02,B, = 0.01,A; = 0.05,K = 1,5, = 0.005,5 = 0.02,a = 0.1,y = 0.03

0 0.8067 0
J=1-0.01 —0.000015 —0.1 (19)
0 0.1 —0.03

H* = -80.667,T* = 2,R* = 6.667
The Eigen values of matrix J is as follows:
v; = —0.00822635 + 0.133329i,v, = —0.00822635 — 0.133329i,v; = —0.0135623 (20)
Since all Eigenvalues have negative real parts, the equilibrium is stable.

3.2. Global Stability:The following Lyapunov function is constructed to characterize the global stability at
(H*,T*, R").

We obtain by doing a differentiation of V(H, T, R)with regard to't’

H T R
V= [(H — H") — H*log ] +p; [(T —T")—T"log F] +p, [(R —R") — R*logﬁ

H*
dV_(H—H*)dH+ <T—T*)dT+ <R—R*)dR
at =\ H Jat P\t Jaa PR Jae
dv H-—-H" T-T* T+R R—R"
a=( I )[AHH—,BIHT]+p1( T )[ATT(l——K )—,BZHT—5T]+p2( R )[(XT—)/R]
v o . T +R T
= W =BT = A1) +pu(T =T a7 (1= =) = ol = 8]+ pa(R = R (a3~ )
=B = HYT = 1) (T =) 47 (1= =) = ol = 6] + (R = R) (a3 — a )
av . . T +R T + R’ )
o= B = HYT =)+ p (0 =T |27 (1= =) = Bl = r (1 = =) + Bt |
R—R* T T*
- (a o)
W _ H—-H)(T*"-T T—-T)|4 r+R_THR H*—H R —R" r.r
L= B = YT =T 4 py (T =) Ay (= = =) + ol = )| + poa R — R (1)
dV * * * * * * * T T*
o= B — H)T = T) 4 py (T =TT = T) + Ar(R = R) + By (H" = )] + poa(R = R (5~ =)
av ,
YT By(HT* — HT — H*T* + H'T) — Arpy(T? + T** — 2TT*) + Azp,(TR* — TR = T*R* + T*R)
TR*—T'R
+p1ﬂ2(HT*—HT—H*T*+H*T)+p2(1(R—R*)<T>
av * ik * 2 *2 * * * D% *
=7 = “Bu(HT* + HT + H'T* = H'T) = dgpy (T% + T** = 2TT") = Axpy (<TR* + TR + +T°R = T°R)

TR*?> — T*R*R — TRR* + T*R?
RR*

—p,By(=HT* + HT + H*T* — H'T) — p2a<
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av
YT —By[(HT + H*T*) — (HT" + H'T)] — A7p1 (T2 + T*% = 2TT*) — A;p1 [((TR4T*R*) — (TR* + T*R)]
. R TR*?> —T*R'R — TRR" + T"R?
—p1Bo[(HT + H'T*) — (HT" + H'T)] — p,«a RR*
‘;—‘Z = —B[(HT + H'T*) — (HT" + H'T)] — A¢p,(T? + T** = 2TT*) — A;p. [(TR+T*R*) — (TR* + T*R)] —

P1B.[(HT + H'T™) = (HT" + H'T)] — p,a

(TR**+T*R?)~(T*R*R+TRR")
RR*

(21)
Since Z—': < 0. Hence by Lyapunovtheorem , the system (1)-(3) is globally stable.

4. Numerical Simulation and Discussion: Within the context of numerical simulation, we select the values of
the following parameters in the following manner:

Ay =0.02,8, =0.01,4; = 0.05,K = 1,8, = 0.005,6 = 0.02,a = 0.1,y = 0.03
Initial conditions H, = 1.0,T, = 0.1,R, = 0

Graph |: Healthy Cell Bynamics
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Graph 4Tumor Growth with Radiotherapy Model
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The presence of tumor cells tends to influence healthy cells at a slower rate (8, HT), but if the birth rate
(Ay) is larger, the healthy cell population tends to rise with time (Graph 1). The number of healthy cells in the
body may fall or stay the same if their interaction with tumor cells slows their growth rate more than their birth
rate speeds it up. If the tumor's influence is strong, the existence of an equilibrium point at H = 0 implies that
healthy cells may potentially go extinct.

The graph (2) shows that when aT appears in the treated cell dynamics equation, it means that the
number of tumor cells is reduced by the effectiveness of radiation (o)), which affects the overall trajectory. A
tumor's intrinsic growth rate, which encourages cell proliferation even when outside influences are absent, is
denoted by the symbol (4;). The maximum allowable population size, denoted as carrying capacity (K), is
determined by the environment. The graph may reach a plateau as the tumor cell count gets close to this limit,
limiting growth.

The efficiency of the radiation (a) and the rate of decay (y) impact the behavior of the treated cells (R).
It can be shown from the graph (3) that treated cell populations may grow quickly if radiation () is very
effective is large, but their eventual decrease will be determined by the decay rate (y). There appears to be a
balance between the effects of radiation and the inevitable death of treated cells, as indicated by the occurrence
of equilibrium points in the treated cell population.

This system is quite sensitive to its initial settings, since different trajectories can be produced by using
different initial values for tumor cells and treated cells. Over time, the graph shows how different treatment
tactics impact the populations of tumor cells and treated cells by changing the baseline values or the efficiency
of radiation («). Gaining visual insight into the tumor population's dynamic activity, the interplay between
tumor cell development, healthy cell inhibitory actions, and radiotherapy's impact becomes apparent. The
proliferation of tumor cells and the effects of radiation on treated cell populations can be seen in the graph (4).
To fully grasp the system's behavior, one must be able to interpret the 3D graph within the context of various
parameter values and initial conditions. When applied to the study and optimization of therapeutic interventions
within the framework of tumor population dynamics, this image can help researchers and practitioners better
understand the intricate interplay between healthy cells, tumor cells, and treated cells.

5. Concluding Remarks: Finally, one potential way to improve our knowledge of cancer treatments is to
include radiation into mathematical models of tumor population dynamics. An all-encompassing framework for
modeling and assessing the complex interactions of healthy cells, tumor cells, and cells impacted by radiation
throughout time is presented in this paper by means of a dynamic mathematical model. This mathematical
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method use ordinary differential equations (ODES) to quantitatively investigate the complex dynamics within
the tumor microenvironment during radiation therapy. Coefficients representing the effect of healthy cells on
tumor cells, carrying capacities, and rates of birth and growth are all integral parts of the model. In addition, it
takes into account things unique to radiation, like the efficacy of treatment and the rate of cell destruction. The
mathematical model's promise to guide and enhance radiation treatment plans is its main claim to fame. By
simulating and analyzing tumor populations over time, researchers and doctors can better understand how
radiation affects them and find the best ways to treat them. By connecting theoretical models with clinical
applications, this research also helps advance mathematical oncology as a whole. The use of mathematical
models to personalize treatment based on patient characteristics is becoming increasingly important in precision
medicine. The results of this study could have real-world implications for creating more precise and
individualized radiation treatments. Clinicians can use the model's quantitative predictions and insights to make
better treatment regimen decisions, which could improve therapeutic outcomes and patients' well-being. The
offered mathematical approach exemplifies the possible harmony between theoretical frameworks and practical
medical applications at a time when multidisciplinary cooperation between mathematical modelers and clinical
practitioners is becoming more and more important. Incorporating radiation into models of tumor populations
has the potential to improve cancer treatment plans, speed up cancer research, and aid in the never-ending search
for better, more patient-centered cancer treatments.

6. Potential for further investigation in this area: The mathematical integration of radiation into tumor
population dynamics is an area with tremendous untapped promise for game-changing advancements in cancer
treatment plans. There is a potential solution that entails incorporating the complex dynamics of the immune
response within the tumor microenvironment into mathematical models. A more complete picture of treatment
results can be achieved by taking into account the interaction between radiation and immunological components.
By taking microenvironmental elements and spatial heterogeneity into consideration, mathematical models that
incorporate spatial dimensions can render tumor progression and radiation responses more realistically. We can
tailor mathematical models to predict therapy responses at the personalized level by adding individual variables,
such as genetic makeup and tumor heterogeneity, in the growing frontier of patient-specific modeling. The use
of mathematical models to modify radiation parameters in reaction to real-time observations is another area that
could be investigated in future studies to improve adaptive treatment procedures. Models can be improved and
the best radiation techniques selected by include molecular and cellular indicators linked to radiosensitivity and
resistance. A potential way to optimize combination therapies is to investigate the synergy between radiation
and other therapeutic modalities such targeted medicines or immunotherapy. To guarantee the accuracy and
usefulness of mathematical models in various clinical situations, validation activities utilizing large amounts of
clinical data are essential. Analyses of sensitivity and robustness can help make these models more stable and
shed light on how different parameters affect them. With the help of mathematical models, clinicians can gain
access to real-time simulations and forecasts through the creation of interactive decision support systems. This
will enable them to better plan individualized treatments. Efforts to educate students about the connections
between mathematical modeling and clinical practice might encourage teamwork across disciplines and speed
up the process of applying research results. By bringing together mathematical modeling and clinical
experience, future research in this area has the potential to enhance radiotherapy techniques, progress cancer
treatment, and, in the end, improve patient outcomes.
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