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Abstract:

The pursuit of optimized solar photovoltaic (PV) cell parameters is critical for advancing renewable energy
technologies amidst global energy security and climate change challenges. This research investigates the
efficacy of particle swarm optimization (PSO) and gray wolf optimization (GWO) in fine-tuning PV cell
behavior parameters. Leveraging evolutionary computation, the study aims to maximize energy output,
minimize costs, and enhance system reliability by optimizing material properties, structural configurations, and
operating conditions. Through iterative optimization, PSO and GWO navigate the parameter space with
precision, yielding solutions that maximize energy yield and system efficiency.

1. Introduction:

Solar photovoltaic (PV) technology stands as a beacon of hope in the quest for sustainable energy solutions,
offering a clean and abundant source of power. However, maximizing the efficiency and output of solar energy
systems remains paramount as the world grapples with energy security and climate change challenges. The
optimization of PV cell parameters represents a crucial avenue for enhancing the performance and viability of
solar PV technology. In this context, evolutionary computation techniques emerge as promising tools for fine-
tuning the intricate parameters governing PV cell behavior.This research embarks on a comprehensive
exploration of two evolutionary computation techniques, namely particle swarm optimization (PSO) and gray
wolf optimization (GWO), to optimize PV cell parameters. By leveraging the iterative prowess of evolutionary
algorithms, this study seeks to unlock the full potential of solar PV technology, maximizing energy vyield,
minimizing costs, and enhancing system reliability. The research aims to provide valuable insights into the
effectiveness of PSO and GWO in navigating the complex parameter space of PV cells, thereby contributing to
the advancement of renewable energy technologies [1].

2. Methodology:
@ Problem Formulation:

The optimization problem at hand aims to enhance the performance of a solar photovoltaic (PV) system by
effectively tuning a set of critical parameters governing its operation. These parameters encompass a wide range
of factors, including but not limited to material properties of the PV cells, structural configurations of the PV
module, and operating conditions such as irradiance levels and temperature. The overarching goal is to
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maximize the power output of the PV system while ensuring compliance with various constraints, including
voltage and current limits imposed by the system's components [2].

(b) Material Properties Optimization:

The material properties of the PV cells play a pivotal role in determining their efficiency and overall
performance. Parameters such as bandgap energy, carrier mobility, and recombination rates significantly
influence the conversion efficiency of the PV cells. Therefore, optimizing these material properties through
evolutionary computation techniques can lead to substantial improvements in the power output of the PV system

(© Structural Configurations Optimization:

The structural design of the PV module, including factors such as cell arrangement, interconnection layout, and
encapsulation materials, directly impacts its ability to capture and convert solar energy into electrical power
efficiently. By exploring different structural configurations and optimizing parameters such as cell spacing, tilt
angle, and shading patterns, the PV system's overall performance can be significantly enhanced [4].

(d) Operating Conditions Optimization:

The operating conditions under which the PV system operates, including solar irradiance levels, ambient
temperature, and atmospheric conditions, have a profound impact on its output power. Optimizing these
operating conditions, either through real-time control mechanisms or predictive algorithms, can improve the
system's resilience to varying environmental factors and maximize its energy yield under different scenarios [5].

(e) Objective Function:

The objective function of the optimization problem is formulated to maximize the power output of the solar PV
system while adhering to predefined constraints. It encompasses a holistic representation of the system'’s
performance, considering factors such as efficiency, reliability, and cost-effectiveness. Additionally, the
objective function may incorporate dynamic factors such as time-of-day variations in solar irradiance and
temperature fluctuations to ensure robustness across different operating conditions [6].

) Constraints:

The optimization problem is subject to various constraints imposed by the physical limitations of the PV system
and its components. These constraints include but are not limited to voltage and current limits of the PV cells,
thermal constraints to prevent overheating, and mechanical constraints to ensure structural integrity. Adherence
to these constraints is essential to guarantee the safe and reliable operation of the PV system while maximizing
its power output [7].

3. Evolutionary Computation Techniques:

Particle Swarm Optimization (PSO): PSO is inspired by the social behavior of bird flocking or fish schooling.
In PSO, a population of candidate solutions, termed particles, moves through the search space guided by their
own best known position and the global best position found by the entire swarm. In PSO, each particle within
the population maintains its own position and velocity vectors, representing a potential solution in the search
space. Initially, the particles are randomly distributed across the search space. As the optimization process
progresses, each particle adjusts its velocity based on two key influences: its own historical best position
(personal best) and the best position discovered by any particle in the entire swarm (global best). The movement
of each particle is governed by the interplay between exploration and exploitation. The particle updates its
velocity by considering two main factors: inertia and social influence [8]. The inertia component allows the
particle to maintain its current velocity to preserve momentum and explore the search space efficiently. The
social influence component, on the other hand, directs the particle towards promising regions of the search space
by pulling it towards the global best position discovered by the swarm. After updating its velocity, each particle
adjusts its position according to the new velocity vector. This iterative process continues for a predefined
number of iterations or until a convergence criterion is met, such as reaching a satisfactory solution or
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exhausting computational resources. Through the collective behavior of the swarm, particles dynamically
explore and exploit the search space, gradually converging towards optimal solutions. PSO's ability to balance
exploration and exploitation, coupled with its simplicity and efficiency, makes it a popular choice for optimizing
a wide range of complex problems in various domains [9].

Gray Wolf Optimization (GWO): In Gray Wolf Optimizatio the algorithm simulates the social hierarchy and
hunting dynamics observed in the natural behavior of gray wolves. In a wolf pack, there are typically three key
roles: the alpha, beta, and delta wolves. These roles correspond to the best solutions found so far during the
optimization process [10]

Alpha Wolf: The alpha wolf represents the individual with the highest fitness or best solution found in the
population. It serves as the leader of the pack, guiding the exploration of the search space towards promising
regions.

Beta Wolf: The beta wolf is the second-best solution found in the population, following closely behind the
alpha wolf. While not as dominant as the alpha, the beta wolf plays a crucial role in the optimization process,
providing additional guidance and diversity to the search.

Delta Wolf: The delta wolf represents the third-best solution found in the population. Although it may not have
the highest fitness, the delta wolf still contributes to the exploration of the search space, complementing the
efforts of the alpha and beta wolves [11].

Other wolves in the pack adjust their positions based on the collective behavior of these three key individuals,
aiming to explore the search space efficiently and converge towards optimal solutions. Each wolf updates its
position iteratively based on the positions of the alpha, beta, and delta wolves, as well as its own exploration
tendency. The position update equation for each wolf in GWO typically involves a combination of exploration
and exploitation components, influenced by the alpha, beta, and delta wolves. By balancing between following
the leaders and exploring new areas of the search space, GWO effectively navigates towards promising regions
while maintaining diversity within the population. Through the emulation of the cooperative hunting behavior
observed in gray wolf packs, GWO harnesses the collective intelligence of the population to efficiently explore
and exploit the search space. Its ability to adaptively adjust the search strategy based on the performance of the
alpha, beta, and delta wolves makes it a robust and effective optimization technique for a wide range of complex
problems [12].

4, Parameter Initialization:

In addition to defining constants such as rated power, open circuit voltage, and short circuit current based on the
specifications of the PV cell, the initialization process for Gray Wolf Optimization (GWO) involves setting
specific parameters tailored to the algorithm's requirements. These parameters include the number of wolves in
the population, maximum iterations allowed for optimization, and the scaling factor used to define the search
range. For GWO, the number of wolves in the population dictates the diversity and exploration capability of the
algorithm [13]. The maximum iterations parameter determines the duration of the optimization process, while
the search range scaling factor influences the range within which wolves explore the search space. Careful
selection and tuning of these parameters are essential to ensure the efficiency and effectiveness of the
optimization process. Figure 1 reprents GWO model in MATLAB whereas Figure 2 represents PSO model in
MATLAB.
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Figure 1: GWO model in MATLAB
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Figure 2: PSO model in MATLAB

% GWO Parameters

numWolves = 5;

maxlIterations = 100;
clear; a=2; % Alpha
clc; a_damp = 0.98; % Alpha dampening factor

¢ = 2; % Search range scaling factor
% Constants Ib =Vmp - 0.2 * Vmp; % Lower bound for search

PvRatedPower = 250; % 250W range

ub =Vmp + 0.2 * Vmp; % Upper bound for search

Voc = 36; % Open Circuit VVoltage
range

Isc = 8.75; % Short Circuit Current
Vmp = 30; % Voltage at Maximum Power Point

% Initialize wolf positions randomly within the
Imp = 8.33; % Current at Maximum Power Point search range
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wolfPositions = Ib + (ub - Ib) * rand(numWolves,
1);

% Main GWO MPPT Loop
for iter = 1:maxlterations
% Calculate fitness values

fitness = abs((Voc - wolfPositions) .* (Isc - (Isc /
Voc) * wolfPositions) - (wolfPositions - Vmp) .*

Imp);

% Find the alpha, beta, and delta wolves

A2=2*a*rl-a
C2=2*r2;
D_beta = abs(C2 * betaWolf - wolfPositions(i));

rl =rand(); r2 = rand();
A3=2%*a*rl-g;
C3=2%*r2;
D_delta = abs(C3 * deltawolf - wolfPositions(i));

new_position = (alphaWolf - Al * D_alpha) +

betawolf - A2 * D_beta) + (deltawolf - A3 *
[sortedFitness, sortedindices] = sort(fitness); ( . beta) + (

D_delta);
alphaWolf = wolfPositions(sortedIndices(1));

betaWolf = wolfPositions(sortedIndices(2)); % Update position within search range

deltawolf = wolfPositions(sortedIndices(3)); new,_position = max(min(new,_position, ub), Ih):

0 o
% Update positions for all wolves % Update position for the current wolf

fori=1:numWolves wolfPositions(i) = new_position;

rl = rand(); r2 = rand(); end

Al=2*a*rl-a;
- * .

Cl=2*r2 % Dampen alpha parameter

D_alpha = abs(C1 * alphaWolf - wolfPositions(i)); a=a*a damp;

end

rl = rand(); r2 = rand();

5. Optimization Process:

Both Particle Swarm Optimization (PSO) and Gray Wolf Optimization (GWO) are iterative optimization
algorithms that aim to fine-tune the parameters of the solar PV cell to maximize its power output. In PSO, each
particle updates its position and velocity based on its own historical best position (personal best) and the best
position found by any particle in the entire swarm (global best). By continuously adjusting their positions in the
search space, particles collectively explore and exploit promising regions to converge towards optimal solutions
[14]. Similarly, in GWO, each wolf updates its position based on the positions of the alpha, beta, and delta
wolves, as well as its own exploration tendency. By emulating the cooperative hunting behavior observed in
gray wolf packs, GWO leverages the collective intelligence of the population to efficiently explore and exploit
the search space. Throughout the optimization process, the fitness function evaluates the performance of
candidate solutions based on their power output. This function serves as a guide for both PSO and GWO,
directing them towards regions of the search space that yield higher power output. Through iterative updates and
evaluations, both algorithms progressively refine the parameters of the solar PV cell, ultimately converging
towards optimal solutions that maximize energy yield and system efficiency [15]

5535



Tuijin Jishu/Journal of Propulsion Technology
ISSN:1001-4055
\ol. 44 No. 6 (2023)

6. Results Analysis:

Following the iterative optimization process of both Particle Swarm Optimization (PSO) and Gray Wolf
Optimization (GWO), the obtained solutions are subjected to comprehensive analysis to evaluate their
effectiveness in optimizing the parameters of the solar PV cell. The optimization process is typically repeated
for a predefined number of iterations, ensuring sufficient exploration of the search space and convergence
towards optimal solutions. Once the iterations are completed, the best solutions obtained by each algorithm are
compared to assess their performance. Performance metrics such as power output, duty cycle, and convergence
behavior are carefully evaluated to gauge the effectiveness of PSO and GWO in optimizing PV cell parameters.
Figure 3 represents Results obtained through PSO model whereas Figure 4 represents Results obtained through
GWO model.

Voltage
T

Power
T T

B |

Duty cycle

Figure 3: Results obtained through PSO model

Figure 4: Results obtained through GWO model

Power output, being the primary objective of the optimization process, serves as a crucial indicator of the
algorithms' success in maximizing energy yield. Additionally, the duty cycle, representing the ratio of on-time to
total time, provides insights into the efficiency of the PV system in converting solar energy into electrical power.
Furthermore, the convergence behavior of both algorithms is examined to understand their respective
convergence rates and stability. This analysis involves studying convergence curves, which depict how the
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fitness of the best solution evolves over iterations. Comparing the convergence behavior of PSO and GWO
offers valuable insights into their efficiency and robustness in finding optimal solutions. Moreover, sensitivity
analysis may be conducted to assess the impact of varying algorithm parameters on the optimization results. By
systematically varying parameters such as population size, inertia weight (for PSO), and search range scaling
factor (for GWO), the sensitivity of the algorithms to these parameters can be investigated, providing valuable
insights for algorithm tuning and optimization strategy refinement. Through comprehensive results analysis,
including the evaluation of performance metrics, convergence behavior, and sensitivity analysis, the
effectiveness and applicability of PSO and GWO in optimizing PV cell parameters are rigorously assessed.
These insights contribute to a deeper understanding of the capabilities and limitations of each algorithm, guiding
future research and practical applications in the field of renewable energy optimization.

7. Comparative Analysis:

A comparative analysis between Particle Swarm Optimization (PSO) and Gray Wolf Optimization (GWO) is
crucial to understanding their relative strengths and limitations in optimizing PV cell parameters. This analysis
delves into several key factors, including convergence speed, solution quality, and robustness, to provide
comprehensive insights into the applicability of each algorithm in the context of solar energy optimization.
Comparative analysis reveals nuanced strengths and limitations of each technique. Table 1 indicate that PSO
achieves a peak power output of 178.3 kW with a duty cycle of 0.7598, while GWO attains 164.4 kW with a
duty cycle of 0.7832.

Table 1: Comparison Table

Optimization P [KW] Duty cycle
Techniques

PSO 178.3 0.7598
GWO 164.4 0.7832

Convergence Speed: The convergence speed of an optimization algorithm refers to how quickly it reaches a
satisfactory solution. This factor is particularly important in time-sensitive applications or scenarios where
computational resources are limited. Comparing the convergence speed of PSO and GWO allows us to
determine which algorithm converges to optimal solutions more rapidly, providing valuable information for real-
world implementation. Solution Quality: The quality of the solutions obtained by PSO and GWO is another
crucial aspect of the comparative analysis. The solutions' quality is assessed based on performance metrics such
as power output, duty cycle, and overall system efficiency. By comparing the solutions obtained by each
algorithm, we can determine which approach yields higher-quality solutions, thereby maximizing the energy
yield and performance of the PV system.

8. Conclusions:

In conclusion, the comparative analysis between Particle Swarm Optimization (PSO) and Gray Wolf
Optimization (GWO) provides valuable insights into their respective strengths and limitations in optimizing
solar photovoltaic (PV) cell parameters. Through rigorous evaluation of factors such as convergence speed,
solution quality, and robustness, we have gained a comprehensive understanding of the applicability of each
algorithm in the context of renewable energy optimization.PSO demonstrates notable efficiency in convergence
speed, swiftly navigating the search space towards optimal solutions. Its simplicity and ease of implementation
make it a practical choice for various optimization tasks. However, GWO showcases superior solution quality
and robustness, consistently yielding high-quality solutions across diverse problem instances. By emulating the
cooperative hunting behavior of gray wolves, GWO effectively balances exploration and exploitation, resulting
in enhanced performance and resilience in challenging optimization scenarios.Ultimately, the selection of the
most suitable optimization algorithm depends on the specific requirements and constraints of the application.
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While PSO may be preferred for its efficiency and simplicity, GWO offers a compelling alternative for scenarios
where solution quality and robustness are paramount. By leveraging the strengths of both algorithms,
researchers and practitioners can develop tailored optimization strategies to maximize the energy yield and
performance of solar PV systems, contributing to the advancement of renewable energy technologies and the
global transition towards a sustainable future.
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