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Abstract 

In the realm of modern urban planning and transportation management, the accurate prediction of traffic 

volumes has emerged as an indispensable tool for efficient traffic flow and strategic infrastructure 

development. As cities continue to grow and traffic congestion becomes increasingly complex, the need for 

precise traffic volume forecasting has become paramount. This research addresses this critical need by 

leveraging the Adaptive Neuro-Fuzzy Inference System (ANFIS) to model and predict traffic volumes with 

remarkable accuracy. ANFIS's unique ability to capture intricate patterns within data, particularly in the 

context of varying vehicle categories and daily fluctuations, makes it an ideal candidate for this task. With a 

rich dataset spanning 31 working days and encompassing five vehicle categories, including two-wheelers, 

four-wheelers, heavy vehicles, light vehicles, and other vehicles, this study aims to showcase the potential of 

ANFIS as a pioneering solution for enhanced traffic prediction accuracy. It is observed that developed model 

has 89.91% accuracy level. By fusing advanced machine learning techniques with real-world traffic data, this 

research contributes to the advancement of transportation planning and management, ultimately leading to 

more optimized traffic systems and sustainable urban development. 
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INTRODUCTION 

Accurate traffic volume prediction stands as a linchpin in the realm of transportation planning and management, 

playing a pivotal role in shaping the efficiency, safety, and sustainability of urban mobility. The ability to anticipate 

traffic volumes with precision facilitates the development of proactive strategies to mitigate congestion, reduce 

travel times, and enhance overall traffic flow. Such forecasts empower urban planners to make informed decisions 

about infrastructure development, road expansions, and traffic signal optimization, leading to optimized road 

networks that cater to current and future demands. Moreover, by understanding traffic patterns and predicting peak 

congestion hours, authorities can implement dynamic traffic management systems that alleviate bottlenecks and 

enhance the commuting experience for citizens. Beyond mere traffic flow, accurate volume prediction assists in 

environmental conservation by reducing fuel consumption and harmful emissions associated with idling vehicles. As 

urban populations continue to grow, the strategic insights offered by reliable traffic volume forecasts play a critical 

role in creating sustainable and livable cities, wherein efficient transportation systems harmonize with economic 

growth and environmental well-being. 

Predicting traffic volume is a crucial aspect of transportation planning, and various methodologies have been 

developed to address this challenge. Williams and Hoel (2003) employed a seasonal ARIMA process to model and 

forecast vehicular traffic flow. This statistical approach captured cyclic patterns in traffic data. Chien and Ding 

(2002) utilized a multilayer feed forward neural network for short-term traffic flow prediction. The model 

demonstrated the potential of artificial neural networks in capturing nonlinear relationships. 
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Lippi and Bertini (2013) conducted an experimental comparison of time-series analysis and supervised learning 

methods. They highlighted the effectiveness of supervised learning techniques in traffic flow prediction. Li and Xia 

(2017) presented a deep learning approach for traffic flow prediction using big data. Their model harnessed the 

power of deep neural networks to capture intricate patterns in traffic data. Vlahogianni et al. (2014) reviewed the 

landscape of short-term traffic forecasting, discussing methodologies and advancements. The review emphasized the 

need for accurate prediction in traffic management. Zheng and Cui (2013) proposed a hybrid approach combining 

ARIMA and radial basis function neural networks. The hybrid model outperformed individual methods, showcasing 

the potential of combining techniques. Wu and Kottenstette (2011) focused on short-term freeway traffic flow 

prediction using data fusion techniques. Their study highlighted the significance of incorporating various data 

sources for improved predictions. 

Ma and Kavak (2017) surveyed network traffic anomaly detection techniques, shedding light on methods to identify 

abnormal traffic patterns that can impact prediction accuracy. Nanni et al. (2019) presented a comprehensive survey 

of traffic flow forecasting, covering statistical methods and recent advancements. They addressed the research 

challenges and directions in this field. 

Ma et al. (2021) reviewed hybrid models for short-term traffic volume forecasting. They discussed various 

combinations of techniques, emphasizing the importance of synergy in prediction accuracy. Adeli and Jiang (2009) 

explored the application of genetic algorithms in civil engineering. Their review highlighted the potential of genetic 

algorithms for optimization tasks within traffic prediction models. Santana and Avelar (2015) reviewed short-term 

accident prediction models on highways, showcasing the relevance of prediction techniques in enhancing road safety 

and traffic management. These studies collectively illustrate the diverse array of approaches used for traffic volume 

prediction, ranging from statistical models to advanced machine learning and hybrid methods. As urban 

transportation systems continue to evolve, these methods play a critical role in enhancing efficiency, safety, and 

sustainability. 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) represents a powerful hybrid modeling technique that 

seamlessly integrates the capabilities of fuzzy logic and neural networks to address the challenges of modeling 

complex and nonlinear systems. ANFIS combines the linguistic interpretability of fuzzy systems with the learning 

ability of neural networks, making it a suitable approach for capturing intricate relationships present in real-world 

data. Jang (1993) introduced the Adaptive-Network-Based Fuzzy Inference System (ANFIS), a hybrid model 

combining fuzzy logic and neural networks. The paper presents ANFIS's architecture, which adapts and learns from 

data. It demonstrates ANFIS's ability to model complex relationships, particularly in nonlinear systems, making it a 

powerful tool for various applications. ANFIS's hybrid nature, combining fuzzy logic and neural networks, allows it 

to adapt to various domains, model complex relationships, and make accurate predictions based on input data. Its 

applications range from flood forecasting to environmental modeling, showcasing its potential to tackle complex 

real-world problems. 

The burgeoning challenges posed by urbanization and escalating vehicular traffic have underscored the urgency of 

efficient transportation management and infrastructure planning. Rapid urban growth has led to complex traffic 

patterns, exacerbating congestion, air pollution, and travel inefficiencies. Traditional methods of traffic volume 

prediction often fall short in accurately capturing the intricate dynamics of modern urban road networks, 

necessitating innovative approaches. The motivation behind this research stems from the need to revolutionize 

traffic volume prediction by harnessing the power of data-driven models like the Adaptive Neuro-Fuzzy Inference 

System (ANFIS). ANFIS's capacity to amalgamate the strengths of neural networks and fuzzy logic provides a 

unique opportunity to navigate the complexities of traffic prediction, accommodating nonlinear relationships, 

variable influences, and uncertainties inherent in urban traffic. By delving into this avenue, the research seeks to 

introduce a cutting-edge solution that not only enhances the precision of traffic volume forecasts but also empowers 
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urban planners and policymakers to make informed decisions for sustainable transportation systems and improved 

quality of life in rapidly evolving cities. 

LITERATURE REVIEW 

Several studies have explored diverse methodologies for traffic volume prediction, yielding valuable insights and 

outcomes that contribute to the field of transportation planning and management. Jang's seminal work in 1993 

introduced the Adaptive-Network-Based Fuzzy Inference System (ANFIS), showcasing its potential to model 

complex relationships in traffic data. ANFIS's hybrid nature, combining fuzzy logic and neural networks, proved 

effective in capturing nonlinear patterns, leading to improved accuracy in traffic volume predictions. Jang (1993) 

introduced ANFIS as a groundbreaking contribution that laid the foundation for hybrid modeling techniques in 

traffic volume prediction. The study demonstrated ANFIS's adaptability to modeling complex systems and its 

capability to handle fuzzy relationships inherent in traffic data. This breakthrough approach bridged the gap between 

fuzzy logic and neural networks, offering a flexible tool for capturing nonlinearities and uncertainties. 

Chien and Ding (2002) marked a pivotal step in harnessing the power of artificial neural networks for traffic 

prediction. Their study illuminated the neural network's potential to learn intricate patterns and relationships, 

enabling accurate short-term traffic flow forecasts. This approach allowed for capturing the underlying dynamics of 

traffic behavior and adapting to varying conditions. 

Lippi and Bertini (2013) provided insights into the performance of different prediction techniques. By contrasting 

time-series analysis with supervised learning methods, the study shed light on the advantages of data-driven 

approaches. Supervised learning, exemplified by machine learning algorithms, demonstrated a superior ability to 

capture complex patterns and trends in traffic data, proving essential for reliable short-term predictions. 

Li and Xia(2017) ventured into the realm of deep learning, showcasing the applicability of deep neural networks in 

traffic flow prediction with big data. Their work highlighted the adaptability of deep learning architectures to 

accommodate massive datasets, contributing to precise traffic volume forecasts even in intricate urban 

environments. This study pushed the boundaries of prediction accuracy, as deep learning excelled in capturing 

intricate patterns. 

Karray and De Silva's comprehensive overview in 2002 highlighted the significance of soft computing techniques in 

intelligent systems design. While not solely focusing on ANFIS, their study emphasized the role of ANFIS as a vital 

component of soft computing methodologies. This holistic perspective reaffirmed the integration of fuzzy logic and 

neural networks in ANFIS as a prominent tool for modeling complex systems. 

Collectively, these studies underscore the evolution of traffic volume prediction methodologies, from hybrid 

approaches like ANFIS that fuse fuzzy logic and neural networks, to the utilization of advanced machine learning 

and deep learning techniques. These diverse methodologies enrich the arsenal of tools available for accurate traffic 

volume prediction, ultimately contributing to more efficient and sustainable transportation planning and 

management. 

A comprehensive exploration of traffic volume prediction reveals a diverse spectrum of methodologies 

encompassing statistical models, machine learning techniques, and fuzzy logic-based approaches. Statistical models, 

such as ARIMA, Time Series Analysis, and Exponential Smoothing, provide a foundation for traffic prediction by 

identifying trends and patterns from historical data. Machine learning methods, including neural networks, decision 

trees, and support vector machines, offer more advanced tools capable of capturing complex relationships within 

traffic data. Fuzzy logic-based approaches, like Fuzzy Time Series and Fuzzy Neural Networks, excel in handling 

uncertainty and imprecision inherent in traffic dynamics. 
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Each approach comes with its set of advantages and limitations. Statistical models are interpretable and suitable for 

capturing gradual changes in traffic patterns, yet they may struggle with nonlinear relationships. Machine learning 

techniques exhibit remarkable pattern recognition capabilities, making them apt for complex scenarios, but they can 

suffer from over-fitting and require substantial data for training. Fuzzy logic-based methods excel in handling 

uncertain and vague information, but their success heavily relies on the quality of linguistic rules and domain 

expertise, potentially limiting their generalizability. 

In the realm of traffic prediction and beyond, the Adaptive Neuro-Fuzzy Inference System (ANFIS) emerges as a 

potent fusion of fuzzy logic and neural networks. ANFIS addresses the shortcomings of individual approaches by 

leveraging fuzzy sets to interpret linguistic variables and neural networks to learn intricate relationships. Its 

applications extend across various domains, including engineering, hydrology, and environmental modeling. In the 

context of traffic prediction, ANFIS's adaptability, ability to capture nonlinearities, and capacity to handle 

uncertainties make it a promising tool for forecasting traffic volume accurately. By amalgamating fuzzy reasoning 

with data-driven learning, ANFIS paves the way for enhanced prediction accuracy in the dynamic and multifaceted 

domain of traffic volume forecasting. 

 METHODOLOGY  

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid model that combines fuzzy logic and neural 

networks to create a powerful framework for approximating complex relationships between input and output 

variables. The ANFIS architecture consists of several interconnected components: fuzzification, inference engine, 

and defuzzification. An explanation of each component is presented below: 

1. Fuzzification: 

Fuzzification is the process of mapping crisp input values into linguistic terms or fuzzy sets. Each input variable is 

associated with one or more membership functions that represent the degree of membership of the input in each 

linguistic term. These membership functions define the shape of the fuzzy sets, usually in terms of triangular or 

Gaussian distributions. The degree of membership ranges from 0 to 1, indicating the strength of the input's 

association with a particular linguistic term. 

2. Inference Engine: 

The inference engine processes the fuzzy rules to determine the output's fuzzy membership grades. Fuzzy rules 

consist of antecedents (input conditions) and consequents (output conditions). Each rule evaluates the membership 

grades of the input variables based on the defined membership functions. The AND and OR operations combine the 

membership grades within a rule, while implication methods, like Mamdani or Sugeno, determine the output's fuzzy 

membership. 

3. Defuzzification: 

Defuzzification is the final step where the fuzzy output is converted into a crisp value. This process involves 

aggregating the fuzzy outputs from all rules to compute a single, crisp output value. The defuzzification methods 

include the Center of Gravity (centroid) method, weighted average method, or other techniques tailored to the 

specific problem. Figure 1 presents a simplified line diagram of the ANFIS architecture:  
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Fig. 1 ANFIS architecture 

Data preprocessing is a crucial phase in the development of accurate and reliable traffic volume prediction models. 

This preparatory stage involves a series of steps aimed at enhancing the quality of the dataset and ensuring that it is 

suitable for training and testing ANFIS models. Initially, data cleaning is performed to identify and eliminate 

inconsistencies, missing values, and outliers that could distort predictions. Subsequently, feature selection comes 

into play, where relevant input features such as historical traffic data, time of day, and weather conditions are chosen 

to contribute meaningfully to the model. To facilitate convergence during training, data normalization is undertaken, 

which scales numerical features to a common range, preventing dominance by variables with larger magnitudes. 

Importantly, the process of fuzzification is applied to convert numerical inputs into linguistic variables using 

membership functions. This step transforms crisp values into linguistic terms, contributing to the interpretability of 

the ANFIS model. Lastly, the dataset is split into training, validation, and test sets. These subsets allow for model 

training on a portion of the data, validation to fine-tune hyperparameters and prevent overfitting, and finally, 

evaluation of model performance on unseen data. Through these data preprocessing steps, ANFIS models are poised 

to effectively capture intricate traffic dynamics and provide accurate traffic volume predictions that hold practical 

relevance in transportation planning and management. 

Designing an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for traffic volume prediction involves a 

systematic process to harness the capabilities of both fuzzy logic and neural networks. The process begins with a 

clear definition of the problem, identifying input variables like historical traffic data, time-related factors, and 

environmental conditions, along with the target variable—traffic volume. Subsequently, linguistic variables are 

established, converting numerical inputs into interpretable linguistic terms such as "low," "moderate," and "high" 

traffic density. 
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The subsequent step involves selecting suitable membership functions, such as triangular or Gaussian, which shape 

the degree of membership of input values to linguistic terms. With these components in place, fuzzy rules are 

generated to capture the relationships between linguistic variables. These rules are formulated by combining input 

linguistic terms to form antecedents and determining consequents through fuzzy logic operators. 

Once rules are established, the firing strength of each rule is computed based on the degree of membership of input 

values in linguistic terms. The inference engine amalgamates these firing strengths, and intermediate fuzzy outputs 

are computed. These outputs are then normalized to ensure consistency. Aggregating normalized rule outputs 

generates a comprehensive fuzzy output that encapsulates the multitude of rule-based predictions. 

The culmination of the ANFIS model design involves defuzzification, where the aggregated fuzzy output is 

transformed into a crisp value, representing the predicted traffic volume. Model training commences with historical 

data, during which parameters like membership function parameters and rule weights are fine-tuned iteratively. 

Validation against a separate dataset guard against overfitting. Model evaluation on an unseen test dataset provides 

insight into its performance, enabling further fine-tuning if required. 

This holistic approach harnesses the strength of fuzzy logic for handling uncertainty and interpretable linguistic 

relationships, combined with neural networks' ability to capture intricate patterns in traffic data. By meticulously 

navigating through these steps, the ANFIS model emerges as a potent tool, offering accurate traffic volume 

predictions pivotal for effective transportation planning and management. 

The choice of the Adaptive Neuro-Fuzzy Inference System (ANFIS) over alternative methods for traffic volume 

prediction finds its justification in the unique blend of fuzzy logic and neural networks, aligning seamlessly with the 

intricacies of traffic dynamics. ANFIS offers distinct advantages that set it apart from other approaches. Its ability to 

handle uncertainties and imprecision inherent in traffic data, through the application of fuzzy logic, ensures robust 

predictions even in the presence of fluctuating conditions. Moreover, ANFIS's linguistic interpretation provides a 

tangible understanding of how input variables influence the output, fostering informed decision-making in 

transportation planning. 

ANFIS's integration of neural networks enhances its predictive prowess by capturing complex nonlinear 

relationships within the data. Unlike traditional statistical methods, ANFIS adeptly accommodates intricate patterns 

present in traffic behavior, offering enhanced accuracy in prediction. This amalgamation of fuzzy reasoning and 

data-driven learning strikes a balance between interpretability and predictive power, a balance not uniformly 

achieved by other methods. 

In contrast to conventional machine learning models that might encounter challenges in handling uncertainty or 

provide less insight into decision-making, ANFIS shines. Its hybrid nature extends its applicability across various 

domains, including traffic volume prediction, making it a versatile choice. Furthermore, ANFIS's adaptability, 

fostered by neural networks, equips it to evolve with changing traffic conditions and adapt to new datasets, thus 

ensuring sustained accuracy. 

The choice of ANFIS for traffic volume prediction, therefore, transcends mere methodology; it represents a strategic 

selection that capitalizes on the synergistic benefits of fuzzy logic and neural networks. This choice resonates with 

the complex and dynamic nature of traffic systems, culminating in a predictive model that not only outperforms 

traditional alternatives but also aligns with the contemporary demand for accuracy, interpretability, and adaptability 

in transportation planning and management. 
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DATA COLLECTION AND PREPROCESSING 

The collected dataset comprises a comprehensive record of traffic data over a span of 31 working days, 

encompassing various categories of vehicles that traverse the roadways. The dataset is a culmination of meticulous 

data collection efforts aimed at capturing the diversity and dynamics of traffic patterns. The dataset delineates traffic 

based on five distinct categories of vehicles: 

Two-Wheelers: This category encompasses motorcycles, scooters, and other two-wheeled vehicles. Two-wheelers 

constitute a significant portion of urban and suburban traffic, contributing to the overall traffic flow. 

Four-Wheelers: The four-wheelers category encompasses cars, sedans, hatchbacks, and other private vehicles with 

four wheels. These vehicles form a vital component of daily commuter traffic and contribute to road congestion. 

Heavy Vehicles: This category encompasses trucks, buses, and other large vehicles that carry goods or passengers. 

Heavy vehicles are pivotal for transporting goods and people over longer distances and often exert a notable 

influence on traffic flow due to their size and speed. 

Light Vehicles: Light vehicles comprise vehicles like vans, SUVs, and smaller trucks. They play a role in both 

personal and commercial transportation, contributing to the overall diversity of traffic. 

Other Vehicles: The "Other Vehicles" category includes vehicles that do not fit neatly into the previous categories. 

These could include specialized vehicles, utility vehicles, or unique modes of transportation that are essential for 

certain contexts. 

The dataset's temporal span of 31 working days facilitates the capture of fluctuations and patterns in traffic volume, 

providing insights into daily and weekly variations. The inclusion of these five vehicle categories ensures a 

comprehensive representation of the diverse vehicular landscape and enables an accurate understanding of traffic 

trends. Such detailed data lays the groundwork for predictive models, like the Adaptive Neuro-Fuzzy Inference 

System (ANFIS), to effectively capture and forecast the traffic volumes associated with each vehicle category, 

facilitating informed transportation planning and management decisions. 

During the process of data collection, several challenges surfaced, reflecting the inherent complexities of capturing 

real-world traffic dynamics. One significant challenge involved ensuring the accuracy and consistency of data across 

different vehicle categories. Accurate classification of vehicles, especially distinguishing between categories like 

four-wheelers and light vehicles, posed difficulties due to vehicles' varying sizes and configurations. To address this, 

a combination of manual observation and automated vehicle classification systems was employed. Additionally, 

external factors like weather conditions and road construction intermittently influenced traffic flow, introducing 

variability that needed to be carefully documented and accounted for. 

To prepare the collected data for modeling, a sequence of preprocessing steps was diligently executed. Initially, data 

cleaning was pivotal to eliminate erroneous or missing data points, ensuring the integrity of the dataset. Outliers, 

which could distort the predictive model, were identified and either corrected or removed. The data was then 

structured into a consistent format, facilitating subsequent analysis and modeling. Table 1 contains the collected 

traffic data. 
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Table 1. Traffic Data 

Variable  N Mean  SE Mean StDev  Median  

Two wheelers     400    159.92     0.604    12.09       160     

Four wheelers    400    56.465     0.427    8.544        55      

Heavy Vehicles   400    32.980     0.469    9.371       280    

Light Vehicles   400    26.352     0.338    6.764          27    

Others            400    19.425     0.299    5.977        19    

Traffic Volume   400    195.51     0.784    15.68        192  

Normalization was another critical step to bring numerical features to a uniform scale, preventing the dominance of 

certain variables during modeling. For instance, traffic volume figures were normalized to lie within a common 

range, avoiding disproportionate influence on the model's learning process. Fuzzification followed as an essential 

component of data preprocessing, converting numerical values into linguistic variables. This facilitated the 

incorporation of fuzzy logic, enhancing the model's interpretability and capacity to handle imprecision. 

Subsequently, the dataset was split into training, validation, and test sets to facilitate model training, fine-tuning, and 

evaluation while preventing overfitting. Model performance was rigorously assessed using appropriate metrics, 

ensuring that the ANFIS model's predictions aligned closely with actual traffic patterns. 

In essence, the challenges encountered during data collection were addressed through a combination of meticulous 

observation, technological solutions, and documentation. The data preprocessing steps were undertaken to refine and 

mold the raw data into a suitable format for ANFIS modeling. Through these efforts, the data's quality and usability 

were elevated, and the subsequent predictive model stood poised to capture the nuances of traffic volume variation, 

consequently enhancing transportation planning and management strategies. 

RESULTS AND DISCUSSION 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a computational framework that combines fuzzy logic and 

neural networks to model complex systems. The process of ANFIS involves several key steps. Firstly, the problem 

is defined, specifying five input variables and one output variable for prediction of traffic volume. an ANFIS model 

has been developed for traffic volume prediction. The architecture of developed model is shown in Fig. 2. 

 
Fig. 2 ANFIS model for Traffic volume 
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Next, fuzzification converts crisp input values into linguistic variables using membership functions, facilitating the 

handling of uncertainty. A rule base is constructed, defining fuzzy rules that capture relationships between input and 

output linguistic variables. In ANFIS, several mathematical formulas and operations are used to model complex 

relationships between inputs and outputs. While the specific equations can vary depending on the ANFIS 

architecture and membership functions chosen. In the present work, Membership Function (MF) Calculation is 

performed by using Gaussian membership function (Eq. 1). 

𝜇𝑇𝑊(𝑥) = exp⁡(−
(𝑥−𝑐)2

2𝜎2
)        (Eq. 1) 

Here c is the center of the membership function and σ is the standard deviation. Same equation is used for other 

variables also. 

The firing strength calculation has been performed by Eq. 2. 

𝜔𝑖 = 𝜇𝑇𝑊𝑖
(𝑥). 𝜇𝐹𝑊𝑖

(𝑥)𝜇𝐿𝑉𝑖(𝑥). 𝜇𝐻𝑉𝑖(𝑥). 𝜇𝑂𝑡ℎ𝑒𝑟𝑠𝑖(𝑥)   (Eq. 2) 

Where, 𝜔𝑖 is the firing strength of rule i and𝜇𝑇𝑊𝑖
(𝑥),𝜇𝐹𝑊𝑖

(𝑥),𝜇𝐿𝑉𝑖(𝑥), 𝜇𝐻𝑉𝑖(𝑥) and 𝜇𝑂𝑡ℎ𝑒𝑟𝑠𝑖(𝑥) are the membership 

values for the input linguistic variables for TW, FW, LV, HV and others, respectively. 

Then the normalization of firing strengths is performed by using Eq. 3. 

𝜔𝑖
∗ =

𝜔𝑖

∑ 𝜔𝑗
𝑛
𝑗=1

          (Eq. 3) 

Where, 𝜔𝑖
∗ is the normalized firing strength of rule i, and n is the total number of rules i.e. 400 in the present model. 

Thereafter, the aggregation of the rule outputs is performed by using Eq. 4. 

𝑂(𝑥, 𝑦) =
∑ 𝜔𝑖

∗.𝑛
𝑖=1 𝑧𝑖

∑ 𝜔𝑖
∗.𝑛

𝑖=1

         (Eq. 4) 

Where, 𝑂(𝑥, 𝑦)is the aggregated output i.e. Traffic volume, 𝑧𝑖 is the consequent of rule i, and 𝜔𝑖
∗is the normalized 

firing strength of rule i.    

The rule base's structure is typically based on expert knowledge or data-driven approaches as shown in Fig. 3. In the 

present work, IF-Thenbased 400 rules are developed and used.  

 

Fig. 3 Membership function for developed ANFIS model for Traffic volume 
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Subsequently, a hybrid learning algorithm is employed to adapt the model's parameters. This involves gradient 

descent or other optimization techniques to adjust membership function parameters and rule weights. Training data 

is utilized to fine-tune the model, ensuring it accurately captures the underlying patterns in the data. Finally, the 

trained ANFIS model can be used for prediction or decision-making tasks. Pseudo-codes of developed ANFIS 

model are shown in Fig. 4. 

 

# Initialize ANFIS parameters 

Initialize fuzzy membership functions 

Initialize neural network parameters (TW, FW, LV, HV, Others) 

Initialize learning rate 

Initialize maximum number of epochs 

Initialize error threshold 

 

# Main training loop 

for epoch in range(max_epochs): 

total_error = 0 

    # Loop over each training data point 

    for data_point in training_data: 

        # Step 1: Fuzzification (Membership Function Evaluation) 

        Calculate membership values for input data 

        # Step 2: Rule Activation (Inference) 

        Calculate firing strengths for each rule 

        # Step 3: Rule Normalization 

        Normalize firing strengths 

        # Step 4: Aggregation (Weighted Averaging) 

        Combine rule outputs to get the overall output 

        # Step 5: Neural Network Forward Pass 

        Feed the aggregated output into the neural network 

        # Step 6: Compute Error 

        Calculate the error between the network output and the actual output 

        # Step 7: Backpropagation (Adjust Neural Network Parameters) 

        Update neural network parameters using backpropagation with the error 

        # Step 8: Update Fuzzy Rule Parameters 

        Update the parameters of fuzzy membership functions using gradient descent 

        # Step 9: Compute Total Error for the Data Point 

        Update the total error for the current epoch 

         # Step 10: Check for Convergence 

    if total_error<error_threshold: 

        break 

# After training, the ANFIS model is ready for inference 

# Inference 

for data_point in test_data: 

    # Repeat steps 1 to 4 for fuzzification, rule activation, normalization, and aggregation 

    # Neural Network Forward Pass (Step 5) 

    Feed the aggregated output (Traffic volume) into the trained neural network 

# The final output of the ANFIS is the result of the inference 

# End of ANFIS 

 

Fig. 4Pseudo-codes of developed ANFIS model 
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ANFIS excels in scenarios where complex, nonlinear relationships exist, and where interpretability of the model's 

output is essential. It offers a balance between fuzzy reasoning and data-driven learning, making it a valuable tool in 

various fields, including control systems, prediction, and decision support.  

In the present work, the developed model has 68 number of nodes. The number of linear parameters were 30, while 

the number of non-linear parameters was 50. The number of training data pairs was 350 and testing was 50.  

Minimal training RMSE was observed as 10.0874352 shown in Fig. 5, which shows a higher degree of fitness of the 

developed model. Test Fuzzy Interface System for Traffic volume is shown in Fig. 5, it depicts the closeness of 

actual and predicted values of traffic volume.The visual depiction of test Fuzzy Interface System for Traffic volume 

is shown in Fig. 6. 

 
 

Fig. 5 Training error of developed ANFIS model for Traffic volume 

 

Fig. 6 Test Fuzzy Interface System for Traffic volume 

CONCLUSION AND FUTURE WORK 

In the present research article, authors successfully applied the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

for traffic volume prediction based on a comprehensive dataset comprising five vehicle categories over 31 working 

days. The main findings and contributions of the study include: 

• ANFIS demonstrated its efficacy in accurately predicting traffic volumes for diverse vehicle categories, 

contributing to transportation planning and management.  

• Developed model has the minimal training RMSE as10.0874352, which shows higher degree of fitness of 

model i.e. 89.91%. 

• ANFIS provided interpretable linguistic rules, aiding decision-makers in understanding the factors 

influencing traffic volume. 

• ANFIS excelled in capturing complex, nonlinear traffic patterns, highlighting its suitability for modeling 

intricate traffic dynamics. 
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• The research faced challenges related to data quality and the potential for overfitting during model training. 

Additionally, ANFIS's complexity may demand substantial computational resources. 

• By addressing these directions, future research can advance the use of ANFIS in traffic prediction and 

contribute to more effective transportation planning and management. 
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