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Abstract:- In this paper, univariate extreme shock maintenance model for a repairable system under Alpha series 

process. Assume that the shocks from the system environment. A shock is called a deadly shock, if the amount 

of damage of one shock to the system exceeds a specific threshold so that the system will fail. For a 

deteriorating system, we assume that the successive threshold values are non-decreasing after repair, and the 

consecutive repair times after failure form an increasing Alpha series process. For an improving system, we 

assume that the successive threshold values are decreasing after repair, and the consecutive repair times after 

failure form a decreasing Alpha series process. A replacement policy N is adopted by which we shall replace the 

system by an identical new one at the time following the N-th failure. Then for each of the deteriorating system 

and improving system, an explicit expression for the long run average cost per unit time under 𝑁 policy is 

derived and an optimal policy 𝑁∗ for minimizing the long run average cost per unit time is determined 

analytically. A numerical example is given for deteriorating system. 

Keywords: Alpha Series Process, Geometric distribution, Replacement Policy, Shock Model, Exponential 

distribution.. 

 

1. Introduction 

In reliability, the study of maintenance problem is always  an important topic. For the  system of “repair as new” 

a lot of scholars had made many results. In this research work of  repair replacement problems, in the early 

stages, a common assumption  is “repair is perfect”, i.e., the  system after repair is “as good as new”. Most of 

the maintenance models just concentrate on the internal source of the system failure, but not on an external 

cause.  A system failure may be caused by some external causes, such as a shock. But shocks with a small level 

of damage are harmless for the system, while shocks with a large level of damage may result in failure of the 

system. The shock model has been successfully applied to many different fields, such as physics, 

communication, electronic engineering and medicine, etc. Chen and Li (2008) introduced and studied an 

extended extreme shock maintenance model for a deteriorating system under which the consecutive repair time 

is geometric process. In this paper, we shall study a univariate extreme shock maintenance model for a 

deteriorating system and for an improving system under Alpha series process and the system’s repairable is 

shown in both the internal and the external.  

Therefore we consider the system has been considered in two aspects- the internal and the external. First, if the 

system is failed by one shock, it is repaired or replaced by a new and identical one. In view of the ageing time 

and the continuous wear, the repair time will become longer and longer and tend to infinity. i.e., finally the 

system is non-repairable, repair times are not negligible. Therefore, for a deteriorating system, we model the 

repair times after the system failures as an increasing alpha series process and for an improving system we 

model the repair times after the system’s failure as an decreasing Alpha series process. 
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Alpha series process was  introduced in  Braun et al. (2005) . Furthermore Braun et.al (2005) explained the main 

advantage of the Alpha series process compared with the Geometric process is that under certain conditions is 

always has a finite expected number of events at any arbitrary time. The expected number of events at any 

arbitrary time does not always exist for the decreasing Geometric process, which could be a drawback in its 

applications. The drawback is remedied in the decreasing version of the Alpha series process.Indeed, for any 

Alpha series process(increasind or decreasing) the expected number of events upto time t, 𝐸(𝑁(𝑡)) is always 

finite. The Alpha series process grows either as a polynomial in time or exponential in time. It also noted that 

the geometric process doesn’t satisfy a central limit theorem, while the Alpha series process does. 

The definition of Alpha series process is given below. 

Definition 1.1. A stochastic process is called a Alpha series process( increasing and decreasing) process, if there 

exists a real 𝛼, 𝛼 < 0(𝛼 ≥ 0) such that {𝑛𝛼𝑋𝑛 , 𝑛 = 1,2,3… . . } forms a renewal process. The real 𝛼 is called the 

exponent of process. 

Next the shocks from the system environment are studied. There were many papers which considered extreme 

shock models. See Zuckerman(1978), Shanthikumar and Sumita(1983,1984), and Gut and Husler(1999).In their 

models, the system will fail if the amount of shock damage by one “big” shock exceeds a specific threshold but 

a small level of damage is harmless for the system. In these models, a shock is termed as deadly shock, if the 

amount of damage of one shock to the system exceeds a specific threshold so that the system fails. This kind of 

shock models is called “extreme shock model”.  

The aim of the present paper is to provide a method to calculate the average cost rate  and to determine an 

optimal policy 𝑁∗ such that the Average cost rate is minimized analytically and numerically. 

Now we have the following assumptions about the model for a repairable system(deteriorating or improving) 

subject to shocks.                  

2. Model Assumptions 

We consider univariate extreme shock the maintenance model for a repairable system under the following 

assumptions. 

A1. Initially a new system is installed. Whenever the system fails, it is repaired or replaced by a new and 

identical one. 

A2. Once the system starts operating, the shocks from the environment arrive according to a renewal process. 

Let {𝑊𝑘𝑖 , 𝑖 = 1,2,3… . . } be the intervals between the(𝑖 − 1)𝑠𝑡 and the 𝑖𝑡ℎ shock after the (𝑘 − 1)𝑠𝑡 repair. Let 

𝐸(𝑊11) = 𝜆 and Let {𝐷𝑘𝑖 , 𝑖 = 1,2,3… . } be the sequence of the amount of shock damage produced by the 𝑖𝑡ℎ 

shock after the (𝑘 − 1)𝑠𝑡 repair. Let 𝐸(𝐷11) = β . Assume that {𝑊𝑘𝑖 , 𝑖 = 1,2,3… … } and {𝐷𝑘𝑖 , 𝑖 = 1,2,3… . } are 

identically independent distributed sequences for all 𝑘. 

       In the 𝑘𝑡ℎ operating stage, i.e., after the (𝑘 − 1)𝑠𝑡 repair , the system will fail, if the amount of the a shock 

damage first exceeds 𝑎𝑘−1𝑀 where 𝑀 is a positive constant, if the system fails, it is closed so that the random 

shocks have no effect on the system during the repair time. 

A3. Let 𝑍 be the replacement time with 𝐸(𝑍) = 𝜏. 

A4. The process {𝐷𝑘𝑖 , 𝑖 = 1,2,3… . } , {𝑊𝑘𝑖 , 𝑖 = 1,2,3… . . }, {𝑌𝑘 , 𝑘 = 1,2,3… … } and 𝑍 are independent. 

A5. The repair cost rate is 𝑐, the reward rate is 𝑟 and the replacement cost is 𝑅 

 A6. Let 𝑌𝑘 be the repair time after the 𝑘𝑡ℎ failure. Then the distribution function of 𝑌𝑘 is assumed to be 𝐹(𝑘𝛼𝑦) 

for 𝑦 ≥ 0, 𝛼 is a real number. That is the consecutive repair times  of the system after failures  form a Alpha 

Series Process. Moreover, assume that 𝐸(𝑌1) = 𝜇 ≥ 0, 𝜇 = 0 means that the repair time is negligible.𝑁𝑛(𝑡)is the 

counting processof the number of shocks after the (𝑘 − 1)st repair. It is clear that 𝐸(𝑌𝑘) =
𝜇

𝑘𝛼. 

For a deteriorating system , an additional assumption A8 is made. 

A7. 𝛼 < 0  and  0 < 𝑎 ≤ 1. 

Then under Assumptions A1 to A7, univariate Extreme shock maintenance model for a deteriorating system. 
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For an improving system, Assumption A7 will be replaced by Assumption A7a 

A7a. . 𝛼 > 0  and  𝑎 > 1. 

Then under Assumptions A1 to A6 and A7a, univariate extreme shock maintenance model for an improving 

system. 

Remarks. 

In practice, many systems are deteriorating because of the ageing effect and accumulated wearing. For a 

deteriorating system after repair should be more fragile and easier to be broken down. As a result, the threshold 

of a deadly shock of the system will be increasing in n, the number of repairs taken. In other words, as the 

number of repairs n increases, the threshold of a deadly shock of the system will increase accordingly. 

Furthermore, for a deteriorating system, the successive operating times of the  system will be shorter and 

shorter, while the consecutive repair times of the system will be longer and longer. Therefore under 

Assumptions A1 to A8, univariate extreme shock maintenance model for a deteriorating system. 

However, in real life, there do have some improving systems. For examples some systems could be improved, 

this might be due to the fact that the operator can accumulate the operating experience so that the damage 

caused by a shock will be lightened, this might be due to the repair facility becoming more familiar with the 

system so that the successive repair times might be decreasing, then for an improving system, the older the 

system, the more solid the system is. Thus, the threshold shock values should be decreasing Alpha series 

process. Therefore under Assumptions A1 to A7 and A8a, univariate extreme shock maintenance model for an 

improving system. 

Now we shall first study the model under Assumptions A1 to A7. 

3. Average Cost Rate 

Let 𝑇1 be the first replacement time, in general, for 𝑘 ≥ 2. Let 𝑇𝑛 be the time between the (𝑘 − 1)𝑠𝑡 and the 𝑘 th 

replacement. Then obviously {𝑇𝑛, 𝑛 = 1,2, … . . } forms a renewal process.  

By the renewal reward theorem, Ross(1983), the long-run average cost per unit time under (𝐶(𝑁) is given by 

                  

𝐶(𝑁) =
𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒

𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑐𝑦𝑐𝑙𝑒
                                (1) 

                                                    

In our models, we do not specify the distribution of the shocks interarrivals, i.e., the distributions of 𝑊11and 𝐷11 

may be arbitrary, it uses the geometric distribution. 

For evaluating the expected cost incurred in a cycle and the expected length of a cycle. We need to first 

calculate the geometric distribution 𝐺(𝑃𝑘) and the expectation of 𝑋𝑘, the real operating time of the system after 

the (𝑘 − 1)𝑠𝑡 repair. 

Denote 

                           𝐿𝑘 = min{𝑙: 𝐷𝑘𝑙 > 𝑎𝑘−1𝑀}                                                (2) 

                                                    

That is 𝐿𝑘  is the number of shocks until the first deadly shock occured following the (𝑘 − 1)𝑠𝑡 failure. Then  

                                                   

𝑋𝑘 = ∑𝑊𝑘𝑖

𝐿𝑘

𝑖=1

                                                                                                           (3) 

                                                   

and 𝐿𝑘 follows a geometric distribution 𝐺(𝑃𝑘), with  

                                          

𝑃(𝐿𝑘 = 𝑘) = 𝑃𝑘(1 − 𝑃𝑘)
𝑘−1, 𝑘 = 1,2… ….                                                      (4) 
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where 

                                           

𝑃𝑘 = 𝑃(𝐷𝑘1 > 𝑎𝑘−1𝑀)                                                                                           (5) 

                                                                         

By equation (4) , we have  

                                           

𝐸(𝐿𝑘) =
1

𝑃𝑘

                                                                                                                (6) 

                                                                                       

As  {𝑊𝑘𝑖 , 𝑖 = 1,2,3… . . } and {𝐷𝑘𝑖 , 𝑖 = 1,2,3… . }  are independent, it is clear that 𝐿𝑘and {𝑊𝑘𝑖 , 𝑖 = 1,2,3… . . }  

are independent. 

Then from equations (3) and (4) and by Wald’s equation. We have  

                                   

𝜆𝑘 = 𝐸(𝑋𝑘) = 𝐸(𝐿𝑘)𝐸(𝑊𝑘1) =
𝜆

𝑃𝑘

                                                                    (7) 

                                                   

From Equation (1) ,The Average cost rate ,𝐶(𝑁) under policy 𝑁 is given by 

𝐶(𝑁) =
𝐸(𝑐 ∑ 𝑌𝑘 + 𝑅 − 𝑟 ∑ 𝑋𝑘

𝑁
𝑘=1

𝑁−1
𝑘=1 )

𝐸(∑ 𝑋𝑘 + ∑ 𝑌𝑘
𝑁−1
𝑘=1 + 𝑍  𝑁

𝑘=1 )
 

   

 =
𝑐(∑ 𝐸(𝑌𝑘)) + 𝑅 − 𝑟 ∑ 𝜆𝑘

𝑁
𝑘=1

𝑁−1
𝑘=1 )

∑ 𝜆𝑘 + (∑ 𝑌𝑘
𝑁−1
𝑘=1 ) + 𝜏     𝑁

𝑘=1

 

                                                             =
𝑐 (∑

𝜇
𝑘𝛼) + 𝑅 − 𝑟 ∑ 𝜆𝑘

𝑁
𝑘=1

𝑁−1
𝑘=1 )

∑ 𝜆𝑘 + (∑
𝜇
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏     𝑁

𝑘=1

                                                          (8) 

                                                                            

In this section, We determine an optimal replacement policy 𝑁∗for minimizing C(N)  

From equation (8) we have 

                                        𝐶(𝑁) =
(𝑐+𝑟)𝜇(∑

1
𝑘𝛼

𝑁−1
𝑘=1 )+𝑅+𝑟𝜏

ℎ(𝑁)
− 𝑟                                                                                      (9)   

                                                        

Where         

ℎ(𝑁) = ∑ 𝜆𝑘 + 𝜇 (∑
1

𝑘𝛼

𝑁−1

𝑘=1

) + 𝜏     

𝑁

𝑘=1

 

In order to obtain the optimal policy  𝑁∗, we need to investigate the difference between  

𝐶(𝑁 + 1)𝑎𝑛𝑑 𝐶(𝑁). 

𝐶(𝑁 + 1) − 𝐶(𝑁) = [
(𝑐+𝑟)𝜇(∑

1
𝑘𝛼

𝑁
𝑘=1 )+𝑅+𝑟𝜏

ℎ(𝑁+1)
− 𝑟] − [

(𝑐+𝑟)𝜇(∑
1

 𝑘𝛼
𝑁−1
𝑘=1 )+𝑅+𝑟𝜏

ℎ(𝑁)
− 𝑟] 

 

=

[
[∑ 𝜆𝑘 + 𝜇 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏 𝑁

𝑘=1 ] [(𝑐 + 𝑟)𝜇 (∑
1
𝑘𝛼

𝑁
𝑘=1 ) + 𝑅 + 𝑟𝜏] −

[∑ 𝜆𝑘 + 𝜇 (∑
1
𝑘𝛼

𝑁
𝑘=1 ) + 𝜏 𝑁+1

𝑘=1 ] [(𝑐 + 𝑟)𝜇 (∑
1

 𝑘𝛼
𝑁−1
𝑘=1 ) + 𝑅 + 𝑟𝜏]

]

ℎ(𝑁 + 1)ℎ(𝑁)
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=

[
(𝑐 + 𝑟)𝜇 ∑ 𝜆𝑘

𝑁
𝑘=1 (

1
𝑁𝛼) − 𝜆𝑁+1(𝑐 + 𝑟)𝜇 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) − 𝑅𝜆𝑁+1

−𝑟𝜏𝜆𝑁+1 + 𝜏(𝑐 + 𝑟)𝜇 (
1

𝑁𝛼) − 𝑅𝜇 (
1

𝑁𝛼) − 𝜇𝑟𝜏 (
1

𝑁𝛼)
]

ℎ(𝑁 + 1)ℎ(𝑁)
 

=
[(𝑐 + 𝑟)𝜇 (∑ 𝜆𝑘

𝑁
𝑘=1 − 𝑁𝛼𝜆𝑁+1 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏) − 𝜆𝑁+1(𝑅 + 𝑟𝜏) − 𝜇 (

1
𝑁𝛼) (𝑅 + 𝑟𝜏)]

ℎ(𝑁)ℎ(𝑁 + 1)
 

𝐶(𝑁 + 1) − 𝐶(𝑁) =
[(𝑐 + 𝑟)𝜇 (∑ 𝜆𝑘

𝑁
𝑘=1 − 𝑁𝛼𝜆𝑁+1 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏) − (𝑅 + 𝑟𝜏)(𝑁𝛼𝜆𝑁+1 + 𝜇)]

ℎ(𝑁)ℎ(𝑁 + 1)
         (10) 

                  

As the denominator of 𝐶(𝑁 + 1) − 𝐶(𝑁)is always positive, it is clear that the sign of  

𝐶(𝑁 + 1) − 𝐶(𝑁)is the same as the sign of its numerator. 

Thus we introduce the auxillary function 𝐵(𝑁) as follows. 

𝐵(𝑁) =
(𝑐 + 𝑟)𝜇 (∑ 𝜆𝑘

𝑁
𝑘=1 − 𝑁𝛼𝜆𝑁+1 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏)

(𝑅 + 𝑟𝜏)(𝑁𝛼𝜆𝑁+1 + 𝜇)
                                                                                (11) 

                                                                      

As a result we have the following lemma. 

Lemma 3.1. 

𝐶(𝑁 + 1) > 𝐶(𝑁) ⇔ 𝐵(𝑁) > 1 

𝐶(𝑁 + 1) = 𝐶(𝑁) ⇔ 𝐵(𝑁) = 1 

                                                                  𝐶(𝑁 + 1) < 𝐶(𝑁) ⇔ 𝐵(𝑁) < 1                                        (12) 

Lemma (3.1) shows that the monotonicity of  𝐶(𝑁) can be determined by the value of  𝐵(𝑁). 

Note that in this section, the results are developed under Assumptions A1 to A7 only. Therefore, all the results 

including Lemma 3.1 hold for the univariate extreme shock maintenance model for a deteriorating system and 

for an improving system. 

4.  Optimal Replacemet Policy 𝑵∗. 

In this section, we shall determine an optimal replacement policy 𝑁∗ analytically for minimizing 𝐶(𝑁) for a 

deteriorating system and for an improving system respectively. For this purpose at first , we haveto determine 

𝐵(𝑁 + 1) − 𝐵(𝑁) 

From equation (11) we have  

𝐵(𝑁 + 1) − 𝐵(𝑁) =

[
 
 
 
 
 
 
(
(𝑐 + 𝑟)𝜇 (∑ 𝜆𝑘

𝑁+1
𝑘=1 − (𝑁 + 1)𝛼𝜆𝑁+2 (∑

1
𝑘𝛼

𝑁
𝑘=1 ) + 𝜏)

(𝑅 + 𝑟𝜏)((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)
) −

(
(𝑐 + 𝑟)𝜇 (∑ 𝜆𝑘

𝑁
𝑘=1 − 𝑁𝛼𝜆𝑁+1 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏)

(𝑅 + 𝑟𝜏)(𝑁𝛼𝜆𝑁+1 + 𝜇)
)

]
 
 
 
 
 
 

 

Let  

𝐴(𝑁) =
(𝑐 + 𝑟)𝜇

(𝑅 + 𝑟𝜏)((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)(𝑁𝛼𝜆𝑁+1 + 𝜇)
 

Now, 
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𝐵(𝑁 + 1) − 𝐵(𝑁) = 𝐴(𝑁)

[
 
 
 
 
 (𝑁𝛼𝜆𝑁+1 + 𝜇) (∑ 𝜆𝑘

𝑁+1

𝑘=1

− (𝑁 + 1)𝛼𝜆𝑁+2 (∑
1

𝑘𝛼

𝑁

𝑘=1

) + 𝜏)

    −((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)(∑ 𝜆𝑘

𝑁

𝑘=1

− 𝑁𝛼𝜆𝑁+1 (∑
1

𝑘𝛼

𝑁−1

𝑘=1

) + 𝜏)
]
 
 
 
 
 

 

           = 𝐴(𝑁)

[
 
 
 
 𝜇𝜆𝑁+1 + 𝜆𝑁+1𝑁

𝛼𝜆𝑁+1 − 𝜆𝑁+1(𝑁 + 1)𝛼𝜆𝑁+2 − µ(𝑁 + 1)𝛼𝜆𝑁+2 (
1

𝑁𝛼
)

+(𝑁𝛼𝜆𝑁+1 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (∑
1

𝑘𝛼

𝑁−1

𝑘=1

) + ∑ 𝜆𝑘

𝑁

𝑘=1

+ 𝜏)
]
 
 
 
 

 

= 𝐴(𝑁)

[
 
 
 
 (𝜇 (

1

𝑁𝛼
)+𝜆𝑁+1) (𝜆𝑁+1𝑁

𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) +

(𝜆𝑁+1𝑁
𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (∑

1

𝑘𝛼

𝑁−1

𝑘=1

) + ∑ 𝜆𝑘

𝑁

𝑘=1

+ 𝜏)
]
 
 
 
 

 

= 𝐴(𝑁) [(𝜆𝑁+1𝑁
𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (

1

𝑁𝛼
)+𝜆𝑁+1 + 𝜇 (∑

1

𝑘𝛼

𝑁−1

𝑘=1

) + ∑ 𝜆𝑘

𝑁

𝑘=1

+ 𝜏)] 

𝐵(𝑁 + 1) − 𝐵(𝑁) =
(𝑐 + 𝑟)𝜇 [(𝜆𝑁+1𝑁

𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (
1

𝑁𝛼)+𝜆𝑁+1 + 𝜇 (∑
1
𝑘𝛼

𝑁−1
𝑘=1 ) + ∑ 𝜆𝑘

𝑁
𝑘=1 + 𝜏)]

(𝑅 + 𝑟𝜏)((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)(𝑁𝛼𝜆𝑁+1 + 𝜇)
 

                                                                                                                                                                (13) 

Then, we shall consider two models. 

Model 1.  

Under Assumptions A1 to A7, Univariate extreme shock maintenance model for a deteriorating system. 

First of all, we have the following lemma. 

Lemma  4.1.  Under Assumptions A1 to A7, we have 

(1)  𝜆𝑘 is decreasing in 𝑘. 

(2)  𝐵(𝑁) is non-decreasing in 𝑁. 

Proof. (1)  Equations  (5) and (7) are  

𝑃𝑘 = 𝑃(𝐷𝑘1 > 𝑎𝑘−1𝑀) 

                      and        

𝜆𝑘 = 𝐸(𝑋𝑘) = 𝐸(𝐿𝑘)𝐸(𝑊𝑘1) =
𝜆

𝑃𝑘

 

                                                   

Since 𝑎 ≤ 1 from equations (5) and (7). We can derive that 𝜆𝑘  is decreasing in 𝑘. 

Proof  (2). From Equation (13),we have  

𝐵(𝑁 + 1) − 𝐵(𝑁) 

=
(𝑐 + 𝑟)𝜇 [(𝜆𝑁+1𝑁

𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (
1

𝑁𝛼)+𝜆𝑁+1 + 𝜇 (∑
1
𝑘𝛼

𝑁−1
𝑘=1 ) + ∑ 𝜆𝑘

𝑁
𝑘=1 + 𝜏)]

(𝑅 + 𝑟𝜏)((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)(𝑁𝛼𝜆𝑁+1 + 𝜇)
 ≥ 0 

 

This shows that 𝐵(𝑁) is non-decreasing in 𝑁, because 𝜆𝑘 is decreasing in 𝑘 and 𝛼 < 0. 

Using Lemma (3.1) and Lemma 4.1, we have the following theorem. 
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Theorem 4.1. The optimal replacement policy 𝑁∗ is determined by  

                                       

𝑁𝑑
∗ = min{𝑁 𝐵(𝑁)⁄ ≥ 1}                                                                                                                 (14) 

                                                               

Moreover, the optimal replacement policy  𝑁∗ is unique if and only if 𝐵(𝑁∗) > 1. 

We can apply Theorem 4.1 to determine an optimal policy analytically for the deteriorating system and also 

determine an optimal policy numerically. 

A Numerical Example 

 We study a numerical example with the assumption that 𝐷11  has an exponential distribution with expectation β. 

Then                                      𝐹(𝑥) = 𝑃(𝐷11 ≤ 𝑥) = 1 − 𝑒
−(

1

𝛽
)𝑥

 

From equation (5), we have  

                           𝑃𝑘 = 𝑃(𝐷𝑘1 > 𝑎𝑘−1𝑀) = 𝑒
−(

1

β 
)𝑎𝑘−1𝑀

                                                                         (15)                                                 

 Then by equation (7), we have  

𝜆𝑘 = 𝐸(𝑋𝑘) =
𝜆

𝑃𝑘

= 𝜆𝑒
(
1
β 

)𝑎𝑘−1𝑀
                                                                                       (16) 

Substituting equation (15) in equation (9) and (11), the explicit expression for 𝐶(𝑁) and 𝐵(𝑁) are 

      𝐶(𝑁) =
[(𝑐 + 𝑟)𝜇 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝑅 + 𝑟𝜏]

[𝜆 ∑ 𝑒
(
1
β 

)𝑎𝑘−1𝑀𝑁
𝑘=1 + 𝜇 (∑

1
𝑘𝛼

𝑁−1
𝑘=1 ) + 𝜏]

− 𝑟                                              (17) 

                                                                

         𝐵(𝑁) =

(𝑐 + 𝑟)𝜇 [𝜆 ∑ 𝑒
(
1
β 

)𝑎𝑘−1𝑀𝑁
𝑘=1 + 𝜏 − 𝑁𝛼𝜆𝑒

(
1
β 

)𝑎𝑁𝑀
∑

1
𝑘𝛼

𝑁−1
𝑘=1 ]

(𝑅 + 𝑟𝜏) [𝜇 + 𝑁𝛼𝜆𝑒
(
1
β 

)𝑎𝑁𝑀
]

                (18) 

Let 𝑐 = 6, 𝜇 = 10, 𝑟 = 10, 𝜏 = 10, 𝑎 = 0.95, 𝑅 = 6000, 𝜆 = 10, β = 10, 𝛼 = −0.98, 𝑀 = 20 

The numerical results are presented in Table and the corresponding figures are plotted in Figure 1 and Figure 2 

respectively. 

Table : The values of 𝑪(𝑵) and 𝑩(𝑵) for different values of 𝑵. 

𝑁 𝐶(𝑁) 𝐵(𝑁) 𝑁 𝐶(𝑁) 𝐵(𝑁) 

1 62.71378243 0.02862918 10 3.64595261 0.69378903 

2 28.94257705 0.07507138 11 3.43664941 0.77152329 

3 17.25365310 0.13569171 12 3.31351515 0.84659007 

4 11.59934997 0.20654302 13 3.25081222 0.91883968 

5 8.42880843 0.28411102 14 3.23075356 1.00012229 

6 6.50549464 0.36552940 15 3.24082219 1.05475939 

7 5.28622768 0.44859551 16 3.27208457 1.11851447 

8 4.49555734 0.53169253 17 3.31809507 1.17958295 
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9 3.97953895 0.61368059 18 3.37416518 1.23807733 

 

 

             Figure 1 

 

 

                                                              

 

                                                         Figure2. 

 

Clearly 𝐶(14) = 3.23075356  is the minimum of the long run average cost. On the other hand 𝐵(14) =

1.00012229 > 1 and 

     𝑚𝑖𝑛{𝑁 𝐵(𝑁)⁄ ≥ 1} = 14 

Model  2.  

 Under Assumptions A1 to A6 and A7a. Univariate  extreme shock maintenance model for an improving 

system. 

Now, because of Assumption A7a, instead of Lemma 4.1 we have the following Lemma. 

Lemma 4.2. Under Assumptions A1 to A6 and A7a, we have 

(1)  𝜆𝑘 is increasing in 𝑘. 
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(2)  𝐵(𝑁) is decreasing in 𝑁. 

Proof. (1)  Equations  (5) and (7) are  

𝑃𝑘 = 𝑃(𝐷𝑘1 > 𝑎𝑘−1𝑀) 

                      and        

𝜆𝑘 = 𝐸(𝑋𝑘) = 𝐸(𝐿𝑘)𝐸(𝑊𝑘1) =
𝜆

𝑃𝑘

 

                                                   

Since 𝑎 > 1 from equations (5) and  (7). We can derive that 𝜆𝑘  is increasing in 𝑘. 

Proof (2).  From Equation (13), we have  

𝐵(𝑁 + 1) − 𝐵(𝑁) 

                           =
(𝑐 + 𝑟)𝜇 [(𝜆𝑁+1𝑁

𝛼 − 𝜆𝑁+2(𝑁 + 1)𝛼) (𝜇 (
1

𝑁𝛼)+𝜆𝑁+1 + 𝜇 (∑
1
𝑘𝛼

𝑁−1
𝑘=1 ) + ∑ 𝜆𝑘

𝑁
𝑘=1 + 𝜏)]

(𝑅 + 𝑟𝜏)((𝑁 + 1)𝛼𝜆𝑁+2 + 𝜇)(𝑁𝛼𝜆𝑁+1 + 𝜇)
≤ 0 

 

This shows that 𝐵(𝑁) is decreasing in 𝑁, because 𝜆𝑘 is increasing in 𝑘 and 𝛼 > 0. 

Using Lemma (3.1) and Lemma 4.2, we have the following theorem. 

Theorem 4.2  Under Assumptions A1 to A6 and A7a, policy 𝑁𝑖
∗ = ∞ is the unique optimal policy for the 

improving system. 

Proof. 

Because 𝐵(𝑁) is decreasing in 𝑁, there exist an integer 𝑁𝑖 such that 

  𝑁𝑖 = min{𝑁|𝐵(𝑁) ≤ 1}.                                                                     (19) 

                                                               

In other words, we have 

 𝐵(𝑁) > 1 ≺=≻ 𝑁 < 𝑁𝑖      and  𝐵(𝑁) ≤ 1 ≺=≻ 𝑁 ≥ 𝑁𝑖 .      

Therefore, lemma 3.1 implies that 𝐶(𝑁) is unimodel of 𝑁 and take their maxima at 𝑁𝑖 .  Because of equation (9)  

and Assumption A7a, it is easy to check that the minimum of  𝐶(𝑁) will be given by         𝑚𝑖𝑛𝐶(𝑁) =

min{𝐶(1), 𝐶(∞)} 

                                                              

= min {
𝑅 − 𝑟𝜆

𝜆 + 𝜏
 , −𝑟} = −𝑟.                                                                         (20)  

                  

      

                           

Thus 𝑁𝑖
∗ = ∞ is the unique optimal replacement policy for the improving system. 

Intuitively, it is interesting point out  that the older the improving system is, the better the system is. This means 

that we shall repair the system when it fails without replacement. Therefore Theorem 4.2 agrees with this 

general knowledge. 

5.  Conclusion 

By considering univariate extreme shock maintenance model for a repairable system, an explicit expression for 

the long-run average cost per unit of time under the replacement policy 𝑁under Alpha series process is derived. 

An optimal strategy 𝑁∗ for minimizing the long run average cost per unit of time is determined analytically. A 

numerical example is given to illustrate the methodology developed in this research work for deteriorating 
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system.On the other hand , it is interesting to point out that according to theorem 4.2 , the optimal replacement 

policy for an improving system is always 𝑁𝑖
∗ = ∞. 
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