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Abstract: Alzheimer's disease has become the most widespread neurological brain ailment and may be diagnosed 
using a variety of medical approaches. EEG signals are frequently used to diagnose cognitive issues, especially if there 
is a discrepancy in the diagnosis following the first clinical investigations. Nonetheless, there is proof that the EEG 
may accurately detect Alzheimer's illness. The EEG diagnosis of Alzheimer's disease (AD) is growing in frequency. 
A novel resting-state EEG classification method for Alzheimer's disease (AD), moderate cognitive impairment (MCI), 
and healthy control (HC) is presented in this work. Early diagnosis of mild but noticeable cognitive impairments that 
do not significantly affect day-to-day functioning may lower the death and morbidity rates associated with prodromal 
Alzheimer's condition. During such studies, disturbances and interference from the EEG dataset are eliminated using 
a band-pass elliptic digital filter (BEF). To get the properties of the EEG signal, the filtered data was separated into 
frequency bands using the Cascade wavelet transform (CWT) technique. Then, by including a variety of signal 
properties into feature vectors, the CWT technique was utilized to improve diagnostic performance. The improved 
EEG was categorized using an Optimal modified Deep Convolutional Neural Network (OMDCNN) once the 
necessary dataset was created. Here, the ideal MCNN hyperparameter is determined using the modified clonal 
selection algorithm (MCSA), which might increase the classifier's accuracy. Finally, the sensitiveness, accuracy, 
quality of diagnosis, and the area beneath the receiver operating characteristic (ROC) curve were additionally 
computed in order to compare and evaluate the performance of the various recommended approaches. 
 
Keywords: recommended, MCNN, approaches, categorized, diagnostic, frequency 
 
Introduction 
Dementia is defined as a diminished capacity for memory, cognition, or making decisions which difficulties with 
daily responsibilities. It makes no reference to a specific ailment. Alzheimer's disease is the most common type of 
dementia. Alzheimer does not constitute a normal component of aging, despite the fact that it mostly affects the 
elderly. Dementia is predicted to impact 7.4% of persons aged 60 and over in India. Dementia affects 8.8 million 
Indians above the age of 60. According to the Dementia in India 2020 report36, there will be 5.3 million dementia 
cases among Indians over 60 in 2020, and that amount is predicted to climb to 14 million by 2050. [1]. Medical 
evaluation of Alzheimer's disease is difficult, especially in its initial phases when symptoms are frequently dismissed 
as typical aging symptoms. Furthermore, there are some early-stage symptoms that are shared by Alzheimer's disease 
along with other illnesses, including dementia with Lewy body structures, dementia of the frontal lobe, and vascular 
dementia. 
Extensive testing is necessary to rule out any other possible causes of Alzheimer's disease. Comprehensive cognitive 
exams, neurological examinations, blood testing, brain imaging methods, and neurological fluid investigations are 
among the therapies provided [2]. Patients may benefit from better care if dementia can be identified using less 
invasive and costly approaches. A substantial amount of research has been conducted in recent years on the potential 
utility of electroencephalography (EEG) toward the detection of dementia disorders, such as Alzheimer's disease [3-
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5]. Electroencephalography (EEG) is a harmless, low-cost, possibly portable technology for measuring time to the 
millisecond. The primary goal of this study was to identify Alzheimer's disease through the contrast of EEG 
recordings from AD patients to those from control participants, or healthy people [3-5]. The electroencephalogram 
(EEG) is one of the most often utilized diagnostic tools in modern medicine for identifying brain abnormalities. 
Simply explained, EEG involves an observation of the electrical reactions in the brain. 
 
Adhesive electrodes placed on the scalp in certain locations are used to measure voltage fluctuations in different 
brain regions. The application of EEG signals has been advantageous due to the non-invasiveness of the technique. 
Additionally, EEG offers a high temporal resolution, often measured in milliseconds. The radiation risks associated 
with conventional diagnostic techniques like MRIs [6] and CT scans [7], as well as the invasive nature of therapeutic 
therapies, have led to an increase in the use of EEG. Alzheimer's is a long-term neurological condition. It's possible 
that this type of dementia affects seniors the most frequently. Among those over 65, it affects one in fifteen of them. 
Among those over 65, it affects one in fifteen of them. Alzheimer's disease is thought to be brought on by a dramatic 
shrinking of the hippocampal and cerebral cortex regions of the brain, while the exact cause of the illness is unknown. 
To reduce or even reverse the course of Alzheimer's disease, early detection is essential. It is possible to comprehend 
the kinds of traits used in Alzheimer's disease research [3-5]. 
 
Duration domain, frequency realm, and duration-frequency domain characteristics are the most common forms of 
traits or biomarkers. Neural network models or classical machine learning are two more methods for categorizing raw 
EEG data. Time-frequency based methods like DWT (Discrete Wavelet Transform) are more appropriate for feature 
extraction because EEG is a non-stationary signal. Acharya et al. classified Alzheimer's patients with an 
ccuracy rate of 91.70% by using estimated entropy and sample entropy extracted from EEG as input data for a support 
vector machine (SVM) classifier [8]. Tavares et al. achieved a typical classification success rate of 95.60% by using the 
power spectral density (PSD) of several EEG frequency bands as input parameters for eight different machine learning 
techniques [9]. 
 
Machine learning algorithms are utilized to scan EEG and diagnose AD, minimizing the span of time consumed 
monitoring and dealing with humans. As a result, the diagnostic procedure produces healthier and unbiased 
outcomes. Traditional machine learning algorithms usually need complicated feature engineering (FE) in order to 
attain acceptable performance, implying that researchers must devote significant time and effort in studying the 
original EEG and selecting appropriate features. Deep learning is a sort of machine learning that automates FE 
utilizing neural networks and hidden layers, saving researchers a significant amount of time and money [10]. 
Furthermore, artificially selected features risk losing vital details from EEG data, but deep learning can make better 
use of EEG data and boost program robustness. Through a system that uses deep learning for diagnosing Alzheimer's 
disease using EEG has been a promising topic in recent years. After gathering these features, the dataset could be 
utilized for training a classifier to figure out if the signal is from an AD patient as well as ordinary. An OMDCNN 
algorithm was employed in the suggested study. The primary inspiration for our effort stems from previous studies 
undertaken by AlSharabi et al [6]. The following is the work's key contribution: 
 
In the current work, a BEF was employed to remove disturbance along with irregularities from an EEG dataset. 
 
• The CWT approach was then used to divide the signal that was filtered into bands of frequency in order to 
retrieve EEG signal characteristics. 
 
• Then, several signal properties were included into the CWT approach to build feature vectors and increase 
diagnostic performance. 
 

• The OMDCNN was utilized to categorize the enhanced EEG after building the required dataset. 
 
The following are the remaining portions of this document: The second part introduces relevant studies on the same 
issue. The third part explains the EEG data, data enhancement approaches, and deep learning model architecture 
employed in this work. The fifth section presents the study's findings and commentary. The sixth part presents the 
findings, as well as recommendations for further research. 
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Literature Review 
Khare and Acharya [11] introduced Adazd-Net, an adaptable and descriptive structure that enables the automated 
detection of AZD from EEG data. The suggested flexible adaptive analytic wavelet transformations automatically 
adjust to fluctuations in the EEG. This paper looks at both the most discriminating channel and the optimal feature 
count required for system performance. On the other hand, manual evaluation is laborious, biased, and dependent on 
the expertise of the individuals doing the evaluation. 
 
Musaeus et al., [12] wanted to see whether ear-EEG-measured epileptiform discharges are more common in 
Alzheimer's patients than in age- and gender-matched healthy controls. Modifications throughout time and the 
association with cognitive function have been investigated to better understand the connection between epileptiform 
emissions and AD. It is unknown; however, which characteristics and channels produce recognized data for detection 
of AD. 
 
Puri et al., [13] introduced a novel approach for separating AD and NC EEG signals into subbands (SBs) using low-
complexity orthogonal wavelet banks of filters having features that the disappear (LCOWFBs-v). To reduce the 
computational expense of the original nonsensical wavelet filter banks (FBs), a bigger design technique is offered. 
EEG SBs were used to calculate Higuchi's fractal dimension (HFD) and Katz's fractal dimension (KFD). The 
significance of these recovered traits was assessed using the Kruskal-Wallis test. More study is needed, however, to 
discover when epileptiform emissions emerge everywhere as the illness progresses. 
 
Imani [14] relied on Temporal sequences are analyzed by bidirectional long short-term memory (BiLSTM) networks, 
while EEG data gathered by several channels located in various brain regions is analyzed by convolutional neural 
networks (CNN). The temporal and geographical data is then integrated using a fully connected neural network. In 
addition, this study uses autoencoder networks for data augmentation and an entropy metric for channel selection in 
order to improve diagnostic accuracy. It is uncertain how many characteristics are needed to get the optimal system 
performance, though. 
 
Jia et al., [15] described a three-phase technique of decomposition-recombination to enhance the number of trials in 
the training set. Initially, multivariate empirical decomposition of modes is applied to break down the initial signals 
in the training set into several intrinsic mode functions. Another arbitrary combination of those functions of intrinsic 
mode from several trials comes next. Furthermore, the reconstructed function of the intrinsic mode is mixed as 
simulated trials to train the model. On a limited dataset, we tested the decomposition- recombination system utilizing 
functional connectivity matrix from each person as inputs. This benefit, however, is only evident for a short number 
of simulation trials utilizing the MCI datasets before the median efficiency begins to decrease. 
 
Cejnek et al., [16] recommended an innovative technique for diagnosing Alzheimer's disease with the potential for 
moderate cognitive impairment using EEG data. The suggested technique uses the EEG's degree of signal novelty 
as a characteristic to classify EEG records. The EEG signal adaptive filtering parameters are used to calculate 
novelty. Under prediction settings, a linear neuron which is acclimated to a descent in gradient was employed as the 
filter. Next, using the acquired characteristic (novelty measure) categorization, Alzheimer's disease is diagnosed. The 
suggested method was cross validated using an EEG dataset that included 102 controls, seven individuals with 
significant cognitive impairment (MCI), and 59 patients with Alzheimer's disease. Cross- validation yielded findings 
with 89.51% sensitivity and 90.73% specificity. 
 
Dogan et al., [17] created a unique directed network that collects local texture information for the purpose of 
automating the identification of AD using EEG data. The macroscopic connectome, a network of neural connections 
linking anatomo-functional brain regions of the monkey brain involved in the identification of visual objects and 
physical response, was used to create the suggested graph. The evaluation of this PBP-based model was conducted 
with an openly accessible dataset of AD EEG recordings. But qualities are difficult to understand and need a great 
deal of effort to cultivate. 
 
Chiang et al., [18] used fuzzy Petri net and associative methods to build a framework for an unbiased and successful 
Alzheimer's disease diagnosis. Alzheimer's disease prediction factors are developed using the variations in EEG 
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patterns between healthy individuals and Alzheimer sufferers. This might provide medical professionals a point of 
reference for a prompt diagnosis and allow for early intervention to prevent the illness from growing worse. On the 
other hand, training learning models requires a large number of trials. 
 
Jiao et al., [19] suggested the use of a Key EEG indication to distinguish between individuals suffering from AD, 
MCI, and other neurological dementias. The indication was tested on people in good health. We also attempted to 
investigate the relationship between the identified CSF biomarkers and the EEG biomarker and individual decline in 
cognition. In addition, a machine learning method was developed and proven to assess patients' cognitive 
performance (MMSE and MoCA), age at onset of disease (ADO), and course of illness (COD). Its use in accurately 
diagnosing and evaluating AD and its preliminary stage, amnestic moderate cognitive impairment (MCI), is still up 
for debate. 
 
Miltiadous et al., [20] developed an innovative technique that makes use of a Dual-Input Convolution Encoder 
Network (DICE-net) to categorize AD EEG data. Procedures: Information from age-matched healthy persons (CN) 
and 36 AD and 23 FTD were utilized. Following blurring, spectrum power and synchronization properties were 
obtained and added to DICE-net, which consists of convolution layers and a feed-forward transformer encoding. The 
principal results are: The results show that DICE-net performed better than other baseline models during Leave-One-
Subject-Out validation and showed good generalization performance, with a prediction rate of 83.28% regarding the 
AD-CN problem. This would be inaccurate, though, as there is no geographic relationship between any of the 
channels. Therefore, it is advised to use a depth-wise separable convolution. 
 
Inference: In an attempt to address the issue of AD detection, a number of automatic approaches utilizing ML 
architectures have been put forth recently. However, the generalizability of these approaches' results has been 
hampered by their small sample sizes, dearth of published datasets, or inadequate validation techniques appropriate 
for selected datasets. Additionally, very few studies have used one of the most recent developments in Deep 
Learning—the Transformer architecture—in EEG-based dementia detection research. That being said, more accurate 
and effective deep learning diagnostic methods are required in order to effectively capitalize on the wealth of 
information provided by EEG recordings. Performance outcomes from such diagnostic tools should be reproducible 
and well-verified (by promoting the openness of the databases exploited) in order to assure their trustworthiness and 
usefulness in clinical practice. 
 
Proposed Methodology 
In the current work, contamination along with disturbance seen in the EEG dataset were substantially reduced by 
using the band-pass elliptic digital filter. Important characteristics might then be extracted from the EEG data by 
applying the CWT approach to separate the filtered signal into discrete frequency bands. After that, a lot of signal 
characteristics were added to the CWT methodology to build feature vectors and enhance the efficacy of diagnosis. 
After the required dataset was created, the MDCNN was used to classify the improved EEG. 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 45 No. 1 (2024) 
__________________________________________________________________________________ 

3105 

 

 

Fig.1. Blok Diagram of Proposed Methodology 
 
Dataset Description 
 

Datasets from the Behavioral and Cognitive Neurology Unit of the Department of Neurology including the Referral 
Center for Cognitive Disorders at the Hospital das Clinics in Sao Paulo, Brazil, were used in this study to gather 
information on AD patients and control volunteers. The Mini-Mental State Examination (MMSE) and the Brazilian 
version of the Clinical Dementia Rating - CDR scale was used by qualified neurologists to recognize all AD individuals 
and Control volunteers and gather the necessary datasets [21]. 86 participants were split into three groups and 
provided the multi-channel EEG datasets. With a median age of 66.89 years and 8.18 StD, the first batch of 35 
Control subjects (CS) is made up of 18 men and 19 females. Based on individual interviews, the requirements for 
being included for those in the cognitive normal subgroup included an MMSE of at least 25, a CDR score of 0, a 
median MMSE of 28, and a mean deviation of 2.2. Moreover, there was no indication of functional cognitive decline 
prior to recording. The second patient group met the NINCDS-ADRDA [22] along with DSM-IVTR [23] parameters. 
It consisted of 31 mild-AD patients (a total of 12 male and 19 female), having the median age of 75.23 years as well 
as 5.55 StDs. The criteria for inclusion that followed significantly reduced the number of individuals with mild 
Alzheimer's disease: 0.5 CDR 1 as well as MMSE 24, which produced a median MMSE of 19.48 and a standard 
deviation of 3.16. Twenty-two individuals with intermediate Alzheimer's disease—seven men and fifteen women—
make up the third group. Their average age is 73.77 years, and they have 10.16 StDs. 
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Fig 2. Samples of EEG data, electrode mappings, and power spectrum density pattern for three different EEGs: 
(a) control; (b) mild AD; and (c) moderate AD. 

 
People with intermediate Alzheimer's disease needed to have an MMSE score of 20, with an average of 14.18 and a 
variance of 3.69, as well as a CDR score of 2. Inclusion in both AD cohorts (AD1 and AD2) was also necessary due 
to the existence of cognitive and functional decline in the year prior, as long-term interviews with competent 
informants indicated. Several other diseases that may possibly contribute to cognitive loss were examined in both AD 
groups, including B12 (vitamin) deficiency, diabetes, renal illness, thyroid disease, addiction to alcohol, liver or lung 
disease [24]. An example of electrode mappings, EEG power spectrum density, and EEG signals for three different 
datasets—control, moderate Alzheimer's disease, as well as moderate Alzheimer's disease—are shown in Figure 2 
on a logarithmic scale. The patterns of waves from the Fp1 electrodes collected from three different individuals from 
three different datasets make up the EEG signal sample. Three different arbitrary frequencies— 2, 10, and 25 Hz—
for which electrode maps are given in order to show how the three datasets differ from one another. 
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Fig 3. Distribution of the EEG acquisition system electrodes on the scalp 
 
Using the Braintech 3.0 equipment collecting system (EMSA Medical Equipments Inc., Brazil), the EEG dataset was 
acquired at a sampling rate of 200 Hz and an accuracy of 12 bits. The International 10-20 protocol was followed 
while positioning electrodes with the EEG data collection instrument. The subjects' earlobes, A1 on the left and A2 
on the right, as well as a pair of electrodes were used to collect EEG datasets for this study. The subjects' Fp1, Fp2, 
F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1, O2, Fz, Cz, Pz, and Oz. Figure 3 depicts the dispersion of each 
electrode. Everyone was awake, calm, and wearing closed eyelids when the assessment was done. EEG artifacts such 
as muscle movements and blinking were meticulously eliminated from the data by two experienced 
neurophysiologists. Following that, a minimum of 28 epochs, that extending eight seconds, were selected by 
examining each person's eyes [25]. 
 
Data pre-processing 
 
The research data is publicly available at https://github.com/tsyoshihara/Alzheimer-sClassification- 
EEG/tree/master/data. EEGs were obtained from 100 patients, including 14 HC subjects, 37 MCI patients, and 49 AD 
patients. Prior to removing noise and interference from brainwave patterns, the recorded signals from the EEG are 
analyzed and filtered using a pre-processing block. An elliptic band-pass filter is used to successfully confine the 
signals to a frequency range of 0.1 to 60 Hz. Beyond the EEG dataset, noises, interferences, and artifacts were 
recorded. The electrodes, magnetic fields from electronic devices, blood pressure, breathing, limb movement, eye 
blinking, and other people's actions were all responsible for these distortions, noises, and interferences [26]. During 
the preprocessing stage, the EEG signals were filtered using a band-pass filter to remove noise and disruptions caused 
by the EEG recording process. Numerous finite impulse response (FIR) and infinite impulse response (IIR) filters 
were in use. In this experiment, a band pass IIR elliptic digital filter with cutoff frequencies of 0.1 and 60 Hz was 
employed. Two skilled neurophysiologists carefully removed EEG artifacts from the EEG data, such as blink and 
contractions of the muscles [27]. 
 
Band pass elliptic digital filter: Band-pass filters allow signals inside the band-pass area to flow through while 
attenuating frequencies outside of the band-pass zone. The passband and stopband ripple can be adjusted 
individually. If the stopband and passband ripples approach zero independently, the filter can change into a 
Chebyshev type I or type II filter. As a result, in order to have a thin transition band, both the passband and stopband 
ripples must be permitted. Elliptical (also known as Cauer) filters provide a smaller transition band than other filters 
of the same order [28]. Discrete-time filters can be built in either IIR or FIR modes. The IIR filter is a feedback 
device with an infinite impulse response, as shown in Figure 2. Equations (1), (2), and (3) offer the mathematical 
difference equations that define the functioning of the IIR filter. For the IIR elliptic band-pass filter, we choose 100 
kHz sampling frequency (𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 2 kHz lower cut-off frequency (𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙), 2.5 kHz upper cut-off frequency (𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢), 1 dB 
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𝑘𝑘=
 

𝑘𝑘=
 

pass band ripple, and 80dB stop-band attenuation. Because the filter is of fourth order, it contains four zeros and four 
poles in the complex plane, as illustrated in [29]. The distance between the zeros and the center is one. Using the 
suitable Bilinear transformation method, an analogue filter with a transfer function 
𝐻𝐻(𝑠𝑠𝑠𝑠) may be turned into a digital filter with a transfer function 𝐻𝐻(𝑧𝑧𝑧𝑧). A projection between the s-plane and z- 
plane variables can be constructed if 𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝑧𝑧𝑧𝑧), This matching is utilized for the band-pass filter, and the 
equivalent frequency may be found by replacing 𝑠𝑠𝑠𝑠 = 𝑗𝑗𝑗𝑗 and 𝑧𝑧𝑧𝑧 = 𝑒𝑒𝑗𝑗𝑗𝑗, where 𝜔𝜔 is the angular frequency and 
𝜔𝜔 = 2𝜋𝜋𝜋𝜋 . Equations (4) and (5) define the bilinear transformation employed in the band-pass filter. 
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 

𝑦𝑦[𝑛𝑛] = ∑𝑀𝑀 
∑𝑀𝑀 

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑥𝑥[𝑛𝑛 − 𝑘𝑘] − ∑𝑁𝑁 
𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘𝑧𝑧−𝑘𝑘 

𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘𝑦𝑦[𝑛𝑛 − 𝑘𝑘] (1) 

𝐻𝐻(𝑠𝑠𝑠𝑠) =   𝑘𝑘=1 , 𝑟𝑟𝑟𝑟𝑟𝑟0 = 1 (2) 
𝑁𝑁 
𝑘𝑘=1 

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑧𝑧−𝑘𝑘 

𝑓𝑓𝑓𝑓𝑓𝑓0 ∏𝑀𝑀  (1−𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑧𝑧−1) 
 

𝐻𝐻(𝑧𝑧𝑧𝑧) = 𝑘𝑘=0 
𝑁𝑁 

(3) 

∏𝑘𝑘=1(1−𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘𝑧𝑧−1) 

𝑠𝑠 = 1−2 cos 𝜔𝜔0𝑧𝑧−1+𝑧𝑧−2 

1−𝑧𝑧−2 
 

Ω = cos 𝜔𝜔0− 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 

sin 𝜔𝜔 

 
 
(4) 
 
(5) 

Where 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘 are the reverse and forward filter coefficients, respectively, 𝑇𝑇𝑠𝑠 represents the sampling period 
and 𝜔𝜔𝑠𝑠 corresponds to the center frequency of the band-pass/stop filter. 
 
Feature Extraction 
 
In order to handle EEG signals as efficiently as possible, the feature-extraction approach is essential. To deal with the 
relatively small number of values that indicate the properties of the EEG signal, the signals are recorded and split 
into long time-series. These numbers are often referred as being features since they are merged into a vector known 
as the vector with features. Consequently, feature-extraction methods may be characterized by methods for 
converting signals into feature vectors. To extract features, a variety of feature-extraction methods are employed. 
The most popular and often applied approach, DWT, has been applied in this investigation. We propose to use DWT 
with the cascade method (CWT) in this study to create vectors of attributes that include the parameters as follows: 
Logarithmic band power (LBP), Standard deviation (StD), Variance (VAR), Kurtosis (KUR), Average Energy (AE), 
Root mean square (RMS), and NO (Norm). 
 
Using the STFT, non-stationary data analysis is not possible, such as EEG data. This can be attributed to STFT's 
consistent accuracy over the entire wavelength range. The technique of multi-resolution wavelet transform is 
employed to assess various frequencies at various resolutions. Additionally, the wavelet transform would be the ideal 
choice to avoid the related dimensionality problem because it may provide fewer attributes for the signal to be 
analyzed. Wavelet transformations, for example, may analyze signal properties in the temporal along with frequency 
domains by decomposing signals across multiple steps via a single function [29]. This function is provided by and 
is known as the mother function ξ. 
 

𝜉𝜉 (𝑡𝑡) = 1 𝜉𝜉 (𝑡𝑡−𝑦𝑦) . . . 𝑥𝑥, 𝑦𝑦 ∈ 𝑊𝑊𝑊𝑊, 𝑥𝑥 > 0, (6) 
√2 𝑥𝑥 
 

where the wavelet space (WS) is represented by the parameter and the scaling and shifting parameters, 
respectively, by x and y. Wavelet transform is represented by the following equation. 

∑ 
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𝑘𝑘=−∞ 

𝑘𝑘=−∞ 2 2 

 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 1 ∫ 𝜉𝜉 (𝑡𝑡 − 𝑦𝑦) 𝑑𝑑𝑑𝑑 (7) 
√𝑥𝑥 𝑥𝑥 
 

DWT was utilized in this work because it provides a very useful wavelet representation. Low- and high-pass filters are 
commonly employed in first-level decomposition to offer a depiction of the digital information as detail (D1) and 
estimate (A1) components. The following equation provides the DWT decomposition: 
 

𝑓𝑓(𝑡𝑡) = ∑𝑘𝑘=+ 𝑋𝑋∞ 𝐷𝐷𝐷𝐷𝑛𝑛,𝑘𝑘∅(2−𝑛𝑛 𝑡𝑡 − 𝑘𝑘) + ∑𝑘𝑘=+ 
𝑋𝑋∞ 

 
𝑘𝑘=+ 𝑋𝑋∞ 
𝑘𝑘=−∞ 

−𝑗𝑗×𝑎𝑎𝑎𝑎𝑗𝑗,𝑘𝑘×𝜓𝜓(2−𝑗𝑗𝑡𝑡−𝑘𝑘) (8) 

 

where the detail coefficients are represented by 𝐷𝐷𝐷𝐷𝑛𝑛,𝑘𝑘 and the approximation coefficients by 𝑎𝑎𝑎𝑎𝑗𝑗,𝑘𝑘 , respectively; n 
indicates the level and ∅ is the function of scale. The process is repeated once the first estimate is deconstructed. At 
the end of the process, n+1 deconstructed signals are present. The mother wavelet function utilized in this study is 
Daubechies 4 (db4); level 4 was selected since it provides the best qualities for correctly detected signal features. The 
following techniques were employed to produce the extra feature vectors: There are 𝑛𝑛 = 1, 2, . . . , 𝑁𝑁, discrete signal 
samples in S(n), where N is the number of signal samples. 
 
The signal's variance 
 
 
 

𝑉𝑉𝑉𝑉𝑉𝑉 = 1 ∑𝑁𝑁 
 

(𝑆𝑆(𝑛𝑛) − 𝜇𝜇 ) (9) 

𝑠𝑠 𝑁𝑁 𝑛𝑛=1 𝑠𝑠 

 

where the signal sample mean is denoted by 𝜇𝜇𝑠𝑠 [29]. The signal's Standard Deviation (𝜎𝜎) 
 

𝜎𝜎 = √1 ∑𝑁𝑁    (𝑆𝑆(𝑛𝑛) − 𝜇𝜇 )2 (10) 
𝑠𝑠 𝑁𝑁     𝑛𝑛=1 𝑠𝑠 
 

The kurtosis of the signal 
 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  =  𝐸𝐸 [(𝑆𝑆(𝑛𝑛)−𝜇𝜇𝑠𝑠)] (11) 
𝜎𝜎𝑠𝑠 
 

where the anticipated value of the signal samples is denoted by 𝐸𝐸[ ] [32]. The NNSE (non-normalized SE) [33] 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = ∑𝑁𝑁    |𝑆𝑆(𝑛𝑛)|2 log|𝑆𝑆(𝑛𝑛)|2 (12) 
𝑛𝑛=1 
 
Cascade algorithm: 
 
Wavelets built such that the family of wavelets produced through both scale and translating by any parameter of 
either form is an orthonormal family are advantageous for the discrete wavelet transform (DWT) [26]. The DWT 
method splits all approximate values for a signal f through two parts: the details of the coefficients (also called 
wavelet coefficients) of the coarser estimation a, which produce a reduced version of the signal f filtered inside the 
high-pass filter. This procedure is done through the use of wavelets as well their corresponding scaling function. An 
orthonormal basis of 𝐿𝐿2(ℝ). is the invertible decomposition of every function experiencing such a transformation. 
Furthermore, because there is a factor two in scale between the levels as well as coefficient translation, it can be 
shown that the final decomposition at level l may be stated as the product for the original non-dilated wavelet with 
the preceding estimated value, which had been sub-sampled with a factor of two. In a similar vein, the reconstruction 
at every level may be quantized as the average of the conjugate originating wavelet's convolution with the level before 

∑ 
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it's reconstruction, where interpolated zeros are added in between each sample. With the help of this characteristic, 
DWT is able to downscale and interpolate the signals at every stage of the reconstructions and decompose with zeros, 
respectively, using a single wavelet to conduct a cascaded procedure that is the same at every level. With the help of 
this characteristic, DWT is able to downscale and interpolate the signals at every stage during reconstruction as well 
as decomposition with zeros, respectively, using a single wavelet to conduct a cascaded operation that is identical at 
every level. We call it the cascade algorithm. A convolution neural network with two two L layers, L encoded blocks, 
and L decoded blocks might be used to mimic the DWT. There are two outputs on each encoding block, a single 
which is connected via the skip connection to the matching decoding block. In this scenario, we suggest training the 
pertinent filters for making the network learnable. 
 
Modified Convolutional Neural Network for EEG Classification 
 
CNN [30] has a weight sharing network topology that resembles a real brain network, making it a bionic structure. 
Reducing the weight and complexity of the network has shown to be successful. This device handles 
multidimensional pictures with remarkable power. Since the entire network can be thought of as an end-to-end 
system, the procedure involving gathering and categorizing features requires far less sophisticated data generation. 
Owing to CNN's potent capacity to learn spatial properties from two-dimensional input, it can effectively extract 
detailed spectral information from various brain areas when used to EEG processing. Convolution and pooling are 
the two fundamental working processes of the CNN structure, which significantly streamlines the preprocessing 
procedure. In order to obtain the appropriate feature  maps, the convolutional kernel in the convolutional layer 
functions as a filter during image processing. Finally, a multi-layer convolution process allows us to extract picture 
characteristics of varying hierarchies. An example of the convolutional computation is as follows: 
 
 

where 𝑀𝑀𝑗𝑗 represents the input layer's receptive field, 𝑓𝑓 stands for the activation function, 𝑙𝑙 for the number of layers, 
and 𝑐𝑐𝑐𝑐 and 𝑏𝑏 for the convolutional kernel and bias, accordingly. 
The term "pooling layer" also refers to the sub-sampling layer, which mostly consists of overlapping, mean pooling, 
and max pooling. In order to reduce the feature maps' dimensionality, this layer is often positioned below the 
convolutional layer. In this work, CNN will employ maximum pooling, while the pooling layer's expression is 
displayed as follows: 
𝑥𝑥𝑙𝑙 = 𝑓𝑓(∑𝑖𝑖∈𝑀𝑀  𝑥𝑥𝑙𝑙−1 ∗ 𝑐𝑐𝑐𝑐𝑙𝑙  + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙) (13) 
𝑗𝑗 𝑗𝑗    𝑖𝑖 𝑖𝑖𝑖𝑖 𝑗𝑗 

 
𝑥𝑥𝑙𝑙 = 𝑓𝑓(𝛽𝛽𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑐𝑐𝑐𝑐𝑙𝑙−1) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙)+ (14) 
𝑗𝑗 𝑗𝑗 𝑗𝑗 𝑗𝑗 
 

where β and 𝑏𝑏 stand for the coefficient and bias, respectively, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(. ) for the pooling function. The MCNN 
structure in this article was constructed using the Inception module. It is primarily motivated by GoogLeNet [30], 
which shows that network expansion will greatly improve the network's capacity for feature extraction. Figure 2 
shows the inception module that we will be using. 
 

 
Fig.2. Network structure of Inception module 

 
Convolutional kernel stacking of 1*1, 3*3, 5*5, and 3*3 pooling gives the inception module a stronger ability to 
adapt to input size. Additionally, the network gains a multi-scale fusion feature and a range of sensory fields, which 
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significantly enhances the model's generalization power. We have used an inception module which will efficiently 
record the distribution rule and characteristic information within the original EEG spectral pictures. On the other hand, 
the implementation of the inception module raises the information density of the network, which ultimately drives 
up the computation cost. Consequently, in order to reduce computation complexity, we use ReLU as the activation 
function. Figure 3 depicts the MCNN, the proposed CNN structure. 
 

Fig.3. Architecture of MDCNN 
 

As seen in Figure 3, the Inception module, which has four layers of convolutional kernels, serves as the foundation for 
the first layer of CNN. The first layer's input is designated by 𝒽𝒽(𝑥𝑥) , where 𝑥𝑥 stands for the input pictures, ℎ𝑚𝑚(𝑥𝑥) for 
the 𝑚𝑚th layer's output, Θ for the convolutional process, and β𝑚𝑚and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 for the convolutional kernel's coefficient 
and bias, respectively. The output of the inception module may then be shown as follows: 
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1 4     𝑚𝑚=1 1𝑚𝑚 1𝑚𝑚 

 

Features of several spatial scales can be obtained by using the multi-scale convolution process of the inception 
module. Using convolutional operations, the activation values of distinct features from different positions in the 
provided image may be calculated. Every neuron in this layer may then have its output value obtained using ReLU. 
The resulting data is finally concatenated using the concatenate layer. Using the same 128*3*3 convolutional kernel 
setup, the remaining four convolutional layers in the MCNN were comprised. Features with more abstract and detailed 
information can be extracted using the multi-layer convolution process. With 1024 neurons in the full-connected 
layer, the input feature maps would be converted into a 1024*1 one-dimensional vector. Additionally, a batch normal 
(BN) [31] technique was implemented to speed up network training and normalizing. Between the convolution and 
activation operations is where BN is operated. It successfully prevents internal covariate shift. The remaining layers' 
output is shown as: 
 
𝐻𝐻𝑚𝑚(𝑥𝑥) = max(0, 𝒽𝒽𝑚𝑚−1(𝑥𝑥)Θ𝛽𝛽𝑚𝑚 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚) (16) 
 
Based on the quantity of EEG datasets, the following five categorization issues have been studied: Two classes of 
characteristics: Control in comparison to symptoms of mild and moderate AD Three classes of AD characteristics 
were compared: mild against moderate, regulate versus weak and moderate, and controls vs weak vs intermediate (3-
class). B; m[][pl9ygu90—09uhgv 6The hyperparameter definition has a significant impact on the network's 
efficiency. The most significant issue is that there is no accepted paradigm for determining the ideal set of MPCNN 
hyperparameters and creating the architecture of the network. Using the MCSA algorithm in this work, the authors 
created an automated method for hyperparameter optimization and structural design to solve this problem. The 
MDCNN model's chosen hyperparameters are batch size, number of epochs, number of filters, pooling size, and 
kernel size. 
 
MCSA Method: The primary concept behind this work's MCSA implementation—which draws inspiration from the 
forgetting mechanism—is to substitute a special forgetting mechanism for the receptor editing mechanism 
[24] in the CSA. Replacing the CSA's receptor editing mechanism with a special forgetting mechanism is the main 
idea behind its implementation. Here is the precise way of implementation: The suitable memory strength and life 
duration of every antibody candidate set are noted throughout every algorithm iteration. The algorithm's 
determination of antibody forgetting was based on whether protein activity crossed the threshold after several 
repetitions. A new, clever algorithm called MCSA can also efficiently overcome prematurity and has a quick rate of 
convergence, ensuring both local and global search capabilities and improving algorithmic performance. 
 
Affinity Calculation. The function value, which can be written as, 𝑎𝑎𝑎𝑎 is the target test function of antibody ab 
affinity 𝑎𝑎𝑎𝑎𝑎𝑎 to antigen in order to streamline the computation. 
 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑) (17) 
where 𝑑𝑑𝑑𝑑𝑑𝑑 is the antibody's dimension and 𝑎𝑎𝑎𝑎 = {𝑥𝑥𝑖𝑖|𝑖𝑖 = 1,2, … , 𝑑𝑑𝑑𝑑𝑑𝑑} is the antibody. 
 
Cloning Method: The cloning approach selects the hyperparameter value for the antibody cloning based on the 
affinity that matches the antigen and antibody. The number of antibodies which might be cloned increases with 
affinity. The particular cloning formula that is used is 
 

𝑖𝑖 ∈ [0, 𝑝𝑝𝑝𝑝 − 1] 
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖|𝑗𝑗 = max (1, 𝑖𝑖𝑖𝑖𝑖𝑖 (

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖
+𝑎𝑎𝑎𝑎

 
 

 

 
} , 𝑎𝑎𝑎𝑎 > 0 (18) 

𝑎𝑎𝑎𝑎 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) 
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The number of antibodies in the probable set of antibodies is denoted by 𝑝𝑝𝑝𝑝 population size, the affinity between the 
antibody 𝑎𝑎𝑎𝑎𝑖𝑖 and the antigen is represented by 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 , the starting clone number is indicated by max clone, and the 
clone number of the antibody 𝑎𝑎𝑎𝑎𝑖𝑖 is shown by 𝑗𝑗. 
 
Variation Method: The purpose of the mutation approach is to determine the antibody's level of mutation based on 
the affinity of the cloned antibody for the antigen. The likelihood and severity of a mutation decrease with increasing 
affinity. The particular variant formula that is 
When 𝑎𝑎𝑎𝑎𝑎𝑎 > 0, max affinity is the maximal affinity of the concentrated antibody; 𝑚𝑚𝑚𝑚 is the mutation rate, and an is 
the variation range. 
 
Forgetting Method: Based on the antibody's life duration, the right memory strength, and the Rac1 protein's activity, 
the forgetting technique establishes whether antibody forgetting is necessary. The precise formula for forgetting is 
 

where the suitable memory strength is 𝑎𝑎𝑎𝑎𝑠𝑠 , the 𝑡𝑡ℎ protein activity threshold is γ, and the antibody survival duration 
is 𝑎𝑎𝑎𝑎𝑡𝑡 . Algorithm 1 illustrates how the enhanced method suggested in this study will operate. It is possible to modify 
the suspension conditions of Algorithm 1's algorithms to suit certain requirements. A common termination condition 
is when the function evaluation reaches its maximum value or when the number of generations reaches its limit. 𝑡𝑡ℎ 
Protein activity, which is determined by the algorithm based on the antibody's survival duration and suitable memory 
strength at the time of initial selection into the candidate set, is an intrinsic feature of every candidate
 antibody. Additionally, it varies 
dynamically while the algorithm is run. The antibody is not adequately competing relative to other candidate 
antibodies when its property value hits the threshold, indicating that it has never mutated in an improved direction 
during the anticipated time frame. Accordingly, the algorithm will carry out the forgetting operation for the antibody 
that satisfies the threshold value. 
 
Experimental Results and Discussion 
 
The sensitivity, specificity, receiver operating characteristic curve area, and classifier accuracy may all be used to 
evaluate a diagnostic system. A multitude of classifiers were developed implemented and evaluated in order to obtain 
the greatest diagnostic efficiency and accuracy in classification. In this study, the proposed MCNN is compared with 
various methods, such as RF, ELM, QDA, KNN, SVM, ANN, and classifiers, that produced the best outcomes. The 
k-fold cross-validation approach is used in the classification process, which randomly divides all EEG features into k 
equal groups [38]. The balance of subsets is used for training, and one subset is chosen for testing (validation). A 
selected number of each has been used once in the k repetitions of this procedure. We used 10-fold cross-validation 
in the current study, putting all of the detected EEG signal characteristics into a feature matrix that was obtained 
using feature extraction techniques, and then applying 10-fold a cross-valid to the feature matrix. Following that, these 
qualities were split into two distinct subsets: 10% for testing and 90% for training. The examination subset was given 
into the model after it was successfully trained each time, and the training subset was used for training the classifier 
with the aim to build and preserve the database of features of the learned classifier. 
 
As mentioned before, the EEG data utilized in this study were divided into 3 categories. Thirty-one moderate AD 
patients, twenty mild AD patients, as well as 30 Normal subjects submitted the EEG records for the initial, next, and 
final groups, respectively. The electroencephalogram (EEG) dataset was processed utilizing a band-pass IIR elliptic 
digital filter having the threshold frequency of 0 and 60 Hz in order to improve the signal-to-noise ratio. The CWT 
technique was then used to derive the features from the filtered EEG data. Next, various statistical parameters 
including LBP, StD, Var, etc. have been combined with the CWT technique to improve diagnostic 
performance and generate the EEG feature vectors. Ultimately, several classifier types were employed to divide the 
EEG data into groups based on these classifications, and the classification accuracy of each group was calculated 
and contrasted. An in-depth evaluation of the recommended techniques was made possible by plotting the receiver's 
operating characteristic curves and calculating the regions beneath them. 
 
Results Evaluation: Table 2 shows that the classifiers with the greatest overall accuracy in classification are the RF, 
ELM, QDA, KNN, SVM, ANN, and ones. The median accuracy rates of these classifiers are 99.7, 99.8, 99.85, 99.9, 
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and 99.98%, in that order. For a more comprehensive evaluation of the recommended approaches, Figure 5 
demonstrates the ROC curves. According to which features provide the maximum accuracy, Table 3 shows the 
outcome for the calculations of the threshold, particulars, accuracy of classification, and the area of the ROC curves 
of each classifier. It is clear that ANN, SVM, RF, ELM, QDA, and KNN were the classifiers that performed the best. 
 
Its definition is a ratio of correctly segmented samples to the total number of samples. This represents one of the most 
frequently utilized metrics of the effectiveness of classification, as seen below. 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
 

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 

(22) 

 
Where True Positive (TP): This denotes the accurate detection of AD. True Negative (TN): This status shows that a 
feature was appropriately identified as non-AD. FP: It means that a feature was mistakenly identified as AD. False 
Negative (FN): This signal means that feature was missed and classified as an AD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Sensitivity performance comparison 
Figure 4 compares the sensitivity of the existing RF, ELM, QDA, KNN, SVM, ANN, and that of the proposed 
OMCNN. Figures comparing the proposed strategy to existing methods indicate that it can achieve a high sensitivity 
rate when used for DWT and CWT based feature extraction. When compared to other existing approaches such as 
RF, ELM, QDA, KNN, SVM, ANN, and, OMCNN for DWT achieves a high sensitivity rate of 98.96%, indicating 
its effectiveness in AD detection. By obtaining a sensitivity rate of 99.25% for CWT, OMCNN enhances the issue. 
The recommended solution displays a significantly lower end error and a substantially faster and less variable 
training curve when compared to the preceding strategies. These results provide additional evidence that the 
suggested method has a greater rate of AD detection. 
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Fig.5. Specificity performance comparison 
The results of a specificity comparison between the present RF, ELM, QDA, KNN, SVM, ANN, and KNN the 
proposed OMCNN are shown in Figure 5. According to the results, the suggested OMCNN obtains specificity rates 
of 99.25% for IWT-based feature extraction techniques and 98.96% for DWT-based feature extraction approaches. 
Based on a specificity rate comparison between OMCNN and ANN, SVM, RF, ELM, QDA, and KNN, which yields 
lower rates, the suggested study might yield superior findings for AD identification than current methods. Compared 
to RF, ELM, QDA, KNN, SVM, ANN, and KNN networks, the OMCNN network trains more quickly. It also has a 
more effective CWT feature extraction procedure, which raises the specificity value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Accuracy performance comparison 
Fig. 6 shows the accuracy comparison of the proposed OMCNN with the current RF, ELM, QDA, KNN, SVM, 
ANN. Based on the data, a high accuracy rate value was obtained by the suggested OMCNN, suggesting a high rate 
of AD detection. With an efficient prediction model, the training time would be shortened by the filtering and feature 
extraction based on CWT and DWT in the suggested scheme. Accuracy values of 98.59 and 99.99% for DWT along 
with CWT, respectively, show that the suggested study can provide superior AD detection findings than current 
approaches. Medical professionals and physicians can benefit from the suggested method's automated, quick, simple, 
accurate, and efficient identification of Alzheimer's disease. The suggested method may cut down on the restricted 
number of neurologists, speed up diagnosis, and increase diagnosis precision. 
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Fig.7. AUCROC performance comparison 
The AUCROC comparisons for AD prediction is shown in Fig. 7 above. Methods like DCCNN-SMO, OMCNN 
Classifier, VELA, ML-IDS, and others are applied. As the number of photos rises, the AUCROC value grows 
linearly. The suggested method has a high AUCROC rate, with DWT and CWT-based feature extraction achieving 
98.59% and 99.12%, respectively. The findings demonstrate that, in terms of improved liquid particle identification 
results with high accuracy rates, the suggested OMCNN technique outperforms the current algorithms. OMCNN 
learning approaches improve accuracy without causing the local optima issue because they are very resilient to 
distortion in data used for training. These results imply that the suggested method is better capable of reliably and 
effectively differentiating not just AD however their sorts. 
 
Conclusion and Future work 
 
The main goal of this project was to develop an Alzheimer's disease diagnosis tool based on EEG data processing. The 
creation of an automated diagnostic system which can interpret signals from the brain on itself would quicken up and 
boost the reliability of the diagnosis process. The gathered EEG datasets during this investigation were filtered using 
BEF. After that, many signal features were combined using the DWT methodology to improve diagnosis 
performance, and the CWT approach was created to divide the signal that was filtered into frequency bands. OMCNN 
then looked into how EEG characteristics were categorized into groups. This study aims to evaluate many approaches 
and determine the best combination approach for Alzheimer's disease diagnosis. Datasets related to manageable, 
minor, and moderate Alzheimer's illnesses were utilized. The proposed system obtained 99.99% precision for 
classification annually using CWT. Additionally, the accuracy of the present OMCNN was enhanced by 0.01% to 
2% when compared to the traditional model prior to the implementation of the CWT function. This makes the 
recommended approach for processing EEG signals very important, and the best classification would result from 
using a customized hyper-parameter model to predict the severity range. This study used PCA to remove unnecessary 
and redundant information from EEG data and signal processing techniques to identify characteristics that might be 
helpful for future early Alzheimer's disease detection. 
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