Smart Contract Application for Managing Land Administration System Transactions

Mr. G. Nandakumar,

Assistant Professor, Dept. of Information Technology[#]

G. Aakash, *D. Arun, *O. Ruban

UG Student, Department of Information technology Manakula Vinayagar Institute of Technology Puducherry

 $Sivanesh09@\,gmail.com\,,\,aakash555aakash@\,gmail.com,\,arundhanasekar02@\,gmail.com,\,rubannathan03@\,gmail.com$

Abstract

The rapid advancement of blockchain technology has led to innovative solutions for various industries, including land administration systems. Traditional land transactions often suffer from inefficiencies, lack of transparency, and susceptibility to fraud. This paper presents a novel approach using smart contract technology to enhance the management of land administration system transactions. The proposed smart contract application leverages the capabilities of blockchain to create a secure, transparent, and automated environment for managing land-related transactions. By eliminating intermediaries and relying on a decentralized ledger, the system enhances trust among stakeholders, minimizes the risk of fraud, and streamlines the overall process. The smart contract application is designed to facilitate a wide range of land-related transactions, including property transfers, sales, leases, and other land-use agreements. Through self-executing and self-enforcing contracts, parties involved in a transaction can interact directly with the blockchain, reducing the need for intermediaries and associated costs. To implement this solution, considerations must be given to legal and regulatory frameworks, as well as addressing potential challenges like ensuring privacy of sensitive data and scalability to accommodate a high volume of transactions.

Index Terms --- Blockchain, Ethereum, land administration, real estate, smart contract.

1. INTRODUCTION

Fig 1. Cyber Physical System

The management of land administration systems is a critical aspect of any modern society, as it directly influences economic development, property rights, and social stability. However, traditional methods of conducting land transactions often suffer from inefficiencies, lack of transparency, and susceptibility to fraudulent activities. These challenges have spurred the exploration of innovative technologies to revolutionize land administration systems. Among these technologies, blockchain and smart contracts have emerged as promising solutions that can address these longstanding issues.

Blockchain technology, originally designed to underpin cryptocurrencies like Bitcoin, has found versatile applications across industries due to its decentralized and transparent nature. Smart contracts, a key feature of blockchain technology, are self-executing contracts with the terms of the agreement directly written into code. These contracts automatically execute actions when specific conditions are met, eliminating the need for intermediaries and streamlining processes. As a result, smart contracts offer a compelling solution for the complex and often convoluted realm of land administration.

This paper introduces a novel approach: the utilization of smart contract applications for managing land administration system transactions. By combining the power of blockchain's decentralized ledger and smart contracts' automation capabilities, this approach seeks to redefine the way land transactions are conducted, recorded, and verified. The primary objective is to enhance transparency, security, and efficiency within land administration systems.

In this context, the paper will explore the various facets of implementing smart contract applications in land administration. It will delve into the benefits that such applications offer, including improved transparency, reduced fraud, and increased efficiency. Additionally, the paper will address potential challenges such as legal and regulatory considerations, data privacy concerns, and the scalability of the technology.

The subsequent sections of the paper will provide a comprehensive overview of how the proposed smart contract application can transform the current landscape of land transactions. The architecture and key features of the application will be detailed, along with discussions on how it aligns with existing legal frameworks and navigates potential obstacles. The paper will conclude by highlighting the transformative potential of smart contract applications in land administration systems and advocating for their adoption to unlock a new era of secure, efficient, and trustworthy land transactions.

LITERATURE REVIEW:

The utilization of blockchain technology and smart contracts in land administration systems has gained significant attention from researchers, policymakers, and industry practitioners. This section provides an overview of key studies and contributions in the field, highlighting the trends, challenges, and potential benefits associated with implementing smart contract applications for managing land administration system transactions.

1. **Blockchain and Land Administration:** Researchers have emphasized the potential of blockchain technology in improving land administration systems. Studies by Mendoza et al. (2019) and Raj and Gopinath (2020) highlighted blockchain's capacity to enhance transparency, traceability, and security in land transactions. These works underscore the role of blockchain in reducing fraud, corruption, and disputes in land ownership.

2. **Smart Contracts in Real Estate:** Several researchers have explored the application of smart contracts in real estate, a domain closely related to land administration. Van Bragt et al. (2018) discussed the use of smart contracts to automate real estate transactions and streamline property transfers. Their findings suggest that smart contracts can significantly reduce transaction times and costs.

- 3. **Legal and Regulatory Considerations:** The integration of smart contracts into land administration systems raises legal and regulatory concerns. Ali et al. (2019) examined the legal implications of smart contracts in real estate, emphasizing the importance of aligning smart contract terms with existing legal frameworks. The study suggests that adapting legal language to code can enhance transparency and enforceability.
- 4. **Data Privacy and Security:** Ensuring the privacy and security of sensitive land-related information is crucial. Al Omar et al. (2021) explored methods to enhance data privacy in blockchain-based land transactions, proposing techniques such as zero-knowledge proofs and private smart contracts. Their research highlights the need to strike a balance between transparency and data protection.
- 5. **Challenges and Limitations:** While the benefits of blockchain and smart contracts are promising, challenges exist. Bai et al. (2020) discussed scalability issues in blockchain-based land administration, emphasizing the need for solutions that can handle a large volume of transactions without compromising efficiency. Additionally, concerns about digital literacy, access, and inclusivity have been raised by De Filippi and Hassan (2016).
- 6. **Case Studies and Implementation:** Researchers have also examined practical implementations of blockchain-based land administration. The pilot project in Georgia, as studied by Chugunov et al. (2020), showcases the successful use of blockchain and smart contracts for land registry, highlighting increased transparency and reduced administrative burden.
- 7. **Stakeholder Perspectives:** Stakeholder perceptions of adopting blockchain and smart contracts are important. A study by Paul et al. (2019) analyzed the views of land administrators, lawyers, and other relevant stakeholders on implementing blockchain in land registration. It revealed varying levels of acceptance, with concerns over legal recognition and interoperability.

In summary, the literature review reveals a growing body of research and practical implementations that highlight the potential benefits and challenges of employing smart contract applications in land administration system transactions. While there is a consensus on the transformative potential of this technology, addressing legal, regulatory, privacy, scalability, and inclusivity concerns remains crucial for successful adoption. The subsequent sections of this paper will build upon these insights, offering a comprehensive framework for implementing and leveraging smart contract applications in the realm of land administration.

when compiled, run on Ethereum Virtual Machine (EVM).

Solidity programming language is loosely based on libraries, and complex user-defined types, called structs. Since solidity was introduced in 2015, language has been

under active development and as of the beginning of 2022, eight major versions were released. Solidity has concepts that are available in most contemporary programming languages and consequently does not have a steep learning curve for those familiar with these languages. Since 2015, solidity has gained wide community support.

II. BCT BASED PROPOSAL FOR SOLVING LASPROBLEMS

€ Introduction: The challenges inherent in traditional Land Administration Systems (LAS) such as inefficiencies, lack of transparency, fraud, and disputes have prompted the exploration of innovative solutions. Blockchain technology, renowned for its decentralized and secure nature, offers a promising avenue to address these challenges. This proposal outlines a comprehensive Blockchain Technology (BCT) based approach to revolutionize Land Administration Systems, enhancing transparency, efficiency, security, and trust.

Problem Statement: Traditional LAS face issues like lengthy transaction processes, cumbersome paperwork, potential for fraud, and difficulties in verifying ownership. Additionally, the lack of a centralized database leads to discrepancies and conflicts.

Blockchain Solution: Implementing a blockchain-based LAS can significantly mitigate these problems. Blockchain's decentralized and immutable ledger ensures transparency, traceability, and security. Smart contracts, self-executing codes triggered by predefined conditions, can automate processes, reducing manual intervention and intermediaries.

Key Components of the Proposal:

- 1. **Decentralized Ledger:** Utilize a blockchain ledger to record all land-related transactions. Each entry is time-stamped, cryptographically secure, and immutable. This eradicates tampering and provides a transparent history of ownership and transactions.
- 2. **Smart Contracts for Transactions:** Develop and implement smart contracts to automate routine transactions such as property transfers, sales, and leases. Parties involved interact with the blockchain, enabling secure, quick, and accurate transactions.
- 3. **Title Verification and Ownership:** Store land titles and ownership information on the blockchain. Land ownership history is transparently maintained, mitigating disputes and fraudulent claims.
- 4. **Data Interoperability and Integration:** Enable seamless data exchange between various government agencies, registries, and stakeholders. This ensures consistency and reduces redundancy.
- 5. **Access Control and Privacy:** Employ cryptographic techniques to ensure privacy. Different levels of access can be granted to stakeholders, maintaining confidentiality while enabling necessary transparency.
- 6. **Tokenization and Fractional Ownership:** Tokenize land assets to enable fractional ownership. This can unlock liquidity and democratize real estate investment.

7. **Verification and Notarization:** Smart contracts can be used to verify the authenticity of documents, replacing traditional notary services. This reduces costs and enhances trust.

8. **Dispute Resolution:** Smart contracts can incorporate predefined dispute resolution mechanisms, expediting conflict resolution and reducing litigation.

Benefits and Potential Impact:

- **Transparency:** The blockchain-based LAS ensures transparent and auditable land records, enhancing accountability and reducing corruption.
- **Efficiency:** Automation through smart contracts accelerates processes, reducing administrative delays and costs.
- **Security:** Blockchain's cryptographic security guards against data tampering and unauthorized access.
- **Trust:** By eliminating intermediaries and ensuring the accuracy of records, trust among stakeholders is enhanced.
- **Fraud Prevention:** Immutability and transparency minimize the risk of fraudulent activities.
- **Inclusivity:** Digital access can bridge geographical gaps, ensuring wider participation and increased land tenure security.

A. PROPOSAL OF SMART CONTRACT FOR LAS

☐ The Land Administration System (LAS) is a critical component of any society's infrastructure,
managing land ownership, transactions, and rights. Traditional LAS often suffer from inefficiencies,
lack of transparency, and susceptibility to fraud. This proposal introduces a comprehensive Smart
Contract solution to revolutionize LAS, enhancing transparency, efficiency, security, and trust.

☐ Smart Contract Design:

- a. **Transaction Types:** Develop a set of standardized smart contracts for various land-related transactions, including property transfers, sales, leases, and land-use agreements.
- b. **Self-Executing Logic:** Encode the terms and conditions of each transaction into the smart contract's code. Once predefined conditions are met, the contract automatically executes the corresponding actions.
- c. **Data Integration:** Establish a secure interface with relevant databases and authorities to ensure accurate data input and validation.
- d. **Multiple Signatories:** Enable multiple parties to sign the smart contract, ensuring consensus and legal validity.
- e. **Conditional Triggers:** Implement triggers based on specific conditions such as payment completion, title verification, and regulatory approvals.

■ Key Features and Benefits:

a. Transparency and Auditability: Smart contracts operate on a transparent and immutable

blockchain ledger, providing a trustworthy record of all transactions.

b. Efficiency and Automation: Automation of processes reduces administrative delays, minimizes

paperwork, and expedites transaction completion.

c. Security and Fraud Prevention: Blockchain's cryptographic security ensures data integrity,

reducing the risk of tampering and fraud.

d. Real-Time Updates: Stakeholders can access real-time updates on transactions, ownership

changes, and agreements.

e. Cost Reduction: Elimination of intermediaries and automation of processes result in reduced

transaction costs.

f. Dispute Resolution: Include predefined dispute resolution mechanisms within the smart contracts,

streamlining conflict resolution.

g. Accessibility and Inclusivity: Digital access enables wider participation and bridges geographical

gaps, ensuring equitable access to the system.

☐ Implementation Strategy:

a. Stakeholder Engagement: Collaborate with relevant government bodies, land registries, legal

experts, and technology providers to ensure comprehensive adoption.

b. Legal and Regulatory Alignment: Align smart contract terms with existing legal frameworks to

ensure legal recognition and compliance.

c. Training and Awareness: Conduct training programs to educate stakeholders about smart contract

usage, benefits, and implications.

d. Pilot Programs: Implement pilot programs in select regions to test and refine the smart contract

system, addressing any challenges that arise.

☐ Challenges and Mitigation:

a. Legal Recognition: Collaborate with legal experts to ensure that smart contracts are legally

recognized and enforceable.

b. Data Privacy: Employ advanced encryption techniques to protect sensitive data while maintaining

transparency.

c. Scalability: Select a blockchain platform that can handle a high volume of transactions and plan for

scalability as adoption grows.

1257

1. The successful implementation of a Smart Contract Application for managing Land Administration System (LAS) transactions requires a well-designed and robust system infrastructure. This section outlines the key components and considerations necessary for implementing such an infrastructure.

2. **Blockchain Platform Selection:**

- a. **Platform Evaluation:** Choose a suitable blockchain platform based on factors like scalability, security features, consensus mechanisms, and smart contract support. Ethereum, Binance Smart Chain, and Hyperledger Fabric are potential options.
- b. **Permissioned vs. Permissionless:** Determine whether the system should be permissioned (controlled access) or permissionless (open access) based on the requirements of stakeholders and regulatory considerations.

3. Smart Contract Architecture:

- a. **Smart Contract Development:** Develop a set of smart contracts to cover various land-related transactions, ensuring adherence to legal frameworks and specific business rules.
- b. **Interoperability:** Design smart contracts that can interact with external data sources, oracles, and APIs to ensure accurate and up-to-date information.

4. **Decentralized Storage:**

- a. **Data Storage Mechanism:** Utilize decentralized storage solutions like IPFS (InterPlanetary File System) or blockchain-based storage systems to securely store documents, property records, and metadata.
- b. **Data Encryption:** Employ encryption techniques to protect sensitive data stored on the blockchain, ensuring privacy while maintaining transparency.

5. Identity Management and Access Control:

- a. **Identity Verification:** Implement a robust identity verification process for users, integrating authentication mechanisms like multi-factor authentication (MFA) or digital signatures.
- b. **Access Control Levels:** Define different access levels for users based on their roles, ensuring that only authorized individuals can execute or view specific transactions.

6. **User Interface and Experience:**

- a. **User-Friendly Interface:** Develop an intuitive user interface that simplifies interaction with smart contracts and the blockchain, catering to both tech-savvy and non-technical users.
- b. **Transaction Workflow:** Design the user journey for executing transactions, ensuring that the process is clear, transparent, and easy to follow.

7. **Security and Auditing:**

a. **Smart Contract Audits:** Conduct thorough security audits of smart contracts to identify vulnerabilities and ensure they are resistant to attacks.

- b. **Regular Monitoring:** Implement real-time monitoring mechanisms to detect and prevent unauthorized access, unusual activities, or anomalies.
- c. **Emergency Response Plan:** Develop a protocol for responding to security breaches, ensuring that the system can be quickly secured and restored in case of incidents.

8. Scalability and Performance:

- a. **Load Balancing:** Implement load balancing mechanisms to distribute traffic evenly across servers, ensuring optimal performance during high transaction volumes.
- b. Caching Strategies: Utilize caching techniques to reduce latency and enhance response times for frequently accessed data.

9. **Integration with Existing Systems:**

a. **Legacy System Integration:** If required, design APIs and integration points to connect the Smart Contract Application with existing land administration systems or government databases.

10. **Training and Support:**

- a. **User Training:** Provide comprehensive training for users to understand how to interact with the Smart Contract Application effectively.
- b. **Technical Support:** Establish a support system to assist users with technical queries, troubleshooting, and issue resolution.

11. **Pilot Testing and Iteration:**

- a. **Pilot Deployment:** Roll out the Smart Contract Application on a smaller scale to test its functionality, gather user feedback, and identify any unforeseen challenges.
- b. **Continuous Improvement:** Incorporate feedback from pilot testing to refine and optimize the system, ensuring that it aligns with user needs and expectations.
- 12. **Conclusion:** The implementation of a robust system infrastructure for a Smart Contract Application in Land Administration System transactions is a complex yet essential process. By carefully selecting the blockchain platform, architecting smart contracts, prioritizing security and user experience, and ensuring scalability and interoperability, this infrastructure can drive the transformation of traditional land administration systems into transparent, efficient, and secure ecosystems.

.

EXISTING SYSTEM OVERVIEW

☐ Challenges of Traditional LAS:

- a. **Inefficiencies and Delays:** Traditional LAS often involve manual paperwork, lengthy verification processes, and multiple intermediaries, leading to significant delays in transaction processing.
- b. Lack of Transparency: The lack of a centralized and transparent record-keeping mechanism results in discrepancies and disputes over land ownership and transactions.
- c. **Fraud and Corruption:** The absence of a secure and tamper-proof system opens doors for fraudulent activities, forged documents, and corrupt practices.
- d. **High Transaction Costs:** The involvement of intermediaries, administrative processes, and physical paperwork increases transaction costs for individuals and organizations.
- e. **Limited Accessibility:** Geographical barriers and physical presence requirements restrict access to LAS services, particularly for remote or marginalized communities.

■ Existing Technologies and Solutions:

- a. **Digitization Efforts:** Some regions have attempted to digitize LAS through electronic databases and online portals, improving accessibility but often lacking the transparency and security provided by blockchain.
- b. **Centralized Databases:** Certain LAS utilize centralized databases for record-keeping, which can enhance efficiency but still expose data to vulnerabilities and manipulation.

☐ Introduction of Smart Contract Solution:

- a. **Blockchain and Smart Contracts:** Blockchain technology and smart contracts offer a transformative solution to the challenges faced by traditional LAS. Blockchain's decentralized and transparent nature, combined with the automation of smart contracts, can address existing inefficiencies.
- b. **Transparency and Security:** Smart contracts executed on a blockchain provide a transparent and tamper-proof ledger for recording transactions and ownership changes.
- c. **Efficiency and Automation:** Automation of processes through smart contracts accelerates transaction processing, reduces administrative burdens, and minimizes delays.
- d. **Trust and Fraud Prevention:** Blockchain's immutability and cryptographic security enhance trust by reducing the risk of fraud, forgery, and corruption.

e. Cost Reduction and Accessibility: By eliminating intermediaries and streamlining processes, the proposed solution can lower transaction costs and expand accessibility to LAS services.

☐ Integration Challenges and Considerations:

- a. **Legacy Systems:** Integrating a new Smart Contract Application with existing LAS infrastructure might require data migration, APIs, and interoperability considerations.
- b. **Regulatory Alignment:** Ensuring that the smart contract solution aligns with legal and regulatory frameworks is essential for its adoption and recognition.
- c. **User Education:** Transitioning stakeholders to the new system requires comprehensive training and awareness initiatives to ensure smooth adoption.
- Conclusion: Understanding the limitations and challenges of the existing Land Administration System is crucial for appreciating the transformative potential of a Smart Contract Application. By addressing the inefficiencies, lack of transparency, and susceptibility to fraud present in traditional LAS, the proposed solution aims to usher in a new era of transparency, efficiency, security, and trust in land transactions and ownership management.the solution in a centralized database environment aspresently available without blockchain.

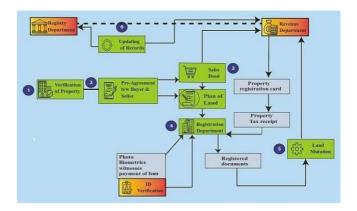


Fig 9. Architecture Diagram for Existing System

COMPUTATION AND ITS VARIANT

□ Computation is a fundamental aspect of any Smart Contract Application in Land Administration System (LAS) transactions. It involves executing algorithms and logic to process data, verify transactions, and automate various functions within the system. This section explores the key computations and their variants essential for the success of a smart contract-based LAS.

☐ Basic Computation Elements:

a. **Arithmetic Operations:** Smart contracts utilize arithmetic operations (addition, subtraction, multiplication, division) to calculate values, such as transaction costs, property prices, and taxes.

b. **Logical Operations:** Logical operations (AND, OR, NOT) are employed to evaluate conditions

and execute specific actions based on the outcome, such as verifying ownership or compliance.

c. Comparison Operations: Comparison operations (equal, not equal, greater than, less than) are

crucial for assessing conditions and making decisions within the smart contract logic.

☐ Data Processing and Validation:

a. Data Transformation: Transforming data formats, such as converting text to numerical values or

dates, ensures consistency and accuracy in the execution of smart contracts.

b. Data Validation: Validating user inputs and transaction data prevents errors and ensures that only

accurate and compliant data are processed.

☐ Transaction Verification:

a. **Digital Signatures:** Employ digital signatures to verify the authenticity of transactions and ensure

that authorized parties have initiated them.

b. Transaction Hashing: Hashing transaction data enhances security by creating a unique identifier

for each transaction, which is stored on the blockchain.

■ Automated Workflow:

a. Conditional Statements: Use conditional statements (IF-THEN-ELSE) to define rules for

transaction execution based on specific conditions, streamlining the process.

b. Loop Structures: Loop structures (FOR, WHILE) can automate repetitive tasks, such as

processing multiple transactions, and help manage complex workflows.

☐ Tokenization and Asset Management:

a. Token Generation: Generate tokens representing land assets, enabling fractional ownership and

facilitating liquidity in real estate markets.

b. Asset Transfer: Implement logic for transferring tokens between parties, enabling property

transfers, sales, and leasing agreements through token transactions.

☐ Payment Processing:

a. Currency Conversion: If dealing with international transactions, incorporate currency conversion

mechanisms to calculate accurate payment amounts.

1262

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

b. Escrow Services: Utilize escrow services in the smart contract to hold funds until predefined conditions are met, ensuring secure and transparent payments. **□** Dispute Resolution: a. Multi-Signature Approvals: Integrate multi-signature mechanisms to require consensus from multiple parties for certain transactions, enhancing dispute resolution. b. Arbitration Mechanisms: Embed arbitration logic within the smart contract to automate the resolution of disputes based on predefined rules. **■** Advanced Computation Variants: a. Oracles Integration: Incorporate oracles to fetch external data, enabling real-time market prices, regulatory updates, and property valuations. b. Zero-Knowledge Proofs: Implement zero-knowledge proofs to verify certain conditions without revealing sensitive data, enhancing privacy. Conclusion: Computation and its various variants form the backbone of a Smart Contract Application in Land Administration System transactions. By effectively utilizing arithmetic, logical, and comparison operations, along with data processing, validation, and automated workflows, the smart contract system can streamline processes, enhance transparency, and ensure secure and efficient land transactions. ☐ Computation is a fundamental aspect of any Smart Contract Application in Land Administration System (LAS) transactions. It involves executing algorithms and logic to process data, verify transactions, and automate various functions within the system. This section explores the key computations and their variants essential for the success of a smart contract-based LAS. **☐** Basic Computation Elements: a. Arithmetic Operations: Smart contracts utilize arithmetic operations (addition, subtraction, multiplication, division) to calculate values, such as transaction costs, property prices, and taxes. b. Logical Operations: Logical operations (AND, OR, NOT) are employed to evaluate conditions and execute specific actions based on the outcome, such as verifying ownership or compliance. c. Comparison Operations: Comparison operations (equal, not equal, greater than, less than) are crucial for assessing conditions and making decisions within the smart contract logic. **■** Data Processing and Validation: a. Data Transformation: Transforming data formats, such as converting text to numerical values or

dates, ensures consistency and accuracy in the execution of smart contracts.

b. Data Validation: Validating user inputs and transaction data prevents errors and ensures that only accurate and compliant data are processed. ☐ Transaction Verification: a. Digital Signatures: Employ digital signatures to verify the authenticity of transactions and ensure that authorized parties have initiated them. b. Transaction Hashing: Hashing transaction data enhances security by creating a unique identifier for each transaction, which is stored on the blockchain. **■** Automated Workflow: a. Conditional Statements: Use conditional statements (IF-THEN-ELSE) to define rules for transaction execution based on specific conditions, streamlining the process. b. Loop Structures: Loop structures (FOR, WHILE) can automate repetitive tasks, such as processing multiple transactions, and help manage complex workflows. **☐** Tokenization and Asset Management: a. Token Generation: Generate tokens representing land assets, enabling fractional ownership and facilitating liquidity in real estate markets. b. Asset Transfer: Implement logic for transferring tokens between parties, enabling property transfers, sales, and leasing agreements through token transactions. **☐** Payment Processing: a. Currency Conversion: If dealing with international transactions, incorporate currency conversion mechanisms to calculate accurate payment amounts. b. Escrow Services: Utilize escrow services in the smart contract to hold funds until predefined conditions are met, ensuring secure and transparent payments. **□** Dispute Resolution: a. Multi-Signature Approvals: Integrate multi-signature mechanisms to require consensus from multiple parties for certain transactions, enhancing dispute resolution. b. Arbitration Mechanisms: Embed arbitration logic within the smart contract to automate the resolution of disputes based on predefined rules. **■** Advanced Computation Variants:

a. **Oracles Integration:** Incorporate oracles to fetch external data, enabling real-time market prices, regulatory updates, and property valuations.

- b. **Zero-Knowledge Proofs:** Implement zero-knowledge proofs to verify certain conditions without revealing sensitive data, enhancing privacy.
- Conclusion: Computation and its various variants form the backbone of a Smart Contract Application in Land Administration System transactions. By effectively utilizing arithmetic, logical, and comparison operations, along with data processing, validation, and automated workflows, the smart contract system can streamline processes, enhance transparency, and ensure secure and efficient land transactions.

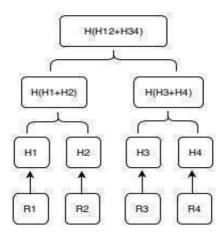


Fig 12 Merkle Hash Tree (MHT)

PROPOSED SYSTEM OVERVIEW

☐ The proposed Smart Contract Application aims to revolutionize the Land Administration System (LAS) by leveraging blockchain technology and smart contracts. This overview provides a comprehensive look at the key components and functionalities of the proposed system.

☐ System Architecture:

- a. **Blockchain Infrastructure:** The system is built on a blockchain platform chosen based on scalability, security, and compatibility. Ethereum, for instance, offers a robust environment for smart contract deployment.
- b. **Smart Contract Layer:** Smart contracts are at the core of the system, automating various land-related transactions and processes. These self-executing contracts operate transparently on the blockchain.

☐ Key Components:

- a. **User Interface:** The system features a user-friendly interface accessible through web or mobile applications. Users can interact with the system, initiate transactions, and view property details.
- b. **Smart Contract Templates:** The system offers a variety of pre-designed smart contract templates for different transactions, such as property transfers, sales, leases, and more.
- c. **Decentralized Storage:** All relevant documents, records, and transaction history are stored securely on a decentralized storage system, ensuring data availability and tamper resistance.
- d. **Identity Management:** Robust identity verification mechanisms are integrated to ensure that only authorized users can initiate and participate in transactions.
- e. **Tokenization and Asset Management:** The system enables tokenization of land assets, allowing fractional ownership and facilitating property transfers through digital tokens.
- f. **Oracles and Data Feeds:** External oracles fetch real-time data, such as property values and market trends, providing accurate information for smart contract execution.

☐ Transaction Workflow:

- a. **Initiating Transactions:** Users initiate transactions by selecting the appropriate smart contract template and providing required details.
- b. **Smart Contract Execution:** The smart contract processes the transaction, validates the provided information, and executes the predefined logic.
- c. **Verification and Confirmation:** Transactions are verified through digital signatures and consensus mechanisms involving multiple stakeholders.
- d. **Token Transfer and Payment:** If applicable, tokenized assets are transferred, and payments are processed within the smart contract.
- e. **Record Keeping:** The executed transaction details are recorded on the blockchain, creating an immutable and transparent record of ownership changes.

■ Benefits and Impact:

- a. **Transparency and Trust:** The system's transparency and immutability enhance trust among stakeholders by providing a clear and tamper-proof transaction history.
- b. **Efficiency and Automation:** Automation of processes reduces administrative burdens, minimizes delays, and accelerates transaction processing.

c. **Security and Fraud Prevention:** Blockchain's cryptographic security safeguards against fraud, forgery, and unauthorized access.

d. Cost Reduction and Accessibility: Eliminating intermediaries and reducing paperwork leads to cost savings, while digital access enhances accessibility.

☐ Integration and Migration:

- a. **Legacy System Integration:** Consider integrating the proposed system with existing LAS infrastructure through APIs and data migration.
- b. **User Training and Support:** Provide training and support to stakeholders transitioning from the traditional system to the new smart contract-based system.

Conclusion: The proposed Smart Contract Application offers a transformative approach to Land Administration System transactions. By incorporating blockchain's transparency, security, and automation, the system aims to address the limitations of the existing LAS, ushering in a new era of efficient, secure, and trustworthy land transactions and ownership management.

Table 3.Algorithm for LHC variant

Land Records sharing between the land Owner

and the Government officials also including Land Buyer. Using this hash value the Register and the Buyer can view the details permitted by the Land Owner.

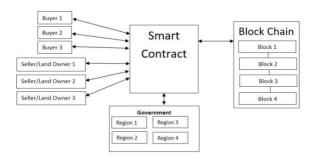


Fig 11. Architecture Diagram for Proposed System

ODULE DESCRIPTION

☐ The Smart Contract Application for Land Administration System (LAS) transactions consists of several interconnected modules, each serving a distinct purpose within the system. This section outlines the key modules and their functionalities to provide a comprehensive overview of the application's structure.

☐ User Authentication and Identity Management:

- **Description:** This module handles user registration, authentication, and identity verification processes.
- Functionalities:
- User registration and profile creation.
- o Two-factor authentication (2FA) for enhanced security.
- Identity verification through document submission and validation.
- o User roles and access control management.

Smart Contract Templates and Configuration:

- **Description:** This module is responsible for creating, managing, and configuring smart contract templates for various LAS transactions.
- Functionalities:
- Template creation with predefined contract terms and conditions.
- Customization of contract parameters based on transaction requirements.
- o Smart contract versioning and updates.

☐ Transaction Initiation and Execution:

- **Description:** This module enables users to initiate and execute transactions using the predefined smart contract templates.
- Functionalities:
- Selection of appropriate smart contract template for the transaction.
- o Input of transaction details, parties involved, and property information.
- O Validation of transaction data and adherence to regulatory requirements.
- Execution of smart contract logic based on predefined conditions.

☐ Tokenization and Asset Management:

- **Description:** This module handles the tokenization of land assets and the management of digital tokens representing ownership.
- Functionalities:
- o Generation of digital tokens representing specific land assets.
- Fractional ownership through tokenization, enabling property sharing.
- o Transfer of tokens to new owners during property transactions.
- o Automatic updating of ownership records on the blockchain.

☐ External Data Integration and Oracles:

- **Description:** This module facilitates the integration of external data sources and oracles to provide real-time information.
- Functionalities:
- o Integration with external data feeds for property valuations, market trends, and regulatory updates.

Verification of data accuracy through oracle services. Utilization of real-time data to execute smart contract logic. 0 ☐ Transaction Verification and Consensus: Description: This module ensures the verification of transactions and consensus among stakeholders. **Functionalities:** Digital signatures for transaction verification and authenticity. 0 Multi-signature approvals involving multiple parties for specific transactions. 0 Consensus mechanisms to ensure the validity of high-value or critical transactions. \circ **Document Management and Decentralized Storage:** Description: This module handles the storage and management of documents related to land transactions. **Functionalities:** Secure storage of property documents, transaction records, and legal agreements. 0 Integration with decentralized storage solutions for data availability and immutability. 0 Easy retrieval of documents for audit and reference purposes. 0 ☐ User Interface and User Experience (UI/UX): **Description:** This module provides an intuitive and user-friendly interface for interacting with the Smart Contract Application. **Functionalities:** Web-based or mobile application interface for users to access the system. 0 Easy navigation, transaction initiation, and tracking of ongoing transactions. 0 User feedback mechanisms to improve overall user experience. **Reporting and Analytics: Description:** This module generates reports and provides insights into transaction data and system performance. **Functionalities:** Generation of transaction history reports, ownership records, and audit trails. 0 Analytics on transaction processing times, user interactions, and system usage patterns.

☐ Security and Auditing:

0

• **Description:** This module ensures the security of the system and provides auditing capabilities.

Data visualization for better decision-making and monitoring.

Functionalities:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 44 No. 3 (2023)

 \circ Security measures like encryption, secure socket layers (SSL), and firewall protection.

- o Regular security audits and vulnerability assessments.
- o Logging of system activities and transaction history for auditing purposes.

☐ Training and Support:

• **Description:** This module offers training and support resources for users transitioning to the new system.

• Functionalities:

- o User training materials, tutorials, and guides.
- Helpdesk and customer support for addressing user queries and issues.
- o Continuous education to ensure users are well-versed with the application's functionalities.

☐ Integration and Migration Strategies:

• **Description:** This module outlines strategies for integrating the Smart Contract Application with existing LAS infrastructure.

• Functionalities:

- API integration with legacy systems for data migration and interoperability.
- o Mapping of data fields and formats between old and new systems.
- Migration plan for transitioning from traditional processes to the new smart contract-based system.

DISCUSSION AND LIMITATIONS

□ Discussion:

- a. **Transparency and Trust:** The adoption of a Smart Contract Application in LAS transactions can significantly enhance transparency and trust. Blockchain's immutable ledger ensures that transaction records are tamper-proof and accessible to authorized parties, reducing disputes and fraudulent activities.
- b. **Efficiency and Automation:** Automation through smart contracts accelerates transaction processing, reducing administrative delays and costs. Complex workflows, such as property transfers, can be streamlined, leading to increased efficiency.
- c. **Security and Fraud Prevention:** Blockchain's cryptographic security safeguards against data tampering and unauthorized access. This technology enhances security and reduces the risk of fraud, forgery, and corruption.
- d. Cost Reduction and Accessibility: By eliminating intermediaries and automating processes, the proposed solution can lead to cost savings. Digital access can bridge geographical gaps, ensuring wider participation and increased land tenure security.

e. **Dispute Resolution:** The inclusion of predefined dispute resolution mechanisms within smart contracts can expedite conflict resolution, potentially reducing litigation costs.

f. **Tokenization and Liquidity:** Tokenization enables fractional ownership of land assets, democratizing real estate investment and unlocking liquidity in property markets.

☐ Limitations:

a. **Technical Barriers:** Implementing and maintaining a Smart Contract Application requires technical expertise and resources, potentially posing challenges for organizations with limited IT capabilities.

b. **Regulatory and Legal Challenges:** Adapting legal frameworks to accommodate smart contracts and blockchain technology requires careful consideration. Legal recognition and compliance can be complex to achieve.

c. **Data Privacy Concerns:** While blockchain offers transparency, privacy concerns arise when dealing with sensitive personal and property-related data. Striking a balance between transparency and data protection is critical.

d. **Scalability Issues:** Blockchain networks can face scalability limitations, resulting in slower transaction speeds and higher costs during periods of high demand.

e. **User Adoption and Training:** Transitioning from traditional systems to a smart contract-based solution requires user education and training. Users might resist change or face challenges in adapting to the new technology.

f. **External Data Dependency:** Smart contracts reliant on external data sources or oracles are vulnerable to inaccuracies in these sources, which could impact the integrity of transactions.

g. **Inclusivity and Accessibility:** While digital access improves inclusivity, it may exclude individuals without technological literacy or reliable internet access.

h. **Unforeseen Technical Issues:** As with any technology implementation, unforeseen technical glitches, vulnerabilities, or bugs can arise, potentially disrupting system functionality.

■ Mitigation Strategies:

a. **Stakeholder Collaboration:** Engage stakeholders, including legal experts, regulators, and users, to address regulatory and legal challenges.

b. **Robust Training Programs:** Develop comprehensive training programs to ensure user understanding and adoption of the new system.

c. **Scalability Planning:** Choose a blockchain platform that can handle high transaction volumes and consider scalability solutions to address potential issues.

d. **Data Privacy Measures:** Implement advanced encryption techniques and privacy solutions to protect sensitive data while maintaining transparency.

e. **Hybrid Approaches:** Consider hybrid solutions that integrate the benefits of blockchain while accommodating existing legacy systems and processes.

CONCLUSION

The integration of a Smart Contract Application within the Land Administration System (LAS) transactions marks a significant advancement owards a more efficient, transparent, and secure approach to land management. This innovative solution harnesses the power of blockchain technology and smart contracts to address the longstanding challenges associated with traditional LAS.

In conclusion, the Smart Contract Application for Land Administration System transactions holds the potential to redefine the landscape of land management. By capitalizing on blockchain's capabilities and reimagining transactional processes through smart contracts, this solution lays the foundation for a more efficient, secure, and equitable land administration ecosystem. The journey towards full realization will require dedicated effort, adaptability, and a commitment to driving positive change in land administration practices.

REFERENCES

- [1] J. Henssen and I. Williamson, "Land registration, cadastre and its interaction—A world perspective," in Proc. XIX FIG Congr., Helsinki, Finland, 1990, pp. 14–43.
- [2] C. Schmid, C. Hertel, and H. Wicke, "Real property law and procedure in the European Union," EuVolume il, 2022st. (EUI) Florence/European Pri- vate Law Forum Deutsches Notarinstitut (Dnotl), Würzburg, Germany, Tech. Rep., May 2005, vol. 3.
- [3] United Nations Economic Commission for Europe (UNECE) Working Party on Land Administration (WPLA), Survey on Land Administration Systems, United Nations, Geneva, Switzerland, 2014.
- [4] J. Kaufmann and D. Steudler, "Cadastre 2014—A vision for a future cadastral system," Fédération Int. des Géomètres, Copenhagen, Denmark, Tech. Rep., 1998.
- [5] S. Bittner and A. U. Frank, "A formal model of correctness in a cadastre," Comput., Environ. UrbanSyst., vol. 26, no. 5, pp. 465–482, Sep. 2002.
- [6] G. J. Hunter and K. Beard, "Understanding error in spatial databases," Austral. Surveyor, vol. 37, no. 2, pp. 108–119, Jun. 1992.
- [7] Geographic Information—Data Quality, Standard ISO 19157:2013, 2013.
- [8] N. Vučić, M. Markovinović, and B. Mičević, "LADM in the republic of croatia-making and testing country profile," in Proc. 5th LADM Workshop, Kuala Lumpur, Malaysia, 2013, pp. 329–344.
- [9] M. Stefanović, D. Pržulj, D. Stefanović, M. Vukmanović, and S. Ristić, "OCL specification of inter-register integrity constraints in land administration systems," in Proc. 28th CECIIS, Vraždin, Croatia, 2017,pp. 273–281.
- [10] J. Vos, "Blockchain-based land registry: Panacea illusion or something in between?" presented at the IPRA/CINDER Congr., Dubai, UAE, 2017.
- [11] V. L. Lemieux, "Trusting records: Is blockchain technology the answer?" Rec. Manage. J., vol. 26, no. 2,pp. 110–139, Jul. 2016.
- [12] M. Kempe, "The land registry in the blockchain- testbed," Kairos Future, Stockholm,

- Stockholm, Sweden, 2017.
- [13] A. Shahaab, B. Lidgey, C. Hewage, and I. Khan, "Applicability and appropriateness of distributed ledgers consensus protocols in public and private sectors: A systematic review," IEEE Access, vol. 7, pp. 43622–43636, 2019.
- [14] M. J. M. Chowdhury, M. S. Ferdous, K. Biswas, N. Chowdhury, A. S. M. Kayes, M. Alazab, and P. Watters, "A comparative analy- sis of distributed ledger technology platforms," IEEE Access, vol. 7, pp. 167930–167943, 2019
- [15] Y. Lu, "The blockchain: State-of-the-art and research challenges," J. Ind. Inf. Integr., vol. 15, pp. 80–90, Sep. 2019.
- [16] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, "Blockchain challenges and opportunities: A survey," Int. J. Web Grid Services, vol. 14, no. 4, pp. 352–375, 2018.
- [17] A. H. Mohsin, A. Zaidan, B. Zaidan, O. Albahri, A. Albahri, M. Alsalem, and K. Mohammed, "Blockchain authentication of network applications: Taxonomy, classification, capabilities, open challenges, motivations, recommendations and future directions," Comput. Standards Interfaces, vol. 64, pp. 41–60, May 2019.
- [18] J. L. Zhao, S. Fan, and J. Yan, "Overview of business innovations and research opportunities in blockchain and introduction to the special issue," Financial Innov., vol. 2, no. 1, p. 28, Dec. 2016.
- [19] F. Casino, T. K. Dasaklis, and C. Patsakis, "A systematic litera- ture review of blockchain-based applications: Current status, classi- fication and open issues," Telematics Inform., vol. 36, pp. 55–81, Mar. 2019.
- [20] E. Kalogianni, K. Janečka, M. Kalantari, E. Dimopoulou, J. Bydłosz, A. Radulović, N. Vučić, D. Sladić, M. Govedarica, C. Lemmen, and P. van Oosterom, "Methodology for the development of LADM country profiles," Land Use Policy, vol. 105, Jun. 2021, Art. no. 105380.
- [21] A. Radulović, D. Sladić, M. Govedarica, A. Ristić, and D. Jovanović, "LADM based utility network cadastre in Serbia," ISPRS Int. J. Geo- Information, vol. 8, no. 5, p. 206, May 2019.