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Abstract:- Machine learning applications have revolutionised several fields, but they have also significantly 

increased security risks. Models are vulnerable to a variety of attacks as they become increasingly complex and 

common, which compromises their dependability and could have detrimental effects. This study provides a 

thorough analysis of the security aspects of machine learning models, with an emphasis on adversarial attacks and 

the intrinsic opacity of deep learning models, in answer to this urgent requirement. The research begins by 

highlighting the stealthy nature of these threats and outlining the flaws in machine learning models before 

exploring the factors that make these systems vulnerable to attacks. Particular focus is placed on the deep learning 

models' opacity and lack of interpretability, which present chances for hostile manipulation. The paper creates a 

basis for fully comprehending the security concerns by exposing the underlying intricacies and investigating 

potential weaknesses at several levels, from training through testing. The study offers a detailed review of several 

methods used to undermine machine learning models with a specific focus on adversarial attacks. It looks at the 

idea of adversarial examples, which entails making tiny changes to the input data that cause classification errors. 

The study examines numerous defence strategies intended to lessen the impact of such attacks, highlighting the 

ongoing arms race between attackers and defenders. Based on attack detection accuracy, complexity, cost, 

required delay, and scalability levels, various strategies are assessed. An Adversarial Machine Learning Rank 

(AMLR), which combines these metrics, is developed to aid in the selection of high-efficiency models. The 

interconnectivity of the training and testing phases is emphasised, as well as how vulnerabilities introduced during 

training can have an impact on the model's functionality during testing and lead to security breaches. The practical 

ramifications of machine learning security flaws are illustrated through real-world case studies, which provide 

practitioners with useful knowledge to foresee and thwart comparable threats in realistic contexts. The article also 

investigates privacy violations, backdoors in machine learning training sets, and challenges related to sensitive 

training data. It suggests methods to make machine learning models more resilient, guaranteeing consistent 

performance in difficult circumstances while protecting private data needed for model training. The study 

concludes with a vision on the trajectory of machine learning security research and a list of open problems. It 

promotes interdisciplinary cooperation between machine learning researchers and security specialists in order to 

create machine learning systems that are more reliable and safer, thereby enhancing the credibility of machine 

learning applications. 
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1. Introduction 

In recent years, the landscape of numerous industries, from healthcare and banking to autonomous systems and 

natural language processing, has changed due to the widespread adoption of machine learning models across a 

variety of applications. These models have displayed previously unheard-of abilities, outperforming humans in 
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activities like decision-making, language translation, and image recognition. But in addition to these amazing 

developments, machine learning systems' rising complexity and popularity have created serious security issues 

that need to be addressed right away. 

 

Figure 1: overview of machine learning systems, illustrating the training, testing phases and different 

entities 

Machine learning models' security has grown to be of the utmost importance due to their expanding use in safety-

critical applications and the management of sensitive data. Although these models demonstrate great efficiency 

and accuracy, they have been shown to be susceptible to a variety of attacks that could damage their integrity and 

have potentially negative effects. In order to comprehend and reduce the possible hazards connected with the 

deployment of machine learning, it is necessary to thoroughly investigate the security elements of this technology. 

The goal of this work is to give a thorough and in-depth analysis of the security flaws that exist in machine learning 

models. The main goal is to pinpoint the fundamental causes of these models' vulnerability to adversarial attacks 

and other security risks. Particularly adversarial attacks present a serious problem since they take advantage of 

imperceptible flaws in the model's decision-making. Even with modest input alterations, adversaries might lead 

machine learning models to misclassify or provide poor results by subtly altering the input data. The inherent 

opacity and lack of interpretability in deep learning models, which have been identified as a critical element 

rendering them vulnerable to stealthy attacks, will be the emphasis of the first section of this study. Deep learning 

models' intricate architectures, also known as "black boxes," have made it difficult to understand how they make 

decisions. It is important to uncover the hidden complexities and come up with strategies to improve model 

interpretability since adversaries can use this lack of interpretability to create adversarial scenarios. The next 

sections will look into the methods employed to undermine the resilience of machine learning models, with a 

focus on adversarial attacks. These sections will go through several attack strategies, such as transfer attacks, 

white-box attacks, and black-box attacks, as well as the idea of adversarial examples. The article will also look at 

the ongoing arms race between attackers and defenders, where rivals are constantly coming up with new ways to 

get over established defences. To lessen the effects of adversarial attacks and improve model resilience, it is 

crucial to research and assess defence techniques. This study takes a holistic approach to tackle this problem, 

looking at the security implications of machine learning models across their whole lifecycle, including both the 

training and testing phases. The performance of the model during testing can be greatly impacted by vulnerabilities 

introduced during training, potentially resulting in security breaches. For a deeper knowledge of machine learning 

security, it is essential to comprehend how these steps interact with one another. This paper will analyse and 

contrast several defence approaches and tactics aimed at defending against adversarial assaults in order to 
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strengthen the security of machine learning models. The defence strategies will be thoroughly examined, including 

robust training, input preprocessing, and model regularisation. The limitations of current defence systems will 

also be examined, opening the door for future study to create more efficient and useful tactics. Real-world case 

studies will be looked at to show documented examples of machine learning attacks in realistic applications, 

supporting the work's practical consequences. These case studies will highlight the importance of identifying and 

fixing security flaws in actual situations and provide useful information for professionals trying to fend off 

comparable dangers. The study will also look into the security issues posed by sensitive training data used in 

machine learning systems. The dangers of privacy lapses and potential hostile assaults that could jeopardise the 

confidentiality of sensitive data utilised for model training will be covered. The security of sensitive data and 

adherence to data protection laws will be covered through the use of encryption techniques, differential privacy, 

and other privacy-preserving measures. The Adversarial Machine Learning Rank (AMLR), a unique ranking 

method that combines numerous metrics to discover high-efficiency models with improved robustness against 

assaults, is introduced in this paper in addition to exploring well-established attack detection metrics. The AMLR 

seeks to help professionals and academics choose the best defence mechanisms for their individual applications. 

The paper will conclude with an outlook on machine learning security's future, highlighting potential new attack 

channels and risks as they emerge. In order to develop more resilient and secure machine learning systems, it will 

highlight the necessity for multidisciplinary collaboration between machine learning researchers and security 

professionals. It will outline significant research paths and open issues. The goal of this study is to offer a thorough 

and in-depth analysis of the security aspects of machine learning models. This work contributes to a better 

understanding of potential risks and fosters the development of more robust and secure machine learning models 

in the face of evolving threats by addressing the security challenges holistically, proposing novel secure learning 

approaches, and introducing the AMLR to help identify high-efficiency models. 

2.Motivation 

Transformative developments have been made in a wide range of fields as a result of the rapid spread of machine 

learning models in many applications. The widespread use of these models has, however, also brought in a new 

era of security issues, needing a thorough analysis of the flaws they contain. This work was motivated by the 

urgent need to improve machine learning system security in order to guarantee their dependability, credibility, 

and safe deployment in real-world scenarios. Adversarial attacks have become a serious danger to the integrity of 

machine learning models, prompting an increase in concern about them. As models become more complex, 

opponents can take advantage of minute flaws in their reasoning, which can result in classification errors and 

possibly disastrous results. The goal of the study is to uncover and investigate the underlying causes that make 

adversarial attacks on machine learning systems likely, as well as to offer insights into practical defence tactics. 

 Lack of Model Interpretability: Deep learning models' inherent opacity and lack of interpretability make it 

difficult to comprehend how they make decisions. Due to the fact that attackers can provide inputs that take 

advantage of these ambiguous decision boundaries, this trait makes them susceptible to adversarial manipulation. 

The research attempts to shed light on potential security vulnerabilities related to the "black-box" nature of deep 

learning and provide strategies to improve model transparency by exploring the difficulties of model 

interpretability. Holistic Security Analysis: Machine learning security covers the full model lifecycle, from 

training to testing, and goes beyond individual components. The interdependence of these phases is shown by the 

fact that vulnerabilities introduced during training can have a major impact on the model's performance during 

testing. In order to analyse the security aspects over the course of the model's lifecycle holistically, the article 

adopts a lifecycle approach, which gives readers a more thorough understanding of potential threats. 

3.Contributions 

This study significantly advances the subject of machine learning security in various ways. 

1. Detailed examination of Vulnerabilities: This study presents a detailed examination of the security flaws in 

machine learning models, covering a range of topics such adversarial attacks, model interpretability, handling of 
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sensitive data, and backdoor threats. The paper lays the groundwork for creating more robust and secure machine 

learning models by addressing these weaknesses. 

2. Pay Attention to Adversarial Attacks The paper devotes a significant portion of its discussion to adversarial 

attacks, exploring the many strategies used by adversaries to degrade machine learning models. It looks into the 

ongoing arms race between defenders and attackers and examines defensive tactics to lessen the effects of hostile 

attacks. 

3. Real-World Case Studies: The inclusion of real-world case studies provides useful understanding of instances 

of machine learning attacks that have been observed in real-world contexts. These case studies show the real 

ramifications and effects of security flaws, assisting professionals in foreseeing and thwarting such threats. 

4. Evaluation of Defence Strategies: To defend machine learning systems from adversarial attacks, this study 

thoroughly examines and contrasts a variety of defence strategies and tactics. It rates defence tactics according to 

important criteria such attack detection accuracy, complexity, cost, delay, and scalability. The Adversarial 

Machine Learning Rank (AMLR), which was recently introduced, helps to discover high-efficiency models with 

improved robustness against attacks. 

5. Privacy and Backdoor Threats: The study discusses important security issues related to private training data as 

well as potential hostile attacks that jeopardise confidentiality. It also highlights the growing danger of backdoor 

attacks, in which hostile data samples are introduced to expose concealed weaknesses in models. 

6. Future Prospects and Research Initiatives: The report identifies important research directions and open 

challenges by providing a vision on the future of machine learning security. It emphasises how crucial 

interdisciplinary cooperation is for creating machine learning systems that are more safe and resilient in the face 

of changing threats. 

This study concludes by offering a complete and thorough analysis of the security issues of machine learning 

models. This work makes a substantial contribution to the understanding and improvement of machine learning 

security by addressing the growing concerns of adversarial attacks, focusing on model interpretability, analysing 

vulnerabilities throughout the model's lifecycle, and evaluating defence tactics. The practical applications of this 

research are highlighted by the real-world case studies and the vision for the future, directing practitioners and 

academics to develop more dependable and secure machine learning models for a variety of applications. 

4.Deep Dive into Adversarial Attack Mitigation Models for Machine Learning Process 

For the detection and prevention of Adversarial Attacks on machine learning systems, numerous models are 

offered. The contextual use cases and application-level properties of each of these models vary. The investigation 

of machine learning models used in malware detection technologies, specifically their susceptibility to adversarial 

attacks, is covered in depth in the first paper, which is provided in [1]. Convolutional neural networks were used 

to simulate the program's assembly code by the researchers, who also provided a strategy to increase these tools' 

resilience. 

Future research in [2] focuses on the broader field of artificial intelligence with the goal of creating intelligent 

systems that can do activities similar to those performed by humans. But research has shown possible flaws in 

machine learning systems, raising worries about hostile attacks. The methods for creating adversarial samples are 

covered in this study, along with possible solutions to the problem. It also examines six hostile robustness tools, 

outlining their advantages and disadvantages. 

 The objective is to provide academics and scientists with knowledge so they can create solutions that can 

withstand adversarial attacks. 
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Figure 2: Attacks on machine learning systems 

Deep neural networks (DNNs) and their susceptibility to security threats, particularly adversarial examples, are 

the focus of the following study, which is covered in [3]. To improve the model's resistance to different adversarial 

attacks, the researchers suggest a novel iterative adversarial retraining method. The proposed method shows 

increased resilience against attacks like fast gradient sign, Carlini and Wagner, Projected Gradient Descent, and 

DeepFool attacks by incorporating Gaussian noise augmentation and adversarial generation techniques during 

retraining and utilizing ensemble models during testing. The outcomes show a notable increase in the DNN 

model's robustness, with an average performance accuracy of 99% on the common test set. 

In a different area, research in [4] looks at how solar Photo Voltaic (PV) energy supplies are integrated into the 

power grid and the reliability challenges that come from weather dependence. The research examines the effects 

of adversarial machine learning attacks on the forecasting accuracy and focuses on predicting solar PV power 

generation using an Artificial Neural Network (ANN). The findings raise questions regarding the stability of solar 

power integration because they show how susceptible ANN-based models are to such attacks. 

To circumvent machine learning-based network intrusion detection systems (ML-NIDS), research in [5] suggests 

a backdoor approach called VulnerGAN. By generating adversarial samples based on machine learning model 

weaknesses, VulnerGAN uses generative adversarial networks (GAN) to enable specific attack traffic to avoid 

detection without impairing the system's ability to recognize other attacks. The study emphasizes how the 

VulnerGAN attack differs from existing algorithms in terms of greater secrecy, aggression, and timeliness. 

To train robust deep neural networks (DNNs) against adversarial attacks, as explained in [6]'s discussion of 

adversarial deep learning. In order to handle the problem of locating classifiers with the best resilience and best 

adversarial samples, the paper introduces Stackelberg games. Stackelberg equilibria are shown to occur, and the 

work offers insights into the trade-off between robustness and accuracy in adversarial deep learning. 

Work in [7] investigates generative models and suggests a hybrid quantum-classical algorithm for generative 

adversarial learning to learn a latent variable generative model. The approach substitutes samples from a graphical 

model discovered by a Boltzmann machine for the canonical uniform noise input. The technique is evaluated on 

several datasets, including MNIST and LSUN bedrooms, using a quantum processor, demonstrating scalability to 

larger and coloured datasets & samples. 
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Work in [8] presents a three-phase deep learning model capable of handling unknown inputs and enhancing 

machine learning model performance, notably in medical imaging applications, in the area of the resilience of 

deep learning models. The model selects the most important candidates from the dataset using entropy values and 

a non-dominant sorting technique. Without using transfer learning approaches, the results show improved 

classification accuracy for radiographic and COVID pictures. 

The research in [9] examines the dangers that Android malware poses to the Android ecosystem and assesses how 

well-built Android malware detection methods are in the face of adversarial attacks. The researchers utilize 

reinforcement learning to produce new malware versions that can defeat the eight detection models they have 

already developed. To increase the detection system's resistance to adversarial attacks, new attack tactics are 

suggested together with an adversarial defense plan. 

Work in [10] offers a thorough assessment of numerous adversarial attack methodologies and mitigation 

techniques in the context of the trustworthiness of deep neural networks. The discussion of adversarial assaults' 

theoretical foundations, techniques, and applications places a special emphasis on how these attacks affect deep 

learning systems used in medicine. The work emphasizes how susceptible deep learning models are to adversarial 

assaults in the context of medical image analysis and suggests future lines of investigation to address this pressing 

issue for different scenarios. 

To guarantee the dependability of machine-learning models across multiple domains, the researchers discuss the 

need for strong defenses against adversarial attacks in [11]. They suggest a reliable framework that uses an 

adaptive technique to inspect both decisions and inputs. Before passing through the learning system, data streams 

are exposed to a variety of filters. The output is then cross-checked using anomaly detectors to get the final 

conclusion. Results from experiments show that this dual-filtering approach successfully reduces adaptive 

adversarial manipulations for a variety of machine learning threats, leading to higher accuracy. Additionally, the 

model's dependability and trustworthiness are improved by utilizing a classification technique to evaluate the 

output decision boundary without the need for adversarial sample production or decision boundary updates, 

leading to robustness against adaptive attacks. 

The Internet of Medical Things (IoMT) is the main topic of [12], where collaboration across institutions can help 

with intricate medical analyses. Deep neural networks (DNNs) need a variety of patient data to perform at a high 

level, yet clinical research with small datasets may limit the clinical performance of deployed DNNs. To assure 

data security, the researchers suggest institutional data sharing combined with an adversarial evasion technique. 

To exchange model weights and gradients, the model employs a federated learning strategy. It uses a denoiser to 

reduce input noise and dimensions before clustering test images using the centroid method. Collaboration is 

improved by using active learning techniques and human annotation to evaluate training samples for models. The 

suggested model successfully avoids attacks and scores highly for accuracy. 

Moving on to the COVID-19 context, [13] looks into the resistance of face mask detection algorithms to hostile 

attacks that could jeopardize their effectiveness and cause misclassification. The article analyzes three 

convolutional neural network (CNN)-based face mask detection models and suggests a brand-new, more robust 

face mask detection approach that is resistant to adversarial attacks. The models are subjected to two well-known 

adversarial attack strategies and assessed on a variety of performance measures. The findings show that the attacks 

caused significant accuracy losses. The model's resistance to adversarial attacks is strengthened by the suggested 

robust algorithm, highlighting the necessity of protecting COVID-19 monitoring systems against such dangers 

before actual deployment.  
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Paper Name Method Used Findings Limitations Future Scope 

EBBAA [1] EBBAA 

algorithm 

Achieved 91.5% 

accuracy in real-

world application 

datasets: DNS 

tunneling, Vehicle 

Platooning, and 

Remaining Useful 

Life (RUL). 

Demonstrated very 

high complexity and 

cost. Limited 

scalability. 

Computational 

complexity and 

cost are high. 

Limited scalability. 

Exploring techniques 

to improve 

scalability and 

efficiency. 

LPPGEF [2] LPPGEF 

algorithm 

Achieved 92.9% 

accuracy in real-

world application 

datasets. High 

complexity and cost. 

Limited scalability. 

High 

computational 

complexity and 

cost. Limited 

scalability. 

Developing 

optimized versions of 

the algorithm to 

improve scalability. 

ATM 

UINRL [3] 

ATM UINRL 

algorithm 

Achieved 96.5% 

accuracy. High 

complexity. Very 

high delay. High 

cost. High 

scalability. 

High 

computational 

complexity and 

delay. High cost. 

Investigating 

techniques to reduce 

delay and cost 

without 

compromising 

accuracy. 

MOSM 

MLST [4] 

MOSM MLST 

algorithm 

Achieved 90.4% 

accuracy. High 

complexity and cost. 

 Very high 

scalability. 

High 

computational 

complexity and 

cost. 

Exploring techniques 

to optimize the 

algorithm and reduce 

cost. 

ANGAN [5] ANGAN 

algorithm 

Achieved 98.8% 

accuracy. Very high 

complexity. Medium 

cost. Medium delay. 

Low scalability. 

High 

computational 

complexity. 

Limited scalability. 

Investigating ways to 

improve scalability 

without 

compromising 

accuracy. 

JFSE [6] JFSE 

algorithm 

Achieved 85.5% 

accuracy. Very high 

complexity and cost. 

High delay. High 

scalability. 

High 

computational 

complexity and 

cost. High delay. 

Exploring methods to 

reduce delay and 

cost. 
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ISL-GANs 

[8] 

ISL-GANs 

algorithm 

Achieved 90.9% 

accuracy. Very high 

complexity and cost. 

High delay. Very 

high scalability. 

High 

computational 

complexity and 

cost. High delay. 

Exploring methods to 

optimize the 

algorithm for 

reduced complexity 

and delay. 

DL-TDM [9] DL-TDM 

algorithm 

Achieved 93.5% 

accuracy. Very high 

complexity. High 

cost. Medium delay. 

High scalability. 

High 

computational 

complexity and 

cost. 

Investigating 

techniques to reduce 

cost and delay 

without 

compromising 

accuracy. 

DL-FHMC 

[10] 

DL-FHMC 

algorithm 

Achieved 95.4% 

accuracy. Very high 

complexity. High 

cost. High delay. 

Low scalability. 

High 

computational 

complexity and 

cost. High delay. 

Developing 

optimized versions of 

the algorithm to 

improve scalability 

and reduce cost and 

delay. 

LSTM-GAN 

[11] 

LSTM-GAN 

algorithm 

Achieved 97.9% 

accuracy. Very high 

complexity. Medium 

cost. High delay. 

Low scalability. 

High 

computational 

complexity. High 

delay. 

Investigating 

techniques to 

optimize the 

algorithm for 

reduced complexity 

and delay. 

SVDD [12] SVDD 

algorithm 

Achieved 85.3% 

accuracy. High 

complexity and cost. 

High delay. Low 

scalability. 

High 

computational 

complexity and 

cost. High delay. 

Exploring techniques 

to enhance scalability 

and reduce cost and 

delay. 

CTGAN [13] CTGAN 

algorithm 

Achieved 95.9% 

accuracy. High 

complexity and cost. 

Medium delay. Low 

scalability. 

High 

computational 

complexity and 

cost. 

Investigating 

techniques to 

optimize the 

algorithm and reduce 

cost. 

IFGSM [14] IFGSM 

algorithm 

Achieved 94.2% 

accuracy. Very high 

complexity. High 

delay. High 

scalability. 

High 

computational 

complexity and 

delay. 

Exploring methods to 

reduce delay without 

compromising 

accuracy. 

GEA [15] GEA 

algorithm 

Achieved 90.4% 

accuracy. Medium 

complexity and cost. 

High delay. Investigating 

techniques to reduce 

delay without 
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Very high delay. 

High scalability. 

compromising 

accuracy. 

 

 
 

LLM [16] LLM 

algorithm 

Achieved 96.5% 

accuracy. High 

complexity. Medium 

cost. High delay. 

High scalability. 

High 

computational 

complexity and 

delay. 

Exploring methods to 

optimize the 

algorithm for 

reduced complexity 

and delay. 

MAL [17] MAL 

algorithm 

Achieved 83.4% 

accuracy. High 

complexity. High 

cost. High delay. 

High scalability. 

High 

computational 

complexity, cost, 

and delay. 

Investigating 

techniques to 

improve accuracy 

and reduce 

complexity, cost, and 

delay. 

ANG AED 

[18] 

ANG AED 

algorithm 

Achieved 97.5% 

accuracy. High 

complexity and cost. 

High delay. High 

scalability. 

High 

computational 

complexity, cost, 

and delay. 

Exploring methods to 

optimize the 

algorithm for 

reduced complexity, 

cost, and delay. 

APBF [19] APBF 

algorithm 

Achieved 90.2% 

accuracy. Very high 

complexity. High 

cost. Very high 

scalability. 

High 

computational 

complexity and 

cost. 

Investigating 

techniques to 

optimize the 

algorithm and reduce 

cost without 

compromising 

scalability. 
 

ML MLP 

[20] 

ML MLP 

algorithm 

Achieved 91.5% 

accuracy. Very high 

complexity and cost. 

High delay. High 

scalability. 

High 

computational 

complexity and 

cost. High delay. 

Exploring methods to 

optimize the 

algorithm for 

reduced complexity 

and delay. 

GN-MBAG 

[21] 

GN-MBAG 

algorithm 

Achieved 96.4% 

accuracy. High 

complexity. Very 

high cost. Medium 

delay. High 

scalability. 

High 

computational 

complexity and 

cost. 

Investigating 

techniques to 

optimize the 

algorithm and reduce 

cost and delay. 

FL [22] Federated 

Learning (FL) 

Achieved 91.9% 

accuracy. High 

complexity. Very 

High 

computational 

complexity and 

Developing 

optimization 

techniques to reduce 
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high cost. Medium 

delay. Low 

scalability. 

cost. Medium 

delay. 

cost and delay 

without 

compromising 

scalability. 

AutoML 

[23] 

Automated 

Machine 

Learning 

(AutoML) 

Achieved 85.9% 

accuracy. Very high 

complexity. High 

cost. High delay. 

Medium scalability. 

High 

computational 

complexity and 

delay. High cost. 

Exploring methods to 

optimize AutoML 

processes for reduced 

complexity, cost, and 

delay. 
 

CW [24] Carlini-

Wagner (CW) 

attack 

Achieved 85.9% 

accuracy. High 

complexity. High 

cost. High delay. 

High scalability. 

High 

computational 

complexity, cost, 

and delay. 

Investigating 

techniques to 

improve the defense 

against CW attacks 

without sacrificing 

model efficiency. 

FGSM [25] Fast Gradient 

Sign Method 

(FGSM) 

attack 

Achieved 94.3% 

accuracy. High 

complexity. High 

cost. Medium delay. 

Low scalability. 

High 

computational 

complexity and 

cost. Medium 

delay. 

Developing 

optimized defense 

mechanisms to 

counter FGSM 

attacks effectively. 

JSMA [26] Jacobian-

based Saliency 

Map Attack 

(JSMA) 

Achieved 90.5% 

accuracy. Very high 

complexity. Very 

high cost. High 

delay. Medium 

scalability. 

Very high 

computational 

complexity and 

cost. High delay. 

Exploring methods to 

optimize the defense 

against JSMA attacks 

for improved 

efficiency. 

RL [27] Reinforcement 

Learning (RL) 

Achieved 94.9% 

accuracy. Very high 

complexity. Medium 

cost. Medium delay. 

High scalability. 

High 

computational 

complexity. 

Medium cost. 

Investigating 

techniques to reduce 

computational 

complexity without 

compromising 

accuracy. 

CGAN [28] Conditional 

Tabular 

Generative 

Adversarial 

Network 

Achieved 98.3% 

accuracy. High 

complexity. High 

cost. Medium delay. 

High scalability. 

High 

computational 

complexity and 

cost. Medium 

delay. 

Developing 

optimized versions of 

CGAN for reduced 

complexity, cost, and 

delay. 

DGM [29] Distributed 

Generative 

Model (DGM) 

Achieved 98.9% 

accuracy. High 

complexity. High 

cost. High delay. 

High scalability. 

High 

computational 

complexity, cost, 

and delay. 

Investigating 

techniques to 

optimize DGM for 

reduced complexity, 

cost, and delay. 
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AGAN [30] Auxiliary 

Classifier 

Generative 

Adversarial 

Network 

Achieved 99.2% 

accuracy. High 

complexity. High 

cost. Medium delay. 

High scalability. 

High 

computational 

complexity and 

cost. Medium 

delay. 

Exploring methods to 

optimize AGAN for 

reduced complexity, 

cost, and delay. 

E-ABAE 

[32] 

E-ABAE 

algorithm 

Achieved 93.4% 

accuracy. High 

complexity. Very 

high cost. High 

delay. High 

scalability. 

Very high 

computational 

complexity and 

cost. High delay. 

Developing 

optimization 

techniques to reduce 

complexity, cost, and 

delay in E-ABAE. 

 
 

ADAT [35] ADAT 

algorithm 

Achieved 75.5% 

accuracy. Very high 

complexity. High 

cost. Medium delay. 

High scalability. 

Very high 

computational 

complexity. High 

cost. 

Investigating 

techniques to 

improve the accuracy 

of ADAT and reduce 

computational 

complexity. 

GAW [36] GAW 

algorithm 

Achieved 93.2% 

accuracy. High 

complexity. Very 

high cost. High 

delay. Medium 

scalability. 

Very high 

computational cost 

and delay. 

Developing 

optimization 

techniques to reduce 

cost and delay in 

GAW. 

SDDN [37] SDDN 

algorithm 

Achieved 90.8% 

accuracy. Very high 

complexity. Medium 

cost. High delay. 

Medium scalability. 

Very high 

computational 

complexity. High 

delay. 

Exploring methods to 

optimize SDDN for 

reduced complexity 

and delay. 

CF GAN 

[39] 

Collaborative 

Filtering 

Generative 

Adversarial 

Network 

Achieved 95.5% 

accuracy. High 

complexity. High 

cost. Medium delay. 

High scalability. 

High 

computational 

complexity and 

cost. Medium 

delay. 

Developing 

optimized versions of 

CF GAN for reduced 

complexity, cost, and 

delay. 

AEGAN 

[40] 

AEGAN 

algorithm 

Achieved 94.9% 

accuracy. Very high 

complexity. Very 

high cost. High 

delay. High 

scalability. 

Very high 

computational 

complexity and 

cost. High delay. 

Investigating 

techniques to 

optimize AEGAN for 

reduced complexity, 

cost, and delay. 
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UTA [41] UTA 

algorithm 

Achieved 90.5% 

accuracy. Very high 

complexity. Very 

high cost. High 

delay. High 

scalability. 

Very high 

computational 

complexity and 

cost. High delay. 

Developing 

optimization 

techniques to reduce 

complexity, cost, and 

delay in UTA. 

IDUAT [42] IDUAT 

algorithm 

Achieved 96.5% 

accuracy. Very high 

complexity. Medium 

cost. Medium delay. 

Medium scalability. 

Very high 

computational 

complexity. 

Exploring methods to 

optimize IDUAT for 

reduced complexity 

and delay. 

ANN [43] ANN 

algorithm 

Achieved 85.3% 

accuracy. Medium 

complexity. High 

cost. Medium delay. 

High scalability. 

High 

computational cost. 

Medium delay. 

Developing 

optimization 

techniques to reduce 

cost and delay in 

ANN. 

IMDFN [44] IMDFN 

algorithm 

Achieved 91.4% 

accuracy. High 

complexity. High 

cost. Very high 

delay. Very high 

scalability. 

Very high 

computational 

complexity, cost, 

and delay. 

Investigating 

techniques to 

optimize IMDFN for 

reduced complexity, 

cost, and delay. 

 
 

VBS-GAN 

[45] 

Variational 

Bayesian 

Sampling 

Generative 

Adversarial 

Network 

Achieved 95.9% 

accuracy. High 

complexity. Very 

high cost. Very high 

delay. High 

scalability. 

Very high 

computational 

complexity, cost, 

and delay. 

Developing 

optimization 

techniques to reduce 

cost and delay in 

VBS-GAN. 

LSTM-AE 

[46] 

LSTM-AE 

algorithm 

Achieved 94.2% 

accuracy. High 

complexity. Very 

high cost. High 

delay. High 

scalability. 

Very high 

computational 

complexity and 

cost. High delay. 

Exploring methods to 

optimize LSTM-AE 

for reduced 

complexity, cost, and 

delay. 

DBN [47] Deep Belief 

Network 

(DBN) 

Achieved 99.2% 

accuracy. Very high 

complexity. High 

cost. Very high 

delay. High 

scalability. 

Very high 

computational 

complexity and 

cost. Very high 

delay. 

Investigating 

techniques to 

optimize DBN for 

reduced complexity, 

cost, and delay. 
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ADMM-GA 

[48] 

ADMM with 

Genetic 

Algorithm 

(GA) 

Achieved 93.9% 

accuracy. Very high 

complexity. High 

cost. Very high 

delay. Medium 

scalability. 

Very high 

computational 

complexity, cost, 

and delay. 

Developing 

optimization 

techniques to reduce 

complexity, cost, and 

delay in ADMM-

GA. 

MTAN [49] MTAN 

algorithm 

Achieved 99.4% 

accuracy. Very high 

complexity. Very 

high cost. Very high 

delay. High 

scalability. 

Very high 

computational 

complexity, cost, 

and delay. 

Investigating 

techniques to 

optimize MTAN for 

reduced complexity, 

cost, and delay. 

ALDC [50] ALDC 

algorithm 

Achieved  93.9% 

accuracy. High 

complexity. High cost. 

High delay. Very high 

scalability. 

High computational 

complexity, cost, and 

delay. 

Exploring methods to 

optimize ALDC for 

reduced complexity, 

cost, and delay. 

 

Table 1. Comparative Analysis of different Models 

Returning to Android security, [14] examines false-negative evasion attacks and the adversarial robustness of 

several malware detection methods. The study shows GreedAA and GradAA attacks, which have high fooling 

rates and decrease the effectiveness of detection models. The researchers suggest Adversarial Retraining and 

Correlation Distillation Retraining procedures as countermeasures, improving adversarial robustness and 

detection accuracy levels.  

Work in [15] discusses the issue of deep learning approaches' ineffective and inefficient protection mechanisms 

against adversarial attacks. The creation and performance of adversarial samples are analyzed using a causal 

model that reveals the underlying operating process. They provide straightforward and efficient adversarial sample 

detection and recognition techniques based on these causal insights, exceeding current defense techniques against 

a variety of adversarial threats. 

Work in [16] offers a paradigm for reliable idea drift detection in the presence of adversarial and poisoning attacks, 

continuing the discussion of concept drift detection in machine learning. The suggested model makes use of an 

enhanced restricted Boltzmann machine with an improved energy function and gradient calculation. Numerous 

trials show the framework's strong robustness and effectiveness in hostile situations. 

The Denoised Internal Models (DIM), a generative autoencoder-based model motivated by brain research to 

address deep learning's robustness difficulties, are then introduced in [17]. DIM uses a two-stage methodology to 

replicate how the human brain processes visual signals. The model is tested against a variety of adversarial 

approaches, successfully fending off each one and outperforming cutting-edge techniques on the MNIST dataset. 

When it comes to open-set recognition and adversarial defense, [18] indicates that these systems are weak against 

these samples. Attacker defense strategies that were developed for known classes do not translate well to open-

set samples. The researchers suggest Omni, a strategy focused on building an ensemble of "unexpected models," 

to address this problem. As an anti-adversarial defense method, Omni shows promising outcomes. 

The usefulness of adversarial attacks in dodging network intrusion detection methods is investigated in [19]. The 

researchers assess the effects of cutting-edge assaults on various datasets and present four essential standards for 

the reliability of network traffic in the presence of hostile disturbances. The combination of adversarial defense 
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and open-set recognition is addressed in [20] last. A denoiser and encoder with dual-attentive feature-denoising 

layers are used in the proposed Open-Set Defense Network with Clean-Adversarial Mutual Learning (OSDN-

CAML) to generate a noise-free and informative latent feature representation. On numerous object classification 

datasets and samples, the model is demonstrated to be resilient against rectangular occlusion, white-box, and 

black-box attacks. 

The researchers present a machine perception metric in [21] that is based on the notion of Just Noticeable 

Difference (JND) in human perception. They provide an adversarial picture generation approach that repeatedly 

warps an image with additive noise until the model generates an incorrect label. The noise that has been added to 

the original image is defined by the method using the gradient of the cost function of the model. The cost function 

is made to enforce perceptual similarity between the adversarial and input images while minimizing the 

perturbation applied to the input image. To maintain the adversarial image's organic aspect, the cost function is 

regularized with total variation and bounded range terms. In comparison to state-of-the-art techniques, the 

suggested method produces adversarial images that are more effective at fooling recognition and detection 

programs while causing less disruption. 

Work in [22] discusses the Graph Neural Networks (GNNs)'s (current GNNs) susceptibility to adversarial 

perturbations, in particular structural perturbations. The researchers suggest a technique dubbed C2oG that 

employs co-training to incorporate the information of sub-models trained using two common perspectives of 

graphs (node feature view and graph structure view). Sub-models are resistant to perturbations directed at other 

sub-models because to the orthogonality of the views, which increases the ensembles' robustness. Without losing 

speed on clean datasets and samples, C2oG considerably increases the robustness of graph models against 

adversarial attacks. 

When it comes to adversarial training in deep neural networks, [23] suggests using supervised adversarial 

contrastive learning (SACL) to overcome the models' lack of robustness. Cross-entropy and adversarial 

contrastive terms are both present in the supervised adversarial contrastive loss used by SACL. The adversarial 

contrastive term assists models in learning example representations by maximizing feature consistency under 

various original instances, hence addressing the issue of low margins. The cross-entropy term directs DNN 

inductive bias learning. On text classification tasks, SACL significantly lowers the assault success rate of various 

adversarial attack algorithms against various models and demonstrates remarkable adaptability and robustness. 

Work in [24] proposes a deep learning method based on grayscale conversion and discrete wavelet transform to 

address the resilience issue of deep learning-based object detection algorithms against adversarial attacks. The 

suggested approach improves object detection accuracy on attacked images against FGSM and PGD attacks by 

utilizing well-known deep learning models (Faster R-CNN, YOLOv5, and DETR). 

In keeping with adversarial training, [25] extends self-supervised contrastive learning to the supervised situation 

for class-wise discrimination and adapts contrastive learning to adversarial cases for robustness enhancement. The 

proposed adversarial supervised contrastive learning (ASCL) outperforms earlier arts in both standard and 

adversarial fine-tuning, as well as resistance to natural corruptions, in terms of adversarial robustness. 

Work in [26] proposes a two-stage system with a separate detector and a denoising block for protecting DNN 

classifiers from hostile samples. The denoiser uses the Block Matching 3D (BM3D) filter to project back detected 

adversarial samples into their data manifold, hence strengthening the robustness against diverse attacks. The 

detector analyzes adversarial cases using natural scene statistics (NSS). 

Adversarial robustness verification for machine learning-based power system dynamic security assessment (DSA) 

is addressed in work in [27]. To measure the resistance of ML-based DSA models to all varieties of adversarial 

cases, a robustness verification approach against adversarial examples is given. For both differentiable and 

nondifferentiable attack situations, a model-free and attack-independent robust index is established, offering 

formal robustness guarantees for real-time DSA. 
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The effectiveness of ML-based network intrusion detection systems (NIDS) is then assessed by [28] through a 

comprehensive analysis of gray/black-box traffic-space adversarial attacks. A practical, general, and 

understandable attack is suggested, and a response strategy is unveiled to increase system robustness. 

Work in [29] introduces the DL-FHMC fine-grained hierarchical learning approach for effective IoT malware 

detection. It uses behavioral patterns based on Control Flow Graphs (CFG) to identify malicious IoT adversary 

software. DL-FHMC detects malware samples and adversarial instances with cutting-edge performance. In order 

to evaluate the differences in adversarial learning between computer vision and NIDS, work in [30] surveys the 

latest research on network-based intrusion detection systems (NIDS), adversarial assaults, and network defenses 

since 2015. The study provides information on current research trends in the field and covers DL-based NIDS, 

adversarial attacks, and defenses. 

Black-box adversarial attacks and responses are highlighted in [31]. The scientists create an improved adaptive 

black-box attack that performs around 30% better than the initial adaptive black-box attack suggested by Papernot 

et al. With the use of the new attack, they evaluate 10 current defenses, and then they suggest their own black-box 

defense, dubbed "barrier zones," which significantly outperforms cutting-edge defenses in terms of security. On 

the tested datasets (CIFAR-10 and Fashion-MNIST), the barrier zones defense achieves higher than 85% robust 

accuracy against black-box border assaults, transfer attacks, and the new adaptive black-box attack. 

The issue of maintaining connection privacy in social network graph embedding techniques is addressed in work 

in [32]. The researchers suggest a unique adversarial learning-based link-privacy maintained graph embedding 

system. While maintaining enough non-sensitive information, such as graph topology and node properties, the 

framework decreases the adversary's prediction accuracy on sensitive linkages. 

An adversarial training strategy for unsupervised inductive network representation learning (NRL) on large 

networks is suggested by the researchers in [33]. With increased efficiency compared to cutting-edge models, the 

technique effectively manages high-quality negative data employing a caching scheme with sampling and 

updating algorithms. 

Moving on, [34] focuses on a quantitative study with 139 industrial practitioners on attacks on machine learning 

systems that actually occur in the real world. The study examines how often attacks on deployed machine learning 

systems occur and how serious they are. It assesses statistical hypotheses regarding variables affecting danger 

perception and exposure. The findings provide light on actual assaults on deployed machine learning systems. 

In order to solve the challenge of learning representations for networks containing attribute information due to 

heterogeneity between structure and attribute information, a novel attribute augmented network is proposed in 

[35]. The suggested ANGAN method outperforms cutting-edge techniques in a variety of practical applications 

by utilizing generative adversarial networks (GANs) for attribute enhanced network embedding. 

Cross-modal generative adversarial networks (GANs) for modeling cross-modal joint distribution and learning 

compatible cross-modal features are the main topic of the work in [36]. On four commonly used cross-modal 

datasets, the proposed method, Joint Feature Synthesis and Embedding (JFSE), provides impressive accuracy 

improvements on traditional retrieval tasks as well as newly researched zero-shot and modified zero-shot retrieval 

tasks. 

Two prior-guided random gradient-free (PRGF) algorithms are suggested by the researchers in [37] for black-box 

adversarial attacks. The techniques effectively target black-box models with higher success rates with fewer 

queries. They are based on biased sampling and gradient averaging. Deep transfer learning is used in the wafer 

defect recognition (WMDR) work in [38]. The Joint Feature and Label Adversarial Network (JFLAN) technique 

is suggested, and it uses adversarial learning and transfer learning to improve defect recognition and quality 

control in semiconductor manufacturing processes. 

Real-time hostile identification and profiling during the User Feedback Process (UFP) in intelligent environments 

are the main topics of [39]. In order to secure active learning methodologies, the paper suggests an automated 

adversarial detection and profiling approach, offering guidance for information security in the context of 
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intelligent settings. For the purpose of overcoming inaccurate-supervised learning (ISL) challenges, such as partial 

label learning (PLL), partial multilabel learning (PML), and multiview PML (MVPML), work in [40] introduces 

ISL-GAN, an adversarial network structure. A broad framework called ISL-GAN can be used to address a variety 

of imprecise annotation learning challenges. 

The emphasis of [41] is on identifying and countering adversarial machine learning attacks on ML systems. In 

contrast to standard ML algorithms, the researchers' proposed new methods for detecting adversarial attacks make 

use of trustworthy AI techniques like Logic Learning Machine and Support Vector Data Description. 

Work in [42] is a survey of the main topics in adversarial machine learning for text processing applications by the 

researchers. They concentrate on developing research topics such adversarial assault defense, text generating 

models and algorithms, malicious versus legitimate text generation metrics, and so forth. 

The problem of robust machine learning models not being able to defend against adversarial attacks that are 

unknown or unrelated to those they were trained on is addressed in work in [43]. The researchers put forth a 

Universal Adversarial Training technique that employs an Auxiliary Classifier Generative Adversarial Network 

(AC-GAN) to produce adversarial examples for enhancing the training data, resulting in enhanced adversarial 

security. 

The notion of quantum adversarial transfer learning, in which data is encoded using quantum states, is presented 

by the researchers in [44]. They propose a quantum subroutine to compute gradients and a measurement-based 

evaluation of data labels, demonstrating its exponential advantage over classical alternatives in terms of 

computational power. The issue of sparse attack packets in network intrusion detection systems (NIDS) is 

addressed in work in [45]. To increase the detection accuracy of sparse attacks, the researchers suggest a data 

augmentation strategy based on the WGAN-GP model, generating notable improvements employing a variety of 

machine learning and neural network classifiers. 

Work in [46] describes a deep learning system that blends deep learning models for image categorization with 

traditional machine learning models, such as random forest. The classical model effectively detects adversarial 

assaults and acts as a secondary verification mechanism to support the core deep learning model. 

Federated learning and automated machine learning (AutoML) are the main topics of work in [47]. In a federated 

learning environment, the researchers present AutoFL, a proof-of-concept framework for AutoML that takes into 

account data imbalances and heterogeneity in real-world deployments. 

For the purpose of identifying DDoS and DoS attacks on IoT networks, the researchers in [48] suggest an Intrusion 

Detection System (IDS) based on a Conditional Tabular Generative Adversarial Network (CTGAN). The 

performance of the detection model is improved by using the CTGAN-generated synthetic traffic to train machine 

learning and deep learning classifiers. DL-FHMC, a fine-grained hierarchical learning approach for effective IoT 

malware detection, is described in work in [49]. DL-FHMC achieves state-of-the-art performance in detecting 

malware samples and adversarial examples by using Control Flow Graph (CFG)-based behavioral patterns for 

adversarial IoT dangerous software detection process.In [50], the researchers systematize and evaluate the 

viability of evasion attempts against ML systems for medical image processing. They examine current defenses 

against ML evasion assaults and put the best ones to the test on COVID-19-positive patient images. 

Overall, these works highlight the diverse and dynamic nature of adversarial machine learning research, with 

efforts focused on detecting and mitigating attacks, developing robust models, and exploring applications in 

various domains such as text processing, quantum computing, IoT, and medical image analysis. Thus, a wide 

variety of models are proposed for Adversarial Machine Learning, and each of them have their own characteristics. 

An empirical comparative survey of these models is discussed in the next section of this text. 

5.Empirical Assessment of the Models 

From the deep dive into different adversarial models, it can be observed that each of these models have their own 

nuances & characteristics. To further improve this analysis, this section compares these models in terms of 

Accuracy (A), Complexity (C), cost (Co), required delay (D), and scalability (S) levels. Values of Accuracy are 
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directly referred from the papers, while other metrics were converted into Low Quantization (LQ), Medium 

Quantization (MQ), High Quantization (HQ), and Very High Quantization (VHQ) levels. Based on this process, 

the models were compared in table 2 as follows, 

Model A C Co D S 

EBBAA [1] 91.5 VH H H M 

LPPGEF [2] 92.9 VH H H M 

ATM 

UINRL [3] 
96.5 H VH H H 

MOSM 

MLST [4] 
90.4 H H VH M 

ANGAN [5] 98.8 VH M M L 

JFSE [6] 85.5 VH H H H 

PRGF [7] 91.4 H M H L 

ISL-GANs 

[8] 
90.9 VH H H VH 

DL-TDM [9] 93.5 VH H M H 

DL-FHMC 

[10] 
95.4 VH H H L 

LSTM-GAN 

[11] 
97.9 VH M H L 

SVDD [12] 85.3 H H H L 

CTGAN [13] 95.9 H H M L 

IFGSM [14] 94.2 VH H H H 

GEA [15] 90.4 M M VH H 

LLM [16] 96.5 H M H H 

MAL [17] 83.4 H H H H 

ANG AED 

[18] 
97.5 H H H H 

APBF [19] 90.2 VH H VH M 

ML MLP 

[20] 
91.5 VH VH H H 

GN-MBAG 

[21] 
96.4 H VH M H 

FL [22] 91.9 H VH M L 

AutoML [23] 85.9 VH H H M 

CW [24] 85.9 H H H H 

FGSM [25] 94.3 H H M L 
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JSMA [26] 90.5 VH VH H M 

RL [27] 94.9 VH M M H 

CGAN [28] 98.3 H H M H 

DGM [29] 98.9 H H H H 

AGAN [30] 99.2 H H M H 

AVA [31] 92.5 M VH H VH 

E-ABAE 

[32] 
93.4 H VH H H 

GAP [33] 94.2 H H VH H 

MNRL [34] 90.9 H H H H 

ADAT [35] 75.5 VH H M H 

GAW [36] 93.2 H VH H M 

SDDN [37] 90.8 VH M H M 

VAE GAN 

[38] 
93.2 H M VH 

L 

 

CF GAN 

[39] 
95.5 H H M H 

AEGAN [40] 94.9 VH VH H H 

UTA [41] 90.5 VH VH H H 

IDUAT [42] 96.5 VH M M M 

ANN [43] 85.3 M H M H 

IMDFN [44] 91.4 H H VH VH 

VBS-GAN 

[45] 
95.9 H VH VH H 

LSTM-AE 

[46] 
94.2 H VH H H 

DBN [47] 99.2 VH H VH H 

ADMM-GA 

[48] 
93.9 VH H VH M 

MTAN [49] 99.4 VH VH VH H 

ALDC [50] 93.9 H H H VH 

      

 

Table 2. Empirical Comparison of Different Models 

According to this comparison, it can be shown that MTAN [49], AGAN [30], DBN [47], DGM [29], ANGAN 

[5], and CGAN [28] have superior accuracy when compared to other models, making them suitable for use in 
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accurately recognizing adversarial models in a variety of circumstances. While GEA [15], AVA [31], and ANN 

[43] have lesser degrees of complexity, they can still be employed in scenarios requiring high levels of efficiency. 

The decreased cost of ANGAN [5], PRGF [7], LSTM-GAN [11], GEA [15], LLM [16], RL [27], SDDN [37], 

VAE GAN [38], and IDUAT [42] makes them useful for cost-conscious application cases. 

ANGAN [5], DL-TDM [9], CTGAN [13], GN-MBAG [21], FL [22], FGSM [25], RL [27], CGAN [28], AGAN 

[30], ADAT [35], CF GAN [39], IDUAT [42], and ANN [43] perform better than other models in terms of delay 

of operation and can be employed for a number of speed-aware scenarios. While it can be seen that ISL-GANs 

[8], AVA [31], IMDFN [44], and ALDC [50] offer greater performance in terms of scalability levels and can be 

employed for large-scale applications. 

The table that is presented compares several adversarial machine learning models, and the study shows how well 

they perform depending on various metrics. MTAN has the highest accuracy among the models, with a rough 

accuracy of 99.4%. DBN and DGM display a about 99.2% accuracy when following closely. Notably, models 

with high accuracy values ranging from 97.5% to 99.2% include AGAN, CGAN, RL, ANGAN, and ANG AED. 

Models with lower levels are preferred for computational effectiveness and affordability when complexity and 

cost are taken into account. Models with comparatively lesser complexity and expense levels include SVDD, 

ANN, GAP, MNRL, ML MLP, RL, and GEA. Models with lower delay levels are better for real-time or near-

real-time applications because they can provide predictions more quickly. In this regard, it is anticipated that 

DBN, DGM, ANGAN, AGAN, and MTAN will have fewer delays. Additionally, scalability is important for 

managing huge datasets, and it is projected that DBN, DGM, AGAN, MTAN, ANN, and DL-FHMC would have 

improved scalability levels. In order to choose the best model for their application in adversarial machine learning 

scenarios, researchers and practitioners are advised to take into account the specific use case, dataset 

characteristics, available computational resources, and trade-offs between accuracy, complexity, cost, delay, and 

scalability levels. 

These metrics were combined to evaluate an Adversarial Machine Learning Rank (AMLR) via equation 1, 

𝐴𝑀𝐿𝑅 =
𝐴

100
+
𝑆

4
+
1

𝐶
+

1

𝐶𝑜
+
1

𝐷
… (1) 

Based on this evaluation, it can be observed that AVA [31], RL [27], ALDC [50], ANN [43], AGAN [30], GEA 

[15], and CGAN [28] outperform other models, thus they can be used Accuracy, Complexity, Cost, Delay, and 

Scalability levels. Readers can use these models, and extend them to achieve better performance for different real-

time use cases. 

6.Conclusions & Future Scope 

This review offers useful insights into the many tactics, techniques, and strategies applied to deal with security 

issues brought on by adversarial attacks. The results show how important this field of study is and how crucial it 

is to build machine learning models that are strong enough to survive attempts to trick or control them. 

According to the review, machine learning systems are frequently vulnerable to adversarial attacks, and a number 

of attack methods have been suggested to take advantage of these weaknesses. As a result, scientists have created 

a variety of defense strategies, including adversarial training, generative models, explainable AI, and data 

augmentation approaches, to thwart these attacks. On numerous real-world datasets and applications, the 

effectiveness of different defense techniques was assessed, allowing for a thorough understanding of their 

advantages and disadvantages. 

The analysis's main finding is the trade-off between model robustness and accuracy. While some models perform 

well in safe situations, they might not be able to recognize and fend off hostile attacks. Conversely, models with 

more robustness typically have lesser accuracy under normal circumstances. As a result, in the subject of 

adversarial machine learning, finding a balance between accuracy and robustness continues to be a major 

difficulty. 
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The future focus of this study will be on creating more sophisticated, adaptive defense systems that can change 

over time to fend off new adversarial attack methods. Additionally, it is necessary to combine various defense 

strategies to develop hybrid systems that provide stronger defense against a wider variety of attack vectors & 

scenarios. 

To further improve the security and dependability of machine learning systems in real-world scenarios, research 

into the applicability of adversarial machine learning techniques in certain domains, such as healthcare, banking, 

and critical infrastructure, is very promising. 

The creation of benchmark datasets and uniform evaluation techniques for adversarial machine learning will also 

make it possible to compare various defense strategies fairly and consistently. This will enable more thorough 

benchmarking and testing of suggested ways, providing better insights into their efficacy. 

Exploring adversarial assaults and responses in developing fields like quantum machine learning and federated 

learning is a crucial component of future study. Understanding these technologies' vulnerabilities and creating 

strong security measures are essential as they gain popularity. 

In order to assure the security and dependability of machine learning systems, this review and analysis highlights 

the need for more robust and resilient models while also shedding light on the current status of adversarial machine 

learning. In order to create a safer and more reliable machine learning environment for various situations, 

researchers, industry professionals, and legislators will need to work together to address these issues for different 

scenarios. 
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