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Abstract 

Automatic detection of respiratory diseases plays a crucial role in modern healthcare, offering several 

benefits in terms of efficiency, accuracy, and timely intervention. With the integration of advanced 

technologies such as machine learning and deep learning, automated systems can analyze respiratory data 

and swiftly identify various respiratory conditions. This approach eliminates the need for manual analysis, 

reducing the time required for diagnosis and allowing for prompt medical attention. This paper presents an 

Automatic Respiratory Data Classification System utilizing an Improved Convolutional Neural Network 

(CNN) and wavelet transform applied to real-time clinical data. The Respiratory Classification System (RCS) 

demonstrates robust performance with impressive Normal Respiratory Detection Rates (NRDR) of 98% for 

normal male data and 95% for normal female data. High accuracy is also achieved in classifying abnormal 

respiratory data, with NRDRs of 96.67% for abnormal male data and 96% for abnormal female data. The 

comprehensive evaluation on a substantial dataset results in an outstanding Respiratory Detection Rate 

(RDR) of 98.8%. The proposed Improved CNN algorithm attains a remarkable RDR with low computational 

time, showcasing its potential for respiratory disease classification.  

Keywords: Convolutional Neural Network, Internet of Things, Wavelet transform, Mean, Data 

Augmentation. 

1. INTRODUCTION 

Respiratory diseases present a complex and diverse spectrum of disorders that profoundly impact the complex 

process of human respiration. These conditions affect various structures responsible for breathing, including the 

nasal cavities, pharynx, larynx, trachea, bronchi, bronchioles, lung tissues, and respiratory muscles within the 

chest cage. Understanding respiratory diseases requires a comprehensive exploration of their multifaceted causes, 

which range from infectious agents to environmental factors, genetic predispositions, occupational exposures, and 

lifestyle choices. Infections, caused by both viral and bacterial agents, play a pivotal role in respiratory diseases. 

Influenza, common cold viruses, pneumonia, bronchitis, and tuberculosis exemplify the diverse nature of 

respiratory infections, showcasing the range of symptoms and complications associated with these conditions. 

Environmental factors contribute significantly to respiratory diseases, exposing individuals to various pollutants 

and irritants. Tobacco smoke, air pollution, occupational dust or chemicals, and indoor pollutants like mold or 

asbestos pose substantial risks to respiratory health. Recognizing the impact of these environmental factors is 

crucial for effective prevention and management strategies. Allergens, including airborne particles such as pollen, 

pet dander, mold spores, and certain foods, can trigger allergic reactions, leading to conditions like allergic rhinitis, 

asthma, and hypersensitivity pneumonitis. The immune system's exaggerated response to these allergens can result 

in inflammation and constriction of the airways, affecting normal respiratory function. Genetic factors also play 

a significant role in respiratory diseases, with certain conditions having a hereditary component. Cystic fibrosis 

and alpha-1 antitrypsin deficiency serve as examples of inherited disorders that impact the respiratory system, 

highlighting the genetic complexities associated with these diseases. Occupational exposures in specific industries 

can lead to respiratory diseases. Miners exposed to coal dust may develop pneumoconiosis, while workers in 
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asbestos mining face the risk of developing asbestosis. The occupational hazards underscore the importance of 

workplace safety and monitoring to prevent respiratory health issues. Tobacco smoking stands out as a major risk 

factor for respiratory diseases, contributing to a range of conditions, including chronic obstructive pulmonary 

disease (COPD), lung cancer, and emphysema. The harmful chemicals in cigarette smoke can cause inflammation, 

damage to lung tissues, and a decline in overall respiratory function. Autoimmune diseases, such as rheumatoid 

arthritis and systemic lupus erythematosus, have the potential to affect the respiratory system, inducing 

inflammation and lung damage. The complex behavior between autoimmune conditions and respiratory health 

necessitates a thorough understanding for accurate diagnosis and targeted management. Advancing age increases 

susceptibility to respiratory diseases, with older individuals being more prone to conditions like pneumonia and 

COPD. Age-related changes in the respiratory system, coupled with a potential decline in immune function, 

contribute to the heightened vulnerability observed in the elderly population. Pre-existing medical conditions, 

such as heart disease or diabetes, can heighten vulnerability to respiratory infections and complications. Imaging 

studies, such as chest X-rays and computed tomography (CT) scans, offer detailed visuals of the chest, aiding in 

the identification of abnormalities like infections, tumors, or fluid accumulation. Pulmonary function tests (PFTs), 

including spirometry, assess lung capacity and function. These tests provide valuable information about the extent 

of respiratory impairment and aid in the classification of respiratory diseases. Blood tests are conducted to identify 

markers of inflammation, infection, or specific antibodies related to autoimmune or allergic conditions. Arterial 

blood gas (ABG) tests measure oxygen and carbon dioxide levels in the blood, providing insights into respiratory 

efficiency. Microbiological tests, such as sputum cultures and blood cultures, assist in identifying the presence of 

pathogens. Allergy testing, through skin prick tests or blood tests, helps pinpoint allergens contributing to 

respiratory symptoms. Invasive procedures like bronchoscopy allow for direct visualization of the airways, sample 

collection, and assessment of abnormalities. Biopsies may be conducted for microscopic examination, providing 

crucial information for diagnosis. Additional diagnostic tools include electrocardiograms (ECGs) to rule out 

cardiac issues, sleep studies to evaluate sleep-related respiratory disorders, and exercise testing to assess 

respiratory function under increased demand. Genetic testing may be employed when there is suspicion of genetic 

respiratory diseases, aiding in the identification of specific mutations. A comprehensive diagnosis and 

management of respiratory diseases often require a collaborative effort from various specialists, including 

pulmonologists and allergists. Recognizing the complex functioning of contributing factors and implementing a 

thorough diagnostic strategy are crucial for effective treatment and prevention.  

In the existing systems, the machine learning (ML) model has shown promising results in respiratory disease 

detection and classification, it is essential to acknowledge certain drawbacks associated with its application in this 

domain. One significant limitation is the dependence on the availability and quality of labeled datasets for training 

algorithms. Obtaining large and diverse datasets that accurately represent the complexity of respiratory diseases 

can be challenging, potentially leading to biased models or limited generalizability. Moreover, the interpretability 

of ML models in the context of respiratory diseases remains a concern. Many machine learning algorithms operate 

as black-box systems, making it challenging for healthcare professionals to understand the underlying reasoning 

behind a particular classification. Interpretability is crucial in the medical field, where decisions impact patient 

well-being, and clinicians need to trust and comprehend the basis of algorithmic predictions. Another drawback 

is the potential for overfitting, especially when dealing with imbalanced datasets or noisy input data. Overfitting 

occurs when a model learns to perform well on the training data but fails to generalize to new, unseen data. In the 

context of respiratory diseases, where individual variability is significant, overfitting can compromise the 

robustness of the model in real-world scenarios. Furthermore, the ethical considerations surrounding patient 

privacy and data security are paramount. ML models trained on sensitive health data may inadvertently reveal 

personal information or contribute to discriminatory outcomes. Ensuring the responsible and ethical use of 

machine learning in healthcare settings is crucial to building trust among patients and healthcare providers. Deep 

learning, a subset of machine learning, has demonstrated advantages over traditional ML methods in respiratory 

disease detection. Deep learning models, particularly neural networks, can automatically learn hierarchical 

representations of data, allowing them to capture complex patterns and features from complex respiratory signals. 

This capability is particularly beneficial in handling the nuanced nature of respiratory diseases, where subtle 

variations in signal patterns may hold diagnostic significance. Moreover, deep learning models, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), excel in feature extraction and 

sequential data processing, making them well-suited for analyzing time-series respiratory signals. Their ability to 

automatically learn relevant features from raw data reduces the need for manual feature engineering, making the 

modeling process more efficient and adaptable to various respiratory conditions. 

The paper's structure includes Section 2, which details the current respiratory data classification process with 

simulated values. This section serves as the foundation for understanding existing methodologies and sets the 

stage for the introduction of the proposed RCS. Section 3 introduces the Respiratory Classification System and 
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outlines its real-time hardware interfacing modules. This section describes the technical details of the proposed 

system and explains the possible uses that can be made in comparison to traditional ways. Experimental results 

obtained by the proposed RCS find a detailed explanation in Section 4. Comparative analyses with other classical 

systems shed light on the system's effectiveness and reliability in respiratory signal classification. Section 5 offers 

concluding remarks, summarizing the research findings and emphasizing the potential impact of the proposed 

respiratory signal classification system on the diagnosis and management of respiratory diseases. The 

multidisciplinary approach, involving specialists from various fields, remains integral in addressing the diverse 

challenges posed by respiratory diseases.  

2. LITERATURE SURVEY 

Asatani et al. (2021) introduced a novel automatic classification method for respiratory sounds using deep learning 

algorithms to support the diagnosis of respiratory diseases. The proposed method involves generating 

spectrograms through a short-time Fourier transform and classifying respiratory sounds into normal and abnormal 

categories, including crackle, wheeze, or both. The results demonstrated sensitivity of 0.63, specificity of 0.83, an 

average score of 0.73, and a harmonic score of 0.72, outperforming other methods. Zhang et al. (2023) focused 

on training deep learning algorithms, including Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM), CNN ensembled with unidirectional LSTM (CNN-LSTM), and CNN ensembled with 

bidirectional LSTM (CNN-BLSTM), on a dataset of 920 patient respiratory audio files from the Respiratory 

Sound Database. The study aimed at exploring the effectiveness of different deep learning architectures in 

respiratory sound classification. Kim et al. (2021) addressed the challenges of accurate interpretation of 

respiratory sounds during auscultation by developing an automated classification system. They utilized a deep 

learning convolutional neural network (CNN) to categorize 1918 respiratory sounds recorded in clinical settings, 

achieving an accuracy of 86.5% and demonstrating the potential to complement clinicians' auscultation. Li et al. 

(2022) presented a method combining convolutional neural network (CNN) and long-short-term memory network 

(LSTM) for the prediction and diagnosis of respiratory diseases. Their approach involved preprocessing clinical 

records, word vectorization using the Bidirectional Encoder Representation from Transformers (BERT) model 

and encoding and decoding of information using CNN and LSTM layers. Gang et al. (2021) proposed a pediatric 

fine-grained diagnosis-assistant system for prompt and precise diagnosis of respiratory diseases using clinical 

notes. The system involved two stages: test result structuralization and disease identification. They developed a 

deep learning algorithm incorporating adaptive feature infusion and multi-modal attentive fusion, achieving high 

average precisions for pneumonia, upper respiratory tract infection (RTI), bronchitis, and asthma. Qasim et al. 

(2023) conducted a systematic literature review on the detection and classification of respiratory diseases using 

deep learning methods. They analyzed 47 articles published between 2015 and 2021, emphasizing the prevalence 

of supervised learning with deep convolutional neural networks in this domain. The review highlighted a shortage 

of tools, hindering the transition from academic research to industrial applications. Chip Lynch et al. (2017) 

applied various supervised learning techniques, including linear regression, Decision Trees, Gradient Boosting 

Machines (GBM), Support Vector Machines (SVM), and a custom ensemble, to classify lung cancer patients based 

on survival using the SEER database. Their study explored the predictive power of different techniques and 

identified key data attributes influencing survival prediction. Jayalakshmy et al. (2020) proposed a pre-trained 

optimized Alexnet Convolutional Neural Network (CNN) architecture for predicting respiratory disorders. Their 

approach involved empirical mode decomposition (EMD) to segment respiratory sound signals and achieved 

improved accuracy compared to traditional wavelet transform methods. Brunese et al. (2022) presented a machine 

learning-based method for respiratory sound analysis to detect and characterize lung diseases. Their approach 

involved gathering a feature vector directly from breath audio, and using supervised machine learning techniques, 

they achieved high accuracy in lung disease detection and characterization, particularly with a neural network 

model. Jasmine et al. (2022) focused on the detection and classification of lung diseases, including pneumonia, 

tuberculosis, and lung cancer, using deep learning models trained on X-ray and CT scan images. They 

implemented three deep learning models and compared their performance, demonstrating high accuracy and 

effectiveness for faster disease detection. Israa et al. (2022) aimed at predicting the readmission of COPD patients 

using machine learning algorithms. They evaluated models based on Area Under Curve (AUC) and Accuracy 

(ACC), identifying important variables for each outcome and achieving high accuracy (91%) in predicting 

readmission. Stavros et al. (2018) introduced an integrated mHealth system for real-time personalized feedback 

to patients for proper inhaler use in asthma and chronic obstructive pulmonary disease. Their system achieved a 

high classification accuracy of 98%, outperforming existing approaches and providing intuitive feedback 

interfaces for patient engagement. Palaniappan et al. (2013) provided a comprehensive review of computer-based 

respiratory sound analysis techniques used by various researchers. The methodologies, sensor types, signal 

processing, and classification methods employed in previous works were examined, offering insights into the 

evolution and possibilities for further improvements in the field. 
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3. PROPOSED METHODOLOGY 

Breathing signal analysis plays a vital role in various domains, including healthcare and wellness monitoring. The 

process of utilizing Convolutional Neural Networks (CNNs) in conjunction with wavelet transform features for 

breathing signal classification is a sophisticated approach that enhances the interpretation of physiological data. 

 

 
 

Figure 1. Block diagram of Respiratory Classification system 

 

3.1 Signal Acquisition 

The initial step involves the acquisition of breathing signals through sensors. These signals, inherently analog, 

undergo Analog-to-Digital (A/D) converter and Micro controller unit (Arduino) along with RS232 interfacing 

module to facilitate subsequent digital processing. This crucial conversion allows for the manipulation and 

analysis of the signals in a digital environment. 
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Figure 2. Constructed breathing sensor 

3.2 Wavelet Transform: 

Upon digitization, the breathing signals enter the realm of wavelet transform. This mathematical tool excels in 

breaking down signals into distinct frequency components, offering a multiresolution analysis. The result is a set 

of coefficients that encapsulate the signal's characteristics at different scales and frequencies. Features extracted 

from this process include mean values, energy, standard deviation, kurtosis, skewness, peak max indices, peak 

min indices, and linear indices, each corresponding to different levels of decomposition. 

3.3 Extracted Features 

The features derived from the wavelet transform act as descriptors, encapsulating essential information about the 

breathing signal. These features serve as the foundation for subsequent analysis and classification. Mean values 

provide insights into the central tendencies of the signal, while energy values convey the overall power or intensity 

of signal variations. Standard deviation measures signal variability, while kurtosis and skewness offer insights 

into the distribution's shape and asymmetry. Peak max and min indices pinpoint the locations of significant signal 

peaks and troughs, while linear indices provide a linear representation of the signal's progression. 

The extraction of essential features from wavelet-transformed signals involves several key procedures. The Mean 

(μ) is computed as the average of the wavelet coefficients (xi) at a specific decomposition level, involving the 

summation of   where N represents the number of coefficients. The Energy (E) is determined by summing the 

squared values of the coefficients, given by Standard Deviation (σ) is calculated using the square root of the mean 

squared deviation from the mean, expressed as Kurtosis and Skewness, measures of distribution shape, involve 

higher-order statistical calculations based on the coefficients' deviations from the mean. The Peak Max Index is 

derived by identifying the index corresponding to the maximum coefficient value using the argmax operation. 

Similarly, the Peak Min Index is obtained by finding the index corresponding to the minimum coefficient value 

through the argmin operation. Finally, the Linear Index is computed by generating a linear representation of the 

signal's progression, where each index (i) is normalized within the range [0, 1], allowing for a comprehensive 

understanding of the signal's evolution. These procedures collectively enable the extraction of valuable 

information from wavelet-transformed signals, providing a detailed characterization of breathing patterns and 

states. 

3.4 Data augmentation 

Data augmentation for features extracted from wavelet transform involves introducing variations to the existing 

dataset to enhance the robustness and generalization capability of a classification model, such as a Convolutional 

Neural Network (CNN). Specifically, for features like Mean, Energy, Standard Deviation, Kurtosis, Skewness, 

Peak Max Index, Peak Min Index, and Linear Index obtained from wavelet transform, augmentation can be 

applied. 

For features like Mean, Energy, Standard Deviation, Kurtosis, and Skewness, variations can be introduced by 

perturbing the magnitude and distribution of these statistical measures. This may include altering the mean value, 

adjusting energy levels, introducing random noise to mimic fluctuations, or skewing and transforming the 

distribution of kurtosis and skewness to simulate diverse scenarios. 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 6 (2023)   
_________________________________________________________________________________________ 

 

4163 
 

Peak Max and Min Indices, indicating significant points in the signal, can undergo augmentation by introducing 

slight variations in the positions of these peaks and troughs. This may involve shifting the indices, adding or 

removing peaks, or adjusting the amplitude of existing peaks. 

Linear Index Feature, representing the linear progression of the signal, can be augmented by applying 

transformations such as rotation or scaling. These variations mimic potential distortions in the signal's temporal 

progression and contribute to a more comprehensive dataset. 

It's important to note that the goal of data augmentation is to expose the model to a diverse range of scenarios that 

it might encounter during real-world applications. By introducing controlled variations in the dataset, the model 

becomes more adaptable and less prone to overfitting. The augmented dataset, enriched with these variations, is 

then used for training the CNN, allowing it to learn from a broader set of examples and improving its ability to 

generalize to unseen data. Overall, data augmentation is a crucial step in the pipeline to ensure the model's 

effectiveness in handling the complexities and variations present in real-world physiological signals. 

3.5 Convolutional Neural Network (CNN) 

The extracted features become the input for a Convolutional Neural Network (CNN). The architecture of the CNN 

is designed to utilize the hierarchical learning capabilities of convolutional layers, pooling layers, and fully 

connected layers. Convolutional layers automatically learn spatial features and patterns at different levels of 

abstraction. Pooling layers reduce spatial dimensions, focusing on critical features. Fully connected layers 

amalgamate the learned features to facilitate the final classification. This combination of layers ensures that the 

CNN can discern complex patterns within the wavelet-transformed features. 

3.5.1 Classification Output: 

The ultimate goal of this process is classification. The CNN, having processed the extracted features, generates a 

classification output. This output assigns labels to the input signals based on the learned hierarchical 

representations. For instance, the CNN might categorize signals as indicative of normal or abnormal breathing 

patterns. This classification output is a tangible result of the model's ability to discern patterns and relationships 

within the complex, multiresolution features obtained through wavelet transform. 

The extracted features form the foundation for subsequent data augmentation, a pivotal step that broadens the 

diversity of the training dataset. Data augmentation introduces controlled variations to the feature set, simulating 

real-world scenarios and contributing to the model's adaptability. These variations may include adjusting statistical 

measures, introducing noise, or perturbing peak indices, among other transformations. This augmented dataset 

becomes a robust training ground for an improved CNN designed for breathing signal classification. 

 

Figure 3. Improved CNN architecture 

The architecture of the CNN unfolds with a first convolutional layer employing 64 output filters and a 5x5-pixel 

size kernel, coupled with a subsequent 2x2-pixel max-pooling layer for down-sampling. The subsequent three 

convolutional layers continue the hierarchy, each featuring a 3x3-pixel size kernel and 64, 96, and 96 filters 

sequentially. Batch-normalization layers are strategically interleaved with these convolutional layers, serving to 

stabilize and accelerate the training process. Corresponding 2x2 max-pooling layers follow, contributing to the 

hierarchical learning of the network. A new convolutional layer, characterized by a 3x3-pixel size kernel and 32 

output filters, introduces additional complexity to the model. Post this layer, batch-normalization and max-pooling 
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layers follow suit, contributing to the normalization of extracted features and the reduction of spatial 

dimensionality in the feature maps. 

The incorporation of batch-normalization is pivotal, acting as a regularizer during training and stabilizing the 

learning process by reducing internal covariate shift. This allows for smoother convergence and facilitates the 

training of deeper networks. The max-pooling layers, on the other hand, contribute to spatial down-sampling, 

retaining critical features while reducing the computational load. 

This complex architecture is designed to capture hierarchical representations and spatial relationships within the 

wavelet-transformed features. The convolutional layers automatically learn patterns at different levels of 

abstraction, while batch-normalization ensures stable training dynamics. The ensuing max-pooling layers focus 

on preserving essential features and down-sampling the spatial dimensions for efficiency. Collectively, this CNN 

architecture serves as a potent tool for the classification of breathing signals, leveraging the enhanced feature set 

obtained through wavelet transform and data augmentation. In conclusion, the entire process encapsulates a 

synergistic integration of signal processing techniques, advanced feature extraction, and deep learning 

methodologies, contributing to the development of a robust and effective model for breathing signal classification. 

3.6 Integration and Interpretation: 

The integration of wavelet transforms and CNNs offers a comprehensive approach to breathing signal analysis. 

Wavelet transform, with its ability to provide detailed insights into different scales of the signal, serves as a robust 

feature extraction method. CNNs, with their capacity for hierarchical learning, thrive in analyzing these features, 

automatically discerning complex patterns that might signify specific breathing states. 

The utilization of wavelet transform features in conjunction with Convolutional Neural Networks represents a 

sophisticated methodology for breathing signal analysis. The integration of these two powerful techniques allows 

for a nuanced understanding of physiological data, offering valuable insights into breathing patterns and states. 

As technology advances, the synergy between signal processing and machine learning continues to pave the way 

for innovative approaches in healthcare and well-being monitoring. The interaction between the wavelet-

transformed features and the hierarchical learning of CNNs encapsulates the essence of a robust and advanced 

analytical process. 

4. RESULTS AND DISCUSSION 

The proposed Respiratory Classification System (RCS) outlined in this study was simulated using the Python 

environment on a system with 8 GB RAM and a 1TB Hard disk. To validate the efficacy of the system, a real-

time dataset was meticulously constructed. This dataset encompasses both normal and abnormal respiratory data 

obtained from individuals at the Upgraded Govt. Primary Health Centre in Srimushnam. The dataset collection 

involved 550 male participants and 475 female participants. Among the 550 male individuals, 400 displayed 

normal respiratory patterns, exhibiting no symptoms of any respiratory issues according to clinician reports. The 

remaining 150 males exhibited abnormal respiratory data, showcasing symptoms of respiratory problems as per 

clinician assessments. Similarly, among the 475 female participants, 300 demonstrated normal respiratory 

patterns, and clinician reports indicated the absence of respiratory issues. The remaining 175 females presented 

abnormal respiratory data, displaying symptoms of respiratory problems according to clinician evaluations. This 

meticulous dataset compilation ensures a diverse and representative sample for comprehensive evaluation and 

testing of the proposed RCS. 

Table 1. Evaluation and estimation of Respiratory Detection Rate 

Sex 

category 

Number of 

normal 

persons 

(without any 

respiratory 

problems) 

Number of 

abnormal 

persons 

(with any 

kind of 

respiratory 

problems) 

Number of 

normal 

persons 

correctly 

detected 

Number of 

abnormal 

persons 

correctly 

detected 

Normal 

Respiratory 

Detection 

Rate 

(NRDR) 

in % 

Abnormal 

Respiratory 

Detection 

Rate 

(ARDR) 

in % 

Male 400 150 392 145 98 96.67 

Female 300 175 285 168 95 96 

 700 325 675 311 96.43 95.69 
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Figure 4. Graphical estimation of Respiratory Detection Rate 

 

Table 1 presents the assessment and estimation results for the Respiratory Detection Rate (RDR) in the evaluated 

Respiratory Classification System (RCS). The system achieves a commendable performance, accurately 

identifying 392 out of 400 normal male data, resulting in a 98% Normal Respiratory Detection Rate (NRDR). 

Similarly, for normal female data, the RCS correctly identifies 285 instances out of 300, yielding a 95% NRDR. 

In the case of abnormal respiratory data, the RCS exhibits robust performance, detecting 145 out of 150 abnormal 

male data and achieving a 96.67% NRDR. For abnormal female data, the system correctly identifies 168 instances 

out of 175, resulting in a 96% NRDR. These results underscore the effectiveness of the RCS in accurately 

classifying both normal and abnormal respiratory patterns, showcasing its high detection rates across gender-

specific datasets. 

Table 2. Sample collections for RCS 

Day order 
Male 

persons 

count 

Female 

persons 

count 

Number of 

samples 

collected 

per day 

(from 

male 

persons) 

Number of 

samples 

collected 

per day 

(from 

female 

persons) 

Number of 

samples 

obtained 

for male 

persons 

Number of 

samples 

obtained 

for female 

persons 

1 550 475 10 10 5500 4750 

2 550 475 20 20 11000 9500 

3 550 475 30 30 16500 14250 

4 550 475 40 40 22000 19000 

5 550 475 50 50 27500 23750 

6 550 475 40 40 22000 19000 

7 550 475 30 30 16500 14250 

8 550 475 20 20 11000 9500 

9 550 475 10 10 5500 4750 

10 550 475 10 10 5500 4750 

  260 260 132000 123500 

 

In this real-time dataset, each individual contributes 10 samples collected at various time intervals on the same 

day. Consequently, a total of 5,500 data samples are collected for the 550 male participants, and 4,750 data samples 

are gathered for the 475 female participants in this experimental study. Therefore, a cumulative total of 10,250 

data samples are collected at different time intervals on the same day from the combined group of 550 male 

participants and 475 female participants. Table 3 details the sample collections conducted for the Respiratory 

Classification System (RCS). The study involves the collection of a substantial dataset, totalling 132,000 data 

samples from male participants and 123,500 data samples from female participants. These data samples are 

collected from individuals who undergo testing continuously for 10 days, with samples collected at various time 
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intervals. This comprehensive data collection approach ensures a rich and diverse dataset for the evaluation and 

validation of the RCS over an extended period. 

Table 3. Computation of RDR for the proposed RCS 

Category Total samples collected 
Number of samples 

classified correctly 

Respiratory 

Detection Rate (RDR) 

in % 

Male case 132000 130416 98.8 

Female case 123500 122018 98.8 

 

The computation of Respiratory Detection Rate (RDR) for the proposed Respiratory Classification System (RCS) 

demonstrates a remarkable accuracy in both male and female cases. For male cases, out of a total of 132,000 

samples collected, the RCS correctly classifies 130,416 samples, yielding an impressive RDR of 98.8%. Similarly, 

in female cases, where 123,500 samples were collected, the RCS accurately identifies 122,018 samples, resulting 

in an equivalent 98.8% RDR. These consistent and high RDR values underscore the reliability and effectiveness 

of the RCS in accurately classifying respiratory patterns across gender-specific datasets. The balanced 

performance in both male and female cases highlight the system's robustness and suitability for diverse respiratory 

data sets. 

 

Table 4. Performance analysis using metrics 

Metrics Experimental results in % 

Sensitivity 98.87 

Specificity 98.86 

Accuracy 98.87 

 

The experimental results showcase a highly robust performance of the proposed respiratory data classification 

system, with a sensitivity of 98.87%, specificity of 98.86%, and an overall accuracy of 98.87%. These metrics 

reflect the system's exceptional ability to correctly identify positive cases (sensitivity) and negative cases 

(specificity), resulting in an impressive accuracy level. The well-balanced values across sensitivity and specificity 

indicate the model's effectiveness in both detecting abnormalities and accurately classifying normal cases. The 

consistently high metrics underscore the reliability and accuracy of the proposed classification system, making it 

a promising tool for respiratory data analysis. 

Table 5. Performance comparisons of RCS using different classifiers 

 

Classifier 

category 
Classifiers Total samples RDR in % 

Computational time 

for per sample 

(ms) 

Deep learning 

Proposed improved 

CNN 
254500 98.8 0.24 

Existing LeNet 254500 92.8 0.92 

Machine learning 

SVM 254500 91.7 1.65 

NN 254500 90.6 1.74 

ANFIS 254500 87.5 1.98 

 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 6 (2023)   
_________________________________________________________________________________________ 

 

4167 
 

 

Figure 5. Graphical performance comparisons using different classifiers 

 

In this comparative analysis of classifiers, the proposed Improved CNN stands out as a powerful deep learning 

model, achieving an impressive 98.8% Respiratory Detection Rate (RDR) with a remarkably low computational 

time of 0.24 ms per sample. In contrast, the existing LeNet, another deep learning model, demonstrates a lower 

RDR of 92.8% with a comparatively higher computational time of 0.92 ms per sample. Among the machine 

learning classifiers, Support Vector Machine (SVM) leads with a respectable 91.7% RDR, while Neural Network 

(NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) achieve RDRs of 90.6% and 87.5%, respectively, 

with varying computational times ranging from 1.65 to 1.98 ms per sample. The proposed Improved CNN emerges 

as an efficient and accurate choice for respiratory data classification with notable advantages in both RDR and 

computational efficiency. 

5. CONCLUSION 

In this Automatic Respiratory Data Classification System utilizing an Improved Convolutional Neural Network 

(CNN) classification algorithm applied to real-time clinical data. The Respiratory Classification System (RCS) 

demonstrates robust performance, accurately identifying 392 out of 400 normal male data with a commendable 

98% Normal Respiratory Detection Rate (NRDR). Similarly, for normal female data, the RCS correctly detects 

285 instances out of 300, resulting in a 95% NRDR. In the case of abnormal respiratory data, the RCS achieves 

high accuracy, detecting 145 out of 150 abnormal male data (96.67% NRDR) and 168 out of 175 abnormal female 

data (96% NRDR). The comprehensive evaluation involves a substantial dataset, including 130,416 male case 

samples acquired at different time intervals from a total of 132,000 samples, achieving an impressive 98.8% 

Respiratory Detection Rate (RDR). Additionally, 122,018 female case samples, obtained from various time 

intervals out of 123,500 samples, also attain a notable 98.8% RDR. Consequently, the mean RDR across both 

male and female datasets is approximately 98.8%. The proposed Improved CNN deep learning algorithm attains 

the remarkable RDR of 98.8% with a computational time of 0.24 ms. Looking ahead, the future direction of this 

research involves storing and processing acquired respiratory data, along with diagnosing classified respiratory 

data, in a public cloud with a heightened level of security using Internet of Things (IoT) techniques. 
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