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Abstract:  

The use of mobile devices is expanding daily in today's technological age. Mobile marketplaces are constantly 

providing an expanding selection of mobile applications to satisfy the demands of smartphone users. Many 

Android applications fall short in their attempts to adequately address security-related issues. This is usually 

brought on by a lack of automated methods for permission-based vulnerability discovery, testing, and resolution 

during early design and development phases. As a result, it is generally agreed that addressing such issues 

quickly is preferable to sending updates and fixes for already-released apps.A proactive set of permissions 

declared by mobile app developers can protect users’ data privacy is the research concern here. This paper 

reviews the AndRev-Android framework functionality and its envisioned purpose. The researcher tried to justify 

the research questions raised by the experts, which will add value to future researchers in this domain. 
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1. Introduction: 

Mobile devices contain privacy-related data since they are kept close to the user, are more likely to be lost or 

stolen, and can connect to multiple networks at once [1]. As a result, confining mobile devices to existing 

security measures will not be sufficient. A few of the dangers [3] that can happen in an Android mobile device 

are malicious behaviors including physically accessing the device, establishing connections with untrusted 

networks, installing, and running untrusted programs, and executing untested code blocks and contents. 

Therefore, security precautions should be tightened while reducing vulnerabilities to protect the data on Android 

devices. 

 

Figure 1.1 Types of Malicious Behaviour for Mobile Apps 
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It is necessary to install adequate security measures to increase the security of Android devices and their 

applications. Therefore, identifying Android applications' weaknesses and applying the security best practices, it 

is advisable to perform permission-based vulnerability discovery. 

The research questions addressed are as follows: 

Research Questions: 

RQ 1:What would be the significance of this research considering the upcoming modifications as  

Google Play has consistently revised its policies[11]?  

RQ 2: What is the rationale behind the sampling? 

RQ 3: What is the perspective for permission Analysis? 

RQ 4: How does PCA improve model accuracies via accurate feature selection? 

RQ 5: What are the added functionalities in the AndRev tool over APKTool? 

RQ 1: What would be the significance of this research considering the upcoming modifications as  

Google Play has consistently revised its policies[11]?  

Even though Android mobile OS and its permission model both are secured, it is observed that there is an 

increase in malware for Android mobile apps and user’s data privacy is always at risk. Numerous apps in the 

Apple App Store for iOS and the Google Play Store for Android expose consumers to privacy dangers, 

according to Symantec research[4]. Some mobile applications for iOS and Android users ask for excessive 

permissions to access a user's personal data. In the study, Symantec detailed how users' personal information is 

collected and how dubious apps on the Google Play Store are overrun with intrusive adverts, endangering their 

privacy. 

RQ 2: What is the rationale behind the sampling? 

Is there a Sampling Bias when only looking at the Top50 Free Apps in 5 Categories? By limiting your search to 

this sample, will you be missing anything?  

A mobile user visits the Google Play Store with the aim of getting TOP FREE APPS. TOP FREE APPS is a 

focused dataset for this research. Here on this page user gets a few recommended apps as per the requested 

category or functionality by the app user. As per the Chi-square test for two variable independence and Z-test of 

proportion with a p-value less than 0.05, we have considered the TOP 50 FREE Apps across the 5 Categories, in 

all 250 apps. Apps are listed for users to download or install from the Google Play Store website. Secondly, 

while collecting features of apps across the categories with similar functionality, it was found that features are 

almost getting repeated. 

Google Store is the main data source to get free Android APKs required for this research study. There is no 

other way for the normal user to validate the user’s privacy and app security, so the user is simply dependent on 

the review system provided by Google Play Store which then becomes a trusted data source for the user to 

download apps. Various categories of apps are available which affect the distribution of permissions but for this 

study categories of apps like – Games, Education, Entertainment, Shopping, and General/Tools are considered. 

50 top apps from each category from the mentioned data source were selected and downloaded for this 

experiment. As a result, 250 free Apps, which is a good sampling of Apps. In this research, a Z-test is conducted 

to decide the sample size. The two variables proportion test is conducted for sample sizes of 50, 100, 150, 200, 

250, 300, and 1000 Android APKs. Z-test results are significant and there is not much variation observed for 

sample sizes 200, 250, 300, and 1000 samples of Android APKS. The calculated P value for the Z-test is less 

than 0.05. In this research, permissions are divided into the categoriesof normal, medium, and high levels 

according to their impact on 44 making the app safe or vulnerable. A statistical chi-square test for variable 

independence is carried out to check application safety is dependent on the type of permissions declared by the 
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app, this test is accepted. The next step is to reverse-engineer the APKs to extract permissions. Drebin dataset, 

(Arp, 2014), (Spreitzenbarth, 2013), provides text files with the list of features and permissions but, APK files 

are not provided. The dataset does not provide information on whether the app is safe or not safe. Therefore, 

there is a need to build a research dataset with APKs. 

RQ 3: What is the perspective for permission Analysis? 

 Install-time permissions, runtime permissions, and special permissions are the three main categories under 

which Android divides permissions. When the system grants your app that permission, each category represents 

the range of restricted data that the app can access and the range of restricted actions that the app can carry 

out[10]. 

The research approach primarily focuses on static analysis of Android mobile apps, the researcher has extracted 

a set of permissions that are declared in the manifest.xml file of each mobile app. Permissions declared in the 

manifest.xml file are installed time permissions. Primarily discussion is about permissions declared by the app 

user and compared to the requirement of permissions to fulfill the functionality of the app to satisfy the user 

expectations. A proactive set of permissions declared by mobile app developers can protect users’ data privacy 

is the research concern here. 

RQ 4:How does PCA improve model accuracies via accurate feature selection? 

Comparison between the performance of various classifiers before and after PCA 

 

Table 1.1: Performance of Learning Models with all features (before applying PCA) 

 

Performance of Learning Models with all features (before applying PCA) 

 

Type Classifier TP Rate 

FP 

Rate Precision Recall 

F-

Measure 

ROC 

Area 

Bayes Naive Bays 64 41.9 59.6 64 59.8 74.5 

Functions Logistic Regression 65 33.1 69.5 65 58.9 82.7 

  Multilayer Perceptron 64 25.5 65 64 64.3 77.2 

  

Simple Logistic 

Regression 70 22.5 71.4 70 69.7 79.5 

  SMO 65 61.1 55.3 65 54.9 55.6 

Meta Logit Boost 62 36.8 59.2 62 60.1 73.3 

  Bagging 66 43.1 64.5 66 62.5 70.8 

Tree Random Forest 70 37.8 69 70 67.7 79 

  J48 63 34.1 62.2 63 62.4 63.2 

Rules Decision Table 59 62.7 37.7 59 46 45.6 
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Table 1.2: Performance of Learning Models with all features (after applying PCA) 

 

Performance of Learning Models with reduced features (after applying PCA) 

 

Type 

 

 

Classifier 

 

 

TP 

Rate 

 

FP 

Rate 

 

Precision 

 

Recall 

 

F-Measure 

 

ROC 

Area 

 

Bayes Naive Bays 67.5 23.6 69.5 67.5 68.3 73 

Functions Logistic Regression 65 33.1 69.5 65 58.9 82.7 

  Multilayer Perceptron 70 27.4 69.3 70 67.9 78.9 

  

Simple Logistic 

Regression 56 53.7 47.8 56 50 66.5 

  SMO 65 33.1 69.5 65 58.9 69.9 

Meta LogitBoost 65 33.1 69.5 65 58.9 81.4 

  Bagging 62.5 44.7 57.8 62.5 58.5 69.8 

Tree Random Forest 74 31.4 72.9 74 71.8 84 

  J48 69 24.4 69.6 69 68.8 78.2 

Rules Decision Table 57 38.3 54.1 57 55.3 63.5 

 

A few more observations during the comparison between the performance of various models before and after 

applying principle component analysis (PCA) are – 

Bagging, Simple Logistic Regression, and Logistic Regression results are not significantly affected after 

applying PCA, as shown in Table 1.2 and Figure 1.2. 

Precision, F-measure, and ROC values are higher for the Decision Table classifier-based model but a major 

change in the value of the False positive detection rate, value is drastically decreased, as shown in Table 1.1 and 

Figure 1.1. 
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Figure 1.1: Performance of Learning Models with all features (before applying PCA) 

 

 

Figure 1.2: Performance of Learning Models with all features (after applying PCA) 

 

RQ 5: What are the added functionalities in the AndRev tool over APKTool? 

The existing ApkTool is invoked by the AndRev tool, which was developed as part of this research. ApkTool 

has the restriction of only being able to decompile one APK file at a time. 
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ApkTool had a limitation of decompiling only one APK file at one run. So,the researcher decided to design a 

batch-scripted tool AndRev, which helped to decompile multiple files at one run. In addition to the 

decompilation process, the designed tool also marks 1 for present permission and 0 for the case if permission is 

not used by a specific app. Finally, the AndRev tool generates a .CSV file with multiple unique permission sets 

for various apps decompiled at one run. Hence drawback of APKTool was overcome. 

2. Literature Review: 

Java or Kotlin can be used to create native Android applications, and Java is the most popular language for this. 

Android mobile applications can also be created using frameworks like Xamarin and React Native [7]. 

However, in addition to application files, these mobile apps also include Extensible Markup Language (XML) 

files for the Android Manifest, UI layouts, and resources. Consequently, it is necessary to find the problems in 

both XML and source code files. Both files can be examined using static analysis without being run. Manifest 

analysis and code analysis are the two static analysis techniques. The extraction of features is where these two 

approaches diverge. Some studies employ manifest analysis, some employ code analysis, and a select few 

employ both [13].A prominent static analysis technique is the manifest analysis. From the AndroidManifest.xml 

file, it may extract package names, permissions, activities, services, intents, and providers. All the permissions 

utilized in a certain program are listed in the Android Manifest file and are divided into three categories: risky, 

signature, and normal. By creating a three-level data cleaning approach, 22 permissions that were designated as 

significant permissions in SigPID in Reference [17] were found. These three tiers were permission ranking with 

a negative rate, permission mining with association rules, and support-based permission ranking. Code analysis, 

which considers source code files, is the second form of static analysis. Code analysis can be used to extract 

features including API calls, information flow, taint tracking, native code, clear-text analysis, and opcodes. The 

MaMaDroid [6] technique serves as an illustration for the examination of API calls. It used static code analysis 

techniques to abstract API call executions from programs to produce ordinary classes or packages, and the 

Markov chain was used to identify the call graph. 

Five areas of static analysis were suggested by the authors in Reference [5]: analysis techniques, sensitivity 

analysis, code representation, data structures, and inspection level. Symbolic execution, taint analysis, program 

slicing, abstract interpretation, type checking, and code instrumentation are the analysis methodologies. For 

sensitivity analysis, objects, contexts, fields, pathways, and flows are taken into account.For code 

representation, Smali [8], Dex-Assembler [15], Jimple [14], Wala-IR [16], and Java Byte code/Java class are 

employed, whereas data structures Call Graph, Control Flow Graph, and Inter-Procedural Control Flow Graph. 

The inspection levels take into consideration kernels, programs, and emulators. 

3. Methodology: 

The use of machine learning (ML) approaches for finding vulnerabilities has increased recently [9]. Therefore, 

to properly appreciate ML-based source code vulnerability detection investigations, understanding ML 

processes is helpful. 

The machine learning (ML) lifecycle involves the following steps: data extraction, pre-processing, feature 

selection, model training, assessment, and deployment [12]. ML includes supervised learning, unsupervised 

learning, semi-supervised learning, reinforcement learning, and deep learning. To solve problems with 

classification and regression using a labelled dataset, the model is trained using supervised learning. Naive 

Bayes (NB), Logistic Regression (LR), Linear Regression, Support Vector Machine (SVM), Decision Tree 

(DT), Random Forest (RF), and k-nearest Neighbours (kNN) are a few of the algorithms that can be employed 

for supervised learning. Unsupervised learning discovers latent patterns in data by using grouping, association, 

and dimensionality reduction. Without a dataset with tags, the model can be trained. K-means clustering, PCA, 

and autoencoders are some of the unsupervised learning methods that can be applied. When there are few labels 

in the dataset being used, semi-supervised learning is used, which mixes supervised and unsupervised learning 

techniques. Without training data, reinforcement learning involves modifying the model's parameters based on 

input from the outside world. This machine learning method works in cycles of assessment and prediction. DL is 
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defined as learning and improving by independently analyzing algorithms and comprises more or deeper 

processing layers. Convolutional Neural Network (CNN), Long Short Term Memory Network (LSTM), 

Recurrent Neural Network (RNN), Generative Adversarial Network (GAN), and Multilayer Perceptron (MLP) 

are a few of the well-known DL algorithms [2] . 

4. Conclusion: 

The study investigated the methods for detecting unexpected permission authorization of mobile applications 

based on attack goals, including server, network, client software, client hardware, and user. The researcher 

confirmed a number of viewpoints, and the findings will aid future research. In this study, free mobile apps were 

analyzed for unexpected permission authorization. In the past several years, authors have analyzed these issues, 

but in this work, a tool to extract features from the apk file was designed and stored in a .csv file to ease 

analysis. Feature extraction tools can be used by data scientists for conducting future research. 
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