
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

998

Enhancing Android Framework Used to

Detect Unexpected Permission

Authorization of Mobile Application

Manisha Patil1 and Dhanya Pramod2

1Faculty of Computer Studies, Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115,

Maharashtra, India. Indira College of Commerce and Science.

2Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University),

Hinjewadi, Pune, 411057, Maharashtra, India

Abstract:

The use of mobile devices is expanding daily in today's technological age. Mobile marketplaces are constantly

providing an expanding selection of mobile applications to satisfy the demands of smartphone users. Many

Android applications fall short in their attempts to adequately address security-related issues. This is usually

brought on by a lack of automated methods for permission-based vulnerability discovery, testing, and resolution

during early design and development phases. As a result, it is generally agreed that addressing such issues

quickly is preferable to sending updates and fixes for already-released apps.A proactive set of permissions

declared by mobile app developers can protect users’ data privacy is the research concern here. This paper

reviews the AndRev-Android framework functionality and its envisioned purpose. The researcher tried to justify

the research questions raised by the experts, which will add value to future researchers in this domain.

Keywords: Privacy, Mobile apps, Static Analysis, Permission, Android APK.

1. Introduction:

Mobile devices contain privacy-related data since they are kept close to the user, are more likely to be lost or

stolen, and can connect to multiple networks at once [1]. As a result, confining mobile devices to existing

security measures will not be sufficient. A few of the dangers [3] that can happen in an Android mobile device

are malicious behaviors including physically accessing the device, establishing connections with untrusted

networks, installing, and running untrusted programs, and executing untested code blocks and contents.

Therefore, security precautions should be tightened while reducing vulnerabilities to protect the data on Android

devices.

Figure 1.1 Types of Malicious Behaviour for Mobile Apps

Malicious
Behaviors

Physically
accessing the

Device
Establishing
connections

with
Untrusted
Networks

Installing
and running
Untrusted
Programs

Executing
Untested

Code

Executing
Untested
Blocks

Executing
Untested
Contents.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

999

It is necessary to install adequate security measures to increase the security of Android devices and their

applications. Therefore, identifying Android applications' weaknesses and applying the security best practices, it

is advisable to perform permission-based vulnerability discovery.

The research questions addressed are as follows:

Research Questions:

RQ 1:What would be the significance of this research considering the upcoming modifications as

Google Play has consistently revised its policies[11]?

RQ 2: What is the rationale behind the sampling?

RQ 3: What is the perspective for permission Analysis?

RQ 4: How does PCA improve model accuracies via accurate feature selection?

RQ 5: What are the added functionalities in the AndRev tool over APKTool?

RQ 1: What would be the significance of this research considering the upcoming modifications as

Google Play has consistently revised its policies[11]?

Even though Android mobile OS and its permission model both are secured, it is observed that there is an

increase in malware for Android mobile apps and user’s data privacy is always at risk. Numerous apps in the

Apple App Store for iOS and the Google Play Store for Android expose consumers to privacy dangers,

according to Symantec research[4]. Some mobile applications for iOS and Android users ask for excessive

permissions to access a user's personal data. In the study, Symantec detailed how users' personal information is

collected and how dubious apps on the Google Play Store are overrun with intrusive adverts, endangering their

privacy.

RQ 2: What is the rationale behind the sampling?

Is there a Sampling Bias when only looking at the Top50 Free Apps in 5 Categories? By limiting your search to

this sample, will you be missing anything?

A mobile user visits the Google Play Store with the aim of getting TOP FREE APPS. TOP FREE APPS is a

focused dataset for this research. Here on this page user gets a few recommended apps as per the requested

category or functionality by the app user. As per the Chi-square test for two variable independence and Z-test of

proportion with a p-value less than 0.05, we have considered the TOP 50 FREE Apps across the 5 Categories, in

all 250 apps. Apps are listed for users to download or install from the Google Play Store website. Secondly,

while collecting features of apps across the categories with similar functionality, it was found that features are

almost getting repeated.

Google Store is the main data source to get free Android APKs required for this research study. There is no

other way for the normal user to validate the user’s privacy and app security, so the user is simply dependent on

the review system provided by Google Play Store which then becomes a trusted data source for the user to

download apps. Various categories of apps are available which affect the distribution of permissions but for this

study categories of apps like – Games, Education, Entertainment, Shopping, and General/Tools are considered.

50 top apps from each category from the mentioned data source were selected and downloaded for this

experiment. As a result, 250 free Apps, which is a good sampling of Apps. In this research, a Z-test is conducted

to decide the sample size. The two variables proportion test is conducted for sample sizes of 50, 100, 150, 200,

250, 300, and 1000 Android APKs. Z-test results are significant and there is not much variation observed for

sample sizes 200, 250, 300, and 1000 samples of Android APKS. The calculated P value for the Z-test is less

than 0.05. In this research, permissions are divided into the categoriesof normal, medium, and high levels

according to their impact on 44 making the app safe or vulnerable. A statistical chi-square test for variable

independence is carried out to check application safety is dependent on the type of permissions declared by the

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1000

app, this test is accepted. The next step is to reverse-engineer the APKs to extract permissions. Drebin dataset,

(Arp, 2014), (Spreitzenbarth, 2013), provides text files with the list of features and permissions but, APK files

are not provided. The dataset does not provide information on whether the app is safe or not safe. Therefore,

there is a need to build a research dataset with APKs.

RQ 3: What is the perspective for permission Analysis?

 Install-time permissions, runtime permissions, and special permissions are the three main categories under

which Android divides permissions. When the system grants your app that permission, each category represents

the range of restricted data that the app can access and the range of restricted actions that the app can carry

out[10].

The research approach primarily focuses on static analysis of Android mobile apps, the researcher has extracted

a set of permissions that are declared in the manifest.xml file of each mobile app. Permissions declared in the

manifest.xml file are installed time permissions. Primarily discussion is about permissions declared by the app

user and compared to the requirement of permissions to fulfill the functionality of the app to satisfy the user

expectations. A proactive set of permissions declared by mobile app developers can protect users’ data privacy

is the research concern here.

RQ 4:How does PCA improve model accuracies via accurate feature selection?

Comparison between the performance of various classifiers before and after PCA

Table 1.1: Performance of Learning Models with all features (before applying PCA)

Performance of Learning Models with all features (before applying PCA)

Type Classifier TP Rate

FP

Rate Precision Recall

F-

Measure

ROC

Area

Bayes Naive Bays 64 41.9 59.6 64 59.8 74.5

Functions Logistic Regression 65 33.1 69.5 65 58.9 82.7

 Multilayer Perceptron 64 25.5 65 64 64.3 77.2

Simple Logistic

Regression 70 22.5 71.4 70 69.7 79.5

 SMO 65 61.1 55.3 65 54.9 55.6

Meta Logit Boost 62 36.8 59.2 62 60.1 73.3

 Bagging 66 43.1 64.5 66 62.5 70.8

Tree Random Forest 70 37.8 69 70 67.7 79

 J48 63 34.1 62.2 63 62.4 63.2

Rules Decision Table 59 62.7 37.7 59 46 45.6

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1001

Table 1.2: Performance of Learning Models with all features (after applying PCA)

Performance of Learning Models with reduced features (after applying PCA)

Type

Classifier

TP

Rate

FP

Rate

Precision

Recall

F-Measure

ROC

Area

Bayes Naive Bays 67.5 23.6 69.5 67.5 68.3 73

Functions Logistic Regression 65 33.1 69.5 65 58.9 82.7

 Multilayer Perceptron 70 27.4 69.3 70 67.9 78.9

Simple Logistic

Regression 56 53.7 47.8 56 50 66.5

 SMO 65 33.1 69.5 65 58.9 69.9

Meta LogitBoost 65 33.1 69.5 65 58.9 81.4

 Bagging 62.5 44.7 57.8 62.5 58.5 69.8

Tree Random Forest 74 31.4 72.9 74 71.8 84

 J48 69 24.4 69.6 69 68.8 78.2

Rules Decision Table 57 38.3 54.1 57 55.3 63.5

A few more observations during the comparison between the performance of various models before and after

applying principle component analysis (PCA) are –

Bagging, Simple Logistic Regression, and Logistic Regression results are not significantly affected after

applying PCA, as shown in Table 1.2 and Figure 1.2.

Precision, F-measure, and ROC values are higher for the Decision Table classifier-based model but a major

change in the value of the False positive detection rate, value is drastically decreased, as shown in Table 1.1 and

Figure 1.1.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1002

Figure 1.1: Performance of Learning Models with all features (before applying PCA)

Figure 1.2: Performance of Learning Models with all features (after applying PCA)

RQ 5: What are the added functionalities in the AndRev tool over APKTool?

The existing ApkTool is invoked by the AndRev tool, which was developed as part of this research. ApkTool

has the restriction of only being able to decompile one APK file at a time.

0

10

20

30

40

50

60

70

80

90

Performance of Learning Models with all features

TP Rate FP Rate Precision Recall F-Measure ROC Area

0

10

20

30

40

50

60

70

80

90

Performance of Learning Models with reduced features

TP Rate FP Rate Precision Recall F-Measure ROC Area

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1003

ApkTool had a limitation of decompiling only one APK file at one run. So,the researcher decided to design a

batch-scripted tool AndRev, which helped to decompile multiple files at one run. In addition to the

decompilation process, the designed tool also marks 1 for present permission and 0 for the case if permission is

not used by a specific app. Finally, the AndRev tool generates a .CSV file with multiple unique permission sets

for various apps decompiled at one run. Hence drawback of APKTool was overcome.

2. Literature Review:

Java or Kotlin can be used to create native Android applications, and Java is the most popular language for this.

Android mobile applications can also be created using frameworks like Xamarin and React Native [7].

However, in addition to application files, these mobile apps also include Extensible Markup Language (XML)

files for the Android Manifest, UI layouts, and resources. Consequently, it is necessary to find the problems in

both XML and source code files. Both files can be examined using static analysis without being run. Manifest

analysis and code analysis are the two static analysis techniques. The extraction of features is where these two

approaches diverge. Some studies employ manifest analysis, some employ code analysis, and a select few

employ both [13].A prominent static analysis technique is the manifest analysis. From the AndroidManifest.xml

file, it may extract package names, permissions, activities, services, intents, and providers. All the permissions

utilized in a certain program are listed in the Android Manifest file and are divided into three categories: risky,

signature, and normal. By creating a three-level data cleaning approach, 22 permissions that were designated as

significant permissions in SigPID in Reference [17] were found. These three tiers were permission ranking with

a negative rate, permission mining with association rules, and support-based permission ranking. Code analysis,

which considers source code files, is the second form of static analysis. Code analysis can be used to extract

features including API calls, information flow, taint tracking, native code, clear-text analysis, and opcodes. The

MaMaDroid [6] technique serves as an illustration for the examination of API calls. It used static code analysis

techniques to abstract API call executions from programs to produce ordinary classes or packages, and the

Markov chain was used to identify the call graph.

Five areas of static analysis were suggested by the authors in Reference [5]: analysis techniques, sensitivity

analysis, code representation, data structures, and inspection level. Symbolic execution, taint analysis, program

slicing, abstract interpretation, type checking, and code instrumentation are the analysis methodologies. For

sensitivity analysis, objects, contexts, fields, pathways, and flows are taken into account.For code

representation, Smali [8], Dex-Assembler [15], Jimple [14], Wala-IR [16], and Java Byte code/Java class are

employed, whereas data structures Call Graph, Control Flow Graph, and Inter-Procedural Control Flow Graph.

The inspection levels take into consideration kernels, programs, and emulators.

3. Methodology:

The use of machine learning (ML) approaches for finding vulnerabilities has increased recently [9]. Therefore,

to properly appreciate ML-based source code vulnerability detection investigations, understanding ML

processes is helpful.

The machine learning (ML) lifecycle involves the following steps: data extraction, pre-processing, feature

selection, model training, assessment, and deployment [12]. ML includes supervised learning, unsupervised

learning, semi-supervised learning, reinforcement learning, and deep learning. To solve problems with

classification and regression using a labelled dataset, the model is trained using supervised learning. Naive

Bayes (NB), Logistic Regression (LR), Linear Regression, Support Vector Machine (SVM), Decision Tree

(DT), Random Forest (RF), and k-nearest Neighbours (kNN) are a few of the algorithms that can be employed

for supervised learning. Unsupervised learning discovers latent patterns in data by using grouping, association,

and dimensionality reduction. Without a dataset with tags, the model can be trained. K-means clustering, PCA,

and autoencoders are some of the unsupervised learning methods that can be applied. When there are few labels

in the dataset being used, semi-supervised learning is used, which mixes supervised and unsupervised learning

techniques. Without training data, reinforcement learning involves modifying the model's parameters based on

input from the outside world. This machine learning method works in cycles of assessment and prediction. DL is

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1004

defined as learning and improving by independently analyzing algorithms and comprises more or deeper

processing layers. Convolutional Neural Network (CNN), Long Short Term Memory Network (LSTM),

Recurrent Neural Network (RNN), Generative Adversarial Network (GAN), and Multilayer Perceptron (MLP)

are a few of the well-known DL algorithms [2] .

4. Conclusion:

The study investigated the methods for detecting unexpected permission authorization of mobile applications

based on attack goals, including server, network, client software, client hardware, and user. The researcher

confirmed a number of viewpoints, and the findings will aid future research. In this study, free mobile apps were

analyzed for unexpected permission authorization. In the past several years, authors have analyzed these issues,

but in this work, a tool to extract features from the apk file was designed and stored in a .csv file to ease

analysis. Feature extraction tools can be used by data scientists for conducting future research.

Data availability statement

Dataset 1 : The data that support the findings of this study are openly available at https://www.sec.cs.tu-

bs.de/~danarp/drebin/download.html

Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad Rieck "Drebin: Efficient and

Explainable Detection of Android Malware in Your Pocket", 21th Annual Network and Distributed System

Security Symposium (NDSS), February 2014

Michael Spreitzenbarth, Florian Echtler, Thomas Schreck, Felix C. Freling, Johannes Hoffmann,

"MobileSandbox: Looking Deeper into Android Applications", 28th International ACM Symposium on Applied

Computing (SAC), March 2013

References:

[1] A.V. Mbaziira, J. Diaz-Gonzales, and M. Liu, “Deep learning in detection of mobile malware,” Journal of

Computing Sciences in Colleges, vol. 36, no. 3, pp. 80–88, 2020.

[2] B. Sim and D. Han, “A study on the side-channel analysis trends for application to IoT devices,” J.

Internet Serv. Inf. Secur, vol. 10, pp. 2–21, 2020.

[3] C. Li et al., “Android malware detection based on factorization machine,” IEEE Access, vol. 7, pp.

184008–184019, 2019.

[4] Desk, T. Many Android, iOS apps put user privacy at risk: Symantec research. The Indian Express.

https://indianexpress.com/article/technology/tech-news-technology/many-android-ios-apps-put-user-

privacy-at-risk-symantec-research-5313358/, 2020.

[5] G. Kirubavathi and R. Anitha, “Structural analysis and detection of android botnets using machine

learning techniques,” International Journal of Information Security, vol. 17, pp. 153–167, 2018.

[6] H.D. Trinh and Angel Fernandez Gambin, “Mobile Traffic Classification through Physical Control

Channel Fingerprinting: a Deep Learning Approach,” IEEE Transactions on Network and Service

Management, vol. 18, 2020.

[7] J.M. Anderson, “Why we need a new definition of information security,” Computers & Security, vol. 22,

no. 4, pp. 308–313, 2003.

[8] J. Zhang, Zheng Qin, and Kehuan Zhang, “Dalvik opcodes graph based android malware variants

detection using global topology features,” IEEE Access, vol. 6, pp. 51964–51974, 2018.

[9] M. Yang, Xingshu Chen, and Yonggang Luo, “An Android Malware Detection Model Based on DT-

SVM,” Security and Communication Networks, vol. 2020, Article ID 8841233, 11 pages, 2020.

https://indianexpress.com/article/technology/tech-news-technology/many-android-ios-apps-put-user-privacy-at-risk-symantec-research-5313358/
https://indianexpress.com/article/technology/tech-news-technology/many-android-ios-apps-put-user-privacy-at-risk-symantec-research-5313358/

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 3 (2023)

__

1005

[10] Permissions on Android. (n.d.). Android Developers.

https://developer.android.com/guide/topics/permissions/overview

[11] Provide information for Google Play’s Data safety section - Play Console Help. (n.d.).

https://support.google.com/googleplay/android-developer/answer/10787469?hl=en

[12] R. Langner, “Stunt: Dissecting a cyberwarfare weapon,” IEEE Security & Privacy, vol. 9, no. 3, pp. 49–

51, 2011.

[13] S. Garg and N. Baliyan, “A novel parallel classifier scheme for vulnerability detection in android,”

Computers \& Electrical Engineering, vol. 77, pp. 12–26, 2019.

[14] S. Wei, Zedong Zhang, and Shasha Li, “Calibrating Network Traffic with One-Dimensional

Convolutional Neural Network with Autoencoder and Independent Recurrent Neural Network for Mobile

Malware Detection,” Security and Communication Networks, vol. 2021, Article ID 6695858, 10 pages,

2021.

[15] T. Kim et al., “A multimodal deep learning method for android malware detection using various

features,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 773–788, 2018.

[16] X. Jiang, Security alert: new droid kungfu variant–AGAIN!– Found in Alternative Android Markets,

2011.

[17] X. Wang, Wei Wang, and Yongzhong He, “Characterizing Android apps’ behavior for effective detection

of malapps at large scale,” Future generation computer systems, vol. 75, pp. 30–45, 2017.

