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Abstract: A search engine is a tool that helps to extract our required information with large collections 

of repositories using data retrieval techniques. As part of related tasks such as searching and data mining, 

enterprise search engines must be able to analyze a wide range of information resources within the enterprise and 

employ organizational expertise. Another important group of systems with design goals that differ 

significantly from commercial search engines are open source search engines. After the initial data collection, it 

needs to convert these files (code, docstrings) into pairs. These pairs are ideal to collect as training data for 

code acquisition models. The implementation is Domain-specific optimizations such as B Tree-based P2P can be 

used to get the most efficiency out of the information in code along with syntax-aware tokenization. After training 

this model for the frozen version, freeze all layers and continue training the model for a long period of time. This 

will help us improve the models usage for this work. To quickly find the nearest neighbors, these vectors are 

inserted into the search index in the final step. To achieve reasonable real-time object recognition, the aim is for 

at least 10 frames per second. Therefore, Intel NCS cannot reach the 10 fps target. However, it's worth checking 

out second iteration of the device. This is obviously more powerful and can run arbitrary object detectors in 

real time. The proposed framework uses semantic and machine learning techniques to extract and model data 

for specific kinds of IoT applications. Test results show that our system is scalable and can match various IoT 

applications with a large number of data domains with 80% accuracy. 

Keywords: Search Engine, Semantic Search, Domain-Specific Optimization, P2P model, Tokenization, Concrete 

pooling. 

 

1. Introduction 

Search Engines are the real time applications used for data extractions from huge text repositories. A web search 

engine is a common example, but as stated earlier, search engines are part of the various applications such as 

customized search and enterprise search. “Search Engine” was coined and first used to indicate a particular 

hardware intended for the text search. Because of the convergence of Internet of Things and Machine Learning 

prompted large scope for the broad and informative data analysis [1]. IoT generates massive amounts of data every 

day from the various connected objects. Machine Learning helps in extracting the hidden correlations between the 

data. Machine Learning also helps in building the best prediction model by analyzing the existing data by applying 

various existing algorithms. Many existing search engines namely Google, Bing and Yahoo come in various 

variants which reflect the applications designed for web search upgraded to crawl many terabytes of data by 

reducing the response time to fewer milliseconds for all queries all over the world.   

A typical and inevitable application to search large text repositories is the Search Engine. There are many 

categories of search engines involving the general purpose search engines and customized search engines. Long 

ago the term search engine was commonly used to indicate a specific hardware for searching text. The enterprise 
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search engines must be capable of processing a large variety of information sources inside the organization and 

leverage the knowledge as a product of information mining and searching. Data mining is a domain of extracting 

the related patterns which leads to the knowledge representation by means of applying the data mining techniques 

prominently clustering and classification. Open source search engines are one more significant type of systems 

with varied design goals compared to the commercial search engines. These systems are many and one can get 

links to these for data recovery. Modern search engines are not under estimated in their capability. Knowledge 

mining is a fast job for gathering information from the internet [2][3]. Unluckily, this tremendous capability cannot 

be used at every place. Searching is not readily available if the searing object is not the text data. Further, strict 

keyword searches will not allow users to extract information in a knowledgeable way. That is to say that the vital 

information is missing in the search results. Figure 1 below shows what is interconnected within an organization. 

 

Fig1: Interconnected things in an organization 

The above figure depicts the power of semantic search along the keywords, where the chances of getting the 

information by the user are increased for what they are looking. The advantages of the semantic search is manifold 

to name it allows developers to search code in the repositories in-spite of unaware of the syntax or predicting the 

correct syntax or words [4]. Necessarily this approach can be generalized for the IoT-based connected objects 

including the images, sounds and other things one cannot even thought off. The aim is to correlate code to natural 

language vector space, in which (code, text) ordered pairs describing the same context will be the close relatives, 

but the unrelated (code, text) ordered pairs will be estimated using cosine similarity. There exists many methods to 

arrive at the same point but we have demonstrated how to take a pre-trained model and tune the model to achieve 

the extracted frames form the code and also to extract the hidden features in the natural language vector space[5]. 

This process is carried out in five stages. These stages are illustrated in the following figure and will be the road 

map for the progress through the work. The figure below represents IoT-based semantic search architecture. 

 

 

 

 

 

 

 

Fig2: Architecture of IoT- based Semantic Search  

Step 1: Extract the files from database. 

Step 2: Build a model that predicts a string from code such as code encoder. 

Step 3: Build language model such as sentence Encoder. 
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Step 4:  Tune code encoder to map code into a shared vector space with natural language.  

Step 5: Create a Sprightly search.  

2. Obtain the Data 

In this stage, data collection is done from the open source GitHub data warehouse and deposited in the BigQuery. 

The GitHub is a trustable data repository for all types of data science projects. The data that is stored in BigQuery 

is perfect for the data retrieval using the SQL queries to retrieve the required files and the metadata on these files 

for further analysis. Instructions for the retrieval of these files are provided for the users, these data entities are 

represented in the form of (code, docstring) pairs [6]. To make it to work the code needs to be the developed at 

the top level methods or functions. These pairs are used in the form of training data for the code capture model, 

which is a tremendous task. Fortunately, Python library posses a package called AST which helps in capture 

functions, methods and docstrings [7][8]. The data stored in the BigQuery is prepared for modeling, training, 

validation and testing. The files are also managed to keep track of the original (code, docstring) pair. Then, the 

same model is applied to the code which does not have the docstring and it is saved separately since it is needed 

to search for code as well. These series of the stages are to extract the necessary information from the data applying 

the Machine Learning Techniques.    

i. A raw corpus is created and a set of rules based on the corpus is framed to classify whether the crawled text 

document matches or not. 

ii. A classification strategy is used to classify the extracted dataset to see that whether it belongs to a specified 

class or not. In the process supervised Machine Learning methods are used. 

iii. Training data is very essential to run the supervised model. Training data involves manually collected data 

from various sources across multiple objects. After which, the training data holds the current dataset tagged to 

represent the category of the file. 

iv. This training data is used to run the supervised model. A single application of this model on crawled data can 

classify a new document that it belongs to which specific category among all extracted. 

3. Train a prototype to cipher the Natural Language Phrases 

In this stage a mechanism is created for representing code as a vector, next there is a need for a similar mechanism 

for encode the natural language phrases present in doc string and search queries. There exist a numerous general-

purpose models that created high-quality phrase embeddings called sentence embeddings. The proposed work gives 

a great overview in the field of sentence embeddings. One of the examples is Google's Universal Sentence Encoder 

works well in many applications and is available on Tensorflow Hub [9]. There are many ways of sentence 

embeddings, which ranges from the simple methods to say word vector averaging to the more sophisticated methods 

used in the construction of universal sentence embeddings. In this work Natural Language model is used to create 

embeddings for sentences. While building the language model, it is important to carefully consider the corpus used 

for the training.  

Ideally it will be helpful to use the corpus that possess a similar domain to the underlying problem so that it can 

adequately capture the relevant semantics and vocabulary. An example of a correct corpus would be the stack 

overflow data, as it is an open forum where much discussion takes place on the code. This is suboptimal, since the 

discussion about the stack overflow often contains more semantic information than that contained in single-line 

documentation strings. After the language pattern is trained the next task is to apply that pattern to embedded every 

sentence [10][11].  A simple method could be to capture the hidden pattern of a language such as concrete pooling 

method. The architectural design for Sprightly Semantic Search is shown in the following Figure 3: 
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Fig 3: System Architecture for Sprightly Semantic Search 

This pattern is used to measure embedding skill based on text or object similarity and is an excellent method for 

evaluating sentence embeddings [12]. In many cases, measuring the quality of the embedding using common 

benchmarks are among the one described here. However, most of the data is domain-specific, so the universal 

benchmarks probably not suitable for this problem. Unfortunately, the set of open source tasks for this domain 

has not yet been created. In the absence of such a bottom-up task, one needs to take care of sensibly checking 

whether these embeddings possess semantic information by observing the similarities among phrases that are 

known to be identical [13]. Note that this is an integrity check only. This is a more rigorous approach 

to measure the impact of this embedding on various ground tasks, thereby giving a more objective 

impression of the quality of the embedding. Define them as two fully connected n-layer networks of the form : 

σa(la) = X1 × ReLU(X2 × · · · ReLU(Xn × la))  

σb(lb) = Y1 × ReLU(Y2 × · · · ReLU(Yn × lb))  

Where n is the embedding depth of each vertex, Xi and Yi are p × p dimensional parameter matrices for every layer 

of two fully-connected networks. 

4. Build a Summarizer using a P2P Model: 

Model-to-pattern formatting is to capture code theoretically similar to the GitHub Issue.  Summarizer previously 

offered, except that use Python code in place of issue body and docstrings in place of issue names. Code, on the 

other hand, is not a natural language, unlike GitHub issue text. Domain-specific optimizations like Tree-Based P2P 

model and Syntax-aware Tokenization [14] [15] can be included to fully utilize the data in the code. In the proposed 

method the information is kept straightforward and the code in written in plain English. It should be mentioned that 

there are other methods which can be employed to develop a feature extractor for code [16] besides training the 

P2P model to extract code. The dataset can be trained, for instance, and discrimination can be used as a feature 

extractor. The subsequent figure 4 shows the procedure for building a summarizer using a P2P model: 

• Actual input ->  Data collected from user (tokenized code) 

• Original  output -> After each test method, cleaning the user instances (Actual Document)  

• Predicted output -> Clean up the data after each test. 

•  
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Fig 4: Procedural diagram for build a summarizer 

The sample code for build a summarizer using P2P model is as follows: 

class search_engine: 

def __init__(self, nmslib_index, re_df, P2P_func) 

nmslib_index :nmslib object  

ref_df :pandas.DataFrame   

P2P_func : callable  

assert 'url' in re_df.columns  

assert 'code' in re_df.columns  

self.search_index = nmslib_index 

self.ref_df = re_df 

self.P2P_func = P2P_func  

def search(self, str_search, k=2): 

str_search : str   

k : int      

query = self.P2P_func(str_search) 

idxs, dists = self.search_index.knn(query, k=k)  

for idx, dist in zip(idxs, dists): 

code = self.re_df.iloc[idx].code 

url = self.re_df.iloc[idx].url 

print(f'cosinedist:{dist:.4f}  url: {url}\n---------------\n') 

print(code) 

5. Implementation of sprightly search 

The P2P is fine tuned to model so that it estimates the docstrings embedding rather than the docstrings themselves. 

All layers are freeze after training the model for the frozen version and train the model over a long period of time 

[17]. This will be very helpful in the model's further improvement for the quoted task. To assess how well this 

strategy applies to data we haven't previously encountered, we also vector code without docstrings. In order to 

create a search index, we want the code to be represented in the form of a vector at the end. We utilize the k text 

Code Encoder 

 
Actual Code 

 

Indexed Code 

 

Search Result 
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library to pre-process this data using the same techniques we learnt in training [18]. [19]. Map code for the natural 

language's vector space using the P2P model. We can proceed to the final step now that the vectorized code has 

been collected. The figure 5 illustrates how to insert these vectors into the search index so that the nearest neighbors 

are readily found. Nmslib is a useful Python package for quicker neighborhood searches. To benefit from speedier 

searches while using nmslib, the search index must be pre-computed. 

 

 

Fig 5: Clustering graph of Semantic Search 

After creating the search index from the code vector, we need a way to convert the string (query) to a 

vector using the proposed model. To facilitate this process, we have provided a utility class called P2P under 

lang_model_utils.py. Finally, once after converting the string to a query vector, it is easy to get the nearest 

neighbors of that vector. A search index provides two elements. A list of nearest neighbor integer pointers in the 

dataset and their distance from the query vector (using cosine distance in this case). 

6. Comparison with existing model 

It is obvious that the current model will fall short of the demands of the suggested system. We should aim for at 

least 10 frames per second in order to achieve object detection that is even somewhat close to real-time. Given this, 

the current model falls short of the 10 fps goal. However, the second iteration of this gadget, which is substantially 

more potent, is worth attempting [21] [22]. However, in the case of edge processing, the P2P model appears to be 

a workable option, as illustrated in figure 6. This model allows for a trade-off between inference time and average 

accuracy to attain the desired goal with 80% accuracy. We can also see that the least and most powerful gadget 

when we look in terms of frames per second used for testing is the most power inefficient [23].The below table 1 

depicts the different models with different performance accuracy. 

Model Testing (%) Accuracy (%) 

Delta Scoring 58 60 

Lexicon based data 62 65 

Revised Mutual Information 67 69 

Proposed P2P 78 80 

Table 1: Different models with different accuracy 
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Fig 6: Comparison of Existing model with P2P model 

Initially, there is a need to track the object embedded on the client server using the P2P model on any one of the 

devices. Further, there arises a need for a classifier to process human profiling (i.e., gender, age classification). 

Later it is needed to compare the edge implementation of the system along with the client-server versions. It is 

worth investigating the two hybrid version of the above [24]. Once the computer vision pipeline is ready with the 

required algorithms, there is a need to focus on the GUI applications to create an interface that allows users to 

easily collect and manipulate the captured data. 

7. Conclusion 

IoT is the emerging technology which includes all smart devices connected to each other through internet having 

the computation and communication capability, and possessing the ability of transmitting large amounts of data. 

The smart organization is one of the fortunate applications of Internet of Things containing the services across 

various domains including mobility, scheduling, power and many more. These services can be optimized and 

enhanced by making proper analysis of the smart data collected from all application areas. Many novel data analysis 

algorithms can be applied on this collected data to extract the meaningful information called as knowledge. In this 

paper a web browsing-based search engine for the agile semantic Web of Things is proposed and a scalable and 

convenient way to find their semantic data worldwide using real-time web-connected embedded devices. A thriving 

semantic search engine that can find data endpoints connected to search engines and search through P2P enabled 

devices and their services is proposed. This paper describes the framework and implementation of the P2P model 

and demonstrates its functionality and performance over the Internet through an evaluation process. Finally, a 

GUI and API are currently under development with a clear and well-defined structure/organization to expose P2P 

services on the web and make them easily accessible to the common user. Experimental results show that our 

system is scalable and can match a large number of data domains with various IoT applications with an accuracy 

of 80%. 

8. References 

[1] Janani R, Vijayarani S (2019) Text document clustering using spectral clustering algorithm with particle 

swarm optimization. Expert Syst Appl 134:192–200 

[2] Gulnashin F, Sharma I, Sharma H (2019) A new deterministic method of initializing spherical K-means for 

document clustering. Springer, Berlin, pp 149–155 

[3] Kushwaha N, Pant M (2018) Link based bpso for feature selection in big data text clustering. Future 

GenerComput Syst 82:190–199 

[4] Garg N, Gupta R (2018) Performance evaluation of new text mining method based on GA and K-means 

clustering algorithm. Springer, Berlin, pp 23–30 

[5] Karaa WBA, Ashour AS, Sassi DB, Roy P, Kausar N, Dey N (2016) Medline text mining: an enhancement 

genetic algorithm based approach for document clustering. Springer, Berlin, pp 267–287 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 06 (2023) 
 

  

3776 

[6] Y. Zhou, S. De, W. Wang, and K. Moessner. Search techniques for the web of things: A taxonomy and 

survey. 16(5):600, 2016.  

[7] Lin H, Sun B, Wu J, Xiong H (2016) Topic detection from short text: a term-based consensus clustering 

method. In: 2016 13th international conference on service systems and service management (ICSSSM), 

IEEE, pp 1–6 

[8] A. Jara et al. Semantic web of things: an analysis of the application semantics for the iot moving towards 

the iot convergence. International Journal of Web and Grid Services, 10(2-3):244–272, 2014.  

[9] Thakran Y, Toshniwal D (2014) A novel agglomerative hierarchical approach for clustering in medical 

databases. Springer, Berlin, pp 245–252 

[10] Zhu F, Patumcharoenpol P, Zhang C, Yang Y, Chan J, Meechai A, Vongsangnak W, Shen B (2013) 

Biomedical text mining and its applications in cancer research. J Biomed Informatics 46(2):200–211 

[11] Davoodi E, Kianmehr K, Afsharchi M (2013) A semantic social network-based expert recommender 

system. Appl Intell 39(1):1–13 

[12] M. Ruta, F. Scioscia, and E. Di Sciascio. Enabling the semantic web of things: Framework and architecture. 

In ICSC, pages 345–347, 2012.  

[13] M. Compton et al. The SSN ontology of the W3C semantic sensor network incubator group. Web 

Semantics: Science, Services and Agents on the World Wide Web, 17(1):25–32, 2012.  

[14] A. Kamilaris, V. Trifa, and A. Pitsillides. The Smart Home meets the Web of Things. IJAHUC Journal, 

7(3):145–154, 2011. 

[15] M. Sailaja, Abdul Ahad, Ali Hussain, “Machine Learning Medical Resources Allocation”, Journal of 

Physics: Conference Series, AMSE (2021). 

[16] D. Guinard, V. Trifa, and E. Wilde. Architecting a Mashable Open World Wide Web of Things. Technical 

Report No. 663, ETH Zurich, February 2010.  

[17] D. Pfisterer et al. Spitfire: toward a semantic web of things. IEEE Communications Magazine, 49(11):40–

48, 2011. 

[18] Fu-Ming Huang et al. “Intelligent Search Engine with Semantic Technologies”  International journal of 

Web & Semantic Technology (IJWesT) Vol.2, No.1, January 2011  

[19] J. Pschorr, C. Henson, H. Patni, and A. Sheth. Sensor discovery on linked data. Kno.e.sis, Technical Report, 

2010.  

[20] D. Guinard, V. Trifa, and E. Wilde. Architecting a Mashable Open World Wide Web of Things. Technical 

Report No. 663, ETH Zurich, February 2010.  

[21] A. Perez, M. Labrador, and S. Barbeau. G-Sense: A scalable architecture for global sensing and monitoring. 

IEEE Network, 24(4):57–64, July 2010.  

[22] Abdul Ahad et., “The Substructure for estimation of miscellaneous data failures using distriuted clustering 

techniques”, Proceeding of International Conference on Information Technology and Applications, 

Springer Link (2022). 

[23] Aljaber B, Stokes N, Bailey J, Pei J (2010) Document clustering of scientific texts using citation contexts. 

Inf Retrieval 13(2):101–131 

[24] D. Tümer, M. A. Shah, and Y. Bitirim, An Empirical Evaluation on Semantic Search Performance of 

Keyword-Based and Semantic Search Engines: Google, Yahoo, Msn and Hakia, 2009 4th International 

Conference on Internet Monitoring and Protection (ICIMP ’09) 2009.  

[25] H. Dietze and M. Schroeder, GoWeb: a semantic  search engine for the life science web. BMC 

bioinformatics,Vol. 10, No. Suppl 10, pp. S7, 2009.  


