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Abstract:- Despite the fact that Electric Vehicles are the most un-polluting vehicles because of their green 

nature of travel, the future of Electric Vehicle in India is uncertain. On one side, the given work provides an in-

depth overview of Mechanical and, Electrochemical Storage System. And on the other hand, the work also 

illustrates characteristic study of variables like internal resistance, voltage, power, and thermal efficiency of 

battery pack generated through Simulink ADISOR, in MatLab software for batteries like Lead Acid, Nickel, 

Zinc-Halo, Metal-air, Lithium-ion batteries. The study also reveils characteristic features of Sodium-ion 

Batteries, which are the next-gen batteries. Ultimately the work reveils some unattended factors, where EV 

batteries require research like environment, fast charging, human safety, cost of ownership, and battery 

behaviour in different environmental conditions. 
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1. Energy Storage Systems (ESSs) used in EVs - Introduction 

Today, the concern of most of the governments is a clean environment, that’s the reason there is a race to study 

a system that is non-polluting, environment-friendly and Carbon-dioxide emission-free, therefore all the 

countries are competing to study the storage for renewable energy and make more efficient energy storage 

systems (ESSs), thereby working on a smart grid system (Olivier, Peters and Janssens-Maenhout, 2012) (Omar 

et al., 2012) (Madanipour, Montazeri-Gh and Mahmoodi-k, 2016) (Fang et al., 2011; Xing et al., 2011; Rahimi-

Eichi et al., 2013). These energy storage systems are capable of storing electrical energy, which can be used as 

per the requirement of the user, without much dependency on the grid for a continuous requirement of energy. 

And with a smart grid, we can even reverse the direction of electric energy, like during peak hours the ESSs can 

be used to re-energise the grid system, thereby compensating the lack of electric energy in grids or case of 

excessive demand of energy, and on the other side, incurring some financial incentive (or lesser price) for the 

end-user of ESS. Hence these energies are a result of our low dependency on fossil fuels, thereby a reduction in 

CO2 (Tie and Tan, 2013). 

2. ESSs  & their classification 

ESSs are classified based on chemical, thermal, mechanical, electro-mechanical and hybrid systems, based on 

conversion and utilization of energy. Further, these are categorized based on fabrication and material used (Lv et 

al., 2015). 

A. Mechanical Storage Systems (MSS) 

MSSs are the oldest and most conventional energy storage systems. Attributing to its low initial cost, easy 

installation, and cheap maintenance cost. These include Flywheel Energy Storage (FES), and Compressed Air 

Energy Storage (CAES), and the most common and oldest Pumped Hydro Storage (PHS) which is used to 

generate electricity in hydro-power plants or pumped hydro storage, contributing to almost more than 99 per 

cent of electricity stored worldwide, and almost 4% of electricity generated worldwide. In this system, stored 

water with high pressure is used to rotate a turbine that is meshed with an electric power generator. On the other 
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side, electricity is also produced in a turbine by the method of Compressed Air Energy Storage system, in which 

compressed air is added to clean air, and then pressurized, and compressed again, and finally fed to the turbine, 

that generates electricity on meshing with an electrical generator (Dhameja, 2001).  

On the other hand, research in material engineering has led to another phenomenon called Flywheel Energy 

Storage Systems (Vazquez et al., 2010). These storage systems are much more efficient with an efficiency rating 

of 90% (Lemofouet and Rufer, 2006; Bolund, Bernhoff and Leijon, 2007; Liu and Jiang, 2007; Vazquez et al., 

2010; van Berkel et al., 2014; K. Xu et al., 2016; Y. Xu et al., 2016).  To produce electricity from a flywheel, 

first of all, a cylindrical block is placed over a shaft with bearings, and then further connected with a power 

generation device. With the rotation of this cylindrical block, also called a flywheel, the power generator 

generates electricity (Vazquez et al., 2010; Fang et al., 2011; Han and Xu, 2011). The energy extracted from the 

flywheel is given by: 

EK = 1 / (2Iω2) , 

where, 

EK = Kinetic Energy developed in the flywheel 

I = Moment of Inertia (of the cylinder) 

ω = speed of the flywheel 

(Bolund, Bernhoff and Leijon, 2007) 

Here, the kinetic energy developed in the flywheel is inversely proportional to the rotational speed as well as the 

square of the moment of inertia, so this energy can be increased exponentially, by decreasing either the speed of 

the flywheel or the moment of inertia. Despite high losses that incur in flywheel energy storage, which even 

makes it a self-discharging storage system, there are some advantages of this system like low initial cost, infinite 

charge storage, long life, high power density, high energy storage, less depth of discharge, etc (Lemofouet and 

Rufer, 2006; Liu and Jiang, 2007; Vazquez et al., 2010). This disadvantage of self-discharging can be overcome 

by utilizing no-friction bearings (Lemofouet and Rufer, 2006; Liu and Jiang, 2007; Vazquez et al., 2010). This 

is a mechanical system that is never used alone, but always in integration with other storage systems (Bolund, 

Bernhoff and Leijon, 2007; van Berkel et al., 2014; K. Xu et al., 2016; Y. Xu et al., 2016). 

B. Electrochemical Storage Systems (EcSS) 

A system in which we store electric charge in the form of the chemical is called Electrochemical Storage 

Systems. It comprises of all rechargeable and non-rechargable betteries (Ogata et al., 2016). Since electric 

vehicle comprises rechargeable batteries, in this work we have only discussed rechargeable batteries. In EcSSs, 

first, we convert electric energy to chemical energy using some chemical reactions to store charge, and then to 

extract this stored charge, we again extract this electric charge from chemical by some chemical reactions 

(Hiroshima et al., 2016). This even shortens the life of the battery to some extent, but the charge and discharge 

are not only environment friendly, but also emission-less and maintenance-free (Ibrahim, Ilinca and Perron, 

2008; Yuan, Sun and Huang, 2016). EcSSs are of two types, namely Flow Batteries, and Secondary 

rechargeable batteries.   

C. Flow Batteries (FB) 

Flow Batteries constitute electro-active species, which stores energy. They are mainly rechargeable in nature. In 

this system, electro-active species, which is mixed with the electrolyte is pumped through an electro-chemical 

cell, so that chemical energy can be converted to electric energy. Redox Flow Batteries are very efficient and 

flexible in terms of power and cycle stability(Yuan, Sun and Huang, 2016). 

D. Secondary Storage Batteries (SSBs) 

Secondary Storage is a form of rechargeable battery and is prominent in the Electric Vehicle industry for the 

storage of electric charge. Secondary storage batteries also utilize electrochemical reactions in case of storage of 

time and at the time of extraction of charge for utility. Different types of secondary storage batteries used in 
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electric vehicles mainly include Lead Acid batteries, Ni-based batteries like (Nickel-Ferrous, Nickel-Zinc, 

Nickel-Cadmium, Nickel-Hydrogen), Zinc-Halo batteries (like Zinc-Chloride, Zinc-Bromide), N—Beta (like 

Sodium-Sulfur), Metal-air base batteries (like Ferrous-air, Aluminium-Air, Zinc-air). Lithium batteries are 

further divided into high-temperature Lithium (Lithium-Al-FeS, Lithium-Al-FeS2) and ambient temperature 

Lithium (Li-polymer, Li-ion) batteries. To construct, it requires only two charged electrodes (namely anode and 

cathode), separated by a separator in a case, filled with an electrolyte (Fang et al., 2011; Lu et al., 2013) (Ren, 

Ma and Cong, 2015). These batteries are considered for EVs because of their high-power density and specific 

energy, negligible resistance and memory effect, and thermal independence (Lu et al., 2013). But considering 

the nature of electrolytes and the electrochemical process happening inside the batteries, these batteries are 

harmful to the environment (Yin et al., 2013). 
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Figure 1 Rechargeable secondary storage batteries were used in the year 2016 worldwide (Zhang et al., 

2018) 

3. Secondary Storage Batteries (SSBs) for EV application 

A. Lead Acid Batteries 

In India, the battery produced is the inferior quality (with an energy density of 30 Whkg-1) as compared to the 

ones used in other countries (with energy density ~40 Whkg-1), therefore the battery is not suitable for use in 

electric vehicles, but these are intensively used to electrify IC Engine cars (Sivaramaiah and Subramanian, 

1992). These batteries have high thermal tolerance, low initial cost and maintenance cost (Lukic et al., 2008; 

Atwater and Dobley, 2011). Attributing to their harmful effects while recycling, in India, there are several 

methods, through which these batteries are recycled in India like Pyro-metallurgy, Hydro-metallurgy, etc 

(Varshney et al., 2019). 

Construction: In this, we place lead as a negative anode, lead oxide in the place of positive cathode and Sulfuric 

Acid as electrolyte reacting as under: 

Pb  +  2PbO2   +  2H2 SO4   ⇌  2PbSO4   +  2H2 O 

Working: As per the provided equation, PbSO4 is extracted during discharge along, and on the other hand water 

is produced during charging (Chau, Wong and Chan, 1999).   

B. Nickel batteries 
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These batteries are a little more expensive than Lead Acid batteries. Considering factors like high initial cost 

and maintenance cost, low power and life cycle, these Nickel batteries are discouraged for use in electric 

vehicles(Chau, Wong and Chan, 1999). For example, considering the number of life cycles of Ni-Cadmium, 

which is more than 2000, and high energy density, the cost of Nickel battery is about ten times that of lead-acid 

(Chau, Wong and Chan, 1999; Divya and Østergaard, 2009; Khaligh and Li, 2010; Zhou et al., 2013; García-

Plaza et al., 2015; Li et al., 2016) (Hadjipaschalis, Poullikkas and Efthimiou, 2009). On the other hand, Ni-

Hydrogen battery has a high life cycle, resistance to over and dis-charge, and high capacity, but is very costly, 

has a self dis-charge and a very low volumetric energy potential (Atwater and Dobley, 2011; Li et al., 2016). 

For the abovesaid reasons, these Nickel batteries are discourages in India, even for IC Engines. 

Construction: These batteries comprise Ni-hydroxide in the place of the cathode, along with a corresponding 

anode.  

Working: Anode decides the type of battery, like Ni-Ferrous battery, Ni-Cadmium battery, Ni-Zinc battery, and 

Ni-Hydrogen battery (Chau, Wong and Chan, 1999; Atwater and Dobley, 2011; Tie and Tan, 2013; Li et al., 

2016). The reaction taking place in a Ni-based battery is as follows: 

X  +  2NiO ( OH )  +  2H2 O  ⇌  2Ni (OH ) 2   +  X (OH ) 2     ; where X  =  Fe/Cd/Zn 

( M ) H  +  2 NiO ( OH )   ⇌  M   +  Ni ( OH )2 

H2   +  NiO (OH )  ⇌  Ni ( OH )2 

C. Zinc-Halo Batteries 

These batteries were developed in the late 1970s for static charge storage as Zinc-Bromide and Zinc-Chloride 

(Lv et al., 2015). Of these two, Zinc-Bromide is used in the electric vehicle because of its fast-charge properties, 

high specific energy of 70 Wh/kg, and the less initial cost of material and manufacturing (Chau, Wong and 

Chan, 1999; Manla et al., 2009; Atwater and Dobley, 2011; Lai et al., 2013). Zinc-Halo batteries are not used in 

India attributing to user analytics, which showed discontentment in terms of its low specific power which is 

90W/kg, the requirement of the large case for electrolytic reaction, thermal instability, and high reactivity of 

Bromine, and it was discouraged for use worldwide (Chau, Wong and Chan, 1999; Atwater and Dobley, 2011; 

Lai et al., 2013). Construction: ZnBr2 battery tank consists of zinc and bromine as two electrodes, along with 

Zinc-Bromide solution aqueous solution as an electrolyte.  

Working: During the process of charging, Zinc and Bromine need to be pumped to these electrodes, which in 

turn deposits Br2 on the positive electrode and Zn on the negative electrode, and vice versa in case of 

discharging (Chau, Wong and Chan, 1999; Atwater and Dobley, 2011). The reactions are given as under: 

ZnBr2 ( aq )  ⇌  Zn 0   +  Br (aq)  

D. Metal-air-electro-chemical batteries 

Construction: These batteries have a metal anode and an oxygen cathode on the other side (Atwater and Dobley, 

2011; Lee et al., 2011; Cheng and Chen, 2012; Wang et al., 2014; Zhang et al., 2016). Further, we use Calcium, 

Magnesium, Lithium Iron Phosphate (LFP), Aluminium and Zinc as the anode (Atwater and Dobley, 2011; Lee 

et al., 2011; Cheng and Chen, 2012; Wang et al., 2014; Zhang et al., 2016).  

Of these, experiments show that Lithium-air battery exhibits the maximum specific energy of 11.12 kWh/kg, in 

absence of air, that is almost a hundred times, that of the others, which makes it the most prominent battery to be 

used in electric vehicle applications (Lee et al., 2011; Gallagher et al., 2014; Ma et al., 2015; Lim et al., 2016; 

Yang et al., 2016). But Lithium-air battery is highly susceptible to fire as it readily combines with humidity in 

the air.  

Calcium – Air is very costly in comparison with others, but on a positive note, has better energy density. To 

ensure high efficiency, this Calcium is always used as an alloy (Wang et al., 2014).  
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Aluminium – Air has a better ampere-hour capacity, with a high terminal voltage and specific energy. But the 

biggest disadvantage in this battery is the consumption of water during discharging (Atwater and Dobley, 2011; 

Wang et al., 2014). The maintenance of these batteries requires Aluminium anode replacement after each 

discharge (Atwater and Dobley, 2011). To make this even more efficient, Aluminium is used in Alloy form to 

attain 98% electric charge efficiency (Zhao et al., 2015). Such a battery is often used in underwater vehicles. It 

is also pertinent to mention that Aluminium-Oxygen battery is a commonly used in e-vehicles, as Al and O2 

combine to produce double the energy per kilogram that of oxygen and hydrogen – FC (Atwater and Dobley, 

2011; Lee et al., 2011; Cheng and Chen, 2012; Wang et al., 2014; Zhang et al., 2016). 

Zn-Air battery is a very efficient battery in terms of mechanical and electric rechargeability. The formation and 

charging of Zn-air batteries depend upon varying airflow (Sapkota and Kim, 2009; Atwater and Dobley, 2011; 

Lee et al., 2011; Li et al., 2013; Wang et al., 2014).  

Advantages: The advantages of these batteries include high specific energy and low initial cost, for which it is 

also considered favourable for eV applications (Atwater and Dobley, 2011; Spanos, Turney and Fthenakis, 

2015).  

Construction: In this battery, there are two electrodes namely the Xn electrode and the Air electrode.  

Working: During discharge, the Zn electrode oxidizes on losing/ releasing electrons, whereas, on the other side, 

the air electrode produces Hydroxyl ions. And ultimately, during charging, Zn deposits on the Zn electrode, and 

oxygen is dissipated into the air (Akhil et al., 2013). The overall equation is given as follows: 

4Me  +  nO2   +  2nH2 O  ⇌  4Me (OH)n 

  

Where: Me  = Metal like Lithium, Calcium, Iron, Aluminium, Zinc 

 n = no of molecules according to valence 

E. Li-ion batteries 

Super-lightweight along with high energy density, high power and high specific energy, no memory effect and 

unharmful behaviour for the environment are the factors that make Lithium batteries the most widely used 

batteries for EV application (Akhil et al., 2013; Tie and Tan, 2013). But it is noteworthy that the Li-batteries are 

the most expensive batteries in the segment. Otherwise, these batteries require cell balancing systems for better 

performance (Tie and Tan, 2013; Zhou et al., 2013; Hoque, Hannan and Mohamed, 2016; Sun, Liu and Cui, 

2016). 

 Lithium-Sulphide batteries amongst Lithium-battery storage systems can sustain as high temperatures as 375-

500 degrees Celsius(Lv et al., 2015) (Atwater and Dobley, 2011). Some batteries like LiAl-FeS (Lithium 

Aluminium Iron-Sulphide) and LiAl-FeS2 (Lithium Aluminium Iron-Disulphide) can sustain very high 

temperatures (Lv et al., 2015) (Dincer and Rosen, 2002; Atwater and Dobley, 2011). These are the lightest ones 

with the highest capacity among the Li-battery segment. But the disadvantages include – low life cycles, and the 

requirement of a thermal balancing system (Tie and Tan, 2013; Lv et al., 2015). Since these batteries are used in 

EV’s, which use electronic motors rather than Fossil-fuel engines, therefore, the initial weight of the vehicle 

reduces, and further the associated losses or resistances like tyre-rolling, aerodynamic drag, etc. (Masias, 

Marcicki and Paxton, 2021) 

Construction - These batteries include anode as Lithium-Aluminium alloy (used to oversee Lithium activity), 

whereas cathode includes Iron-Sulphide (to prevent corrosion of Iron), and on the other hand, the electrolyte 

used is Lithium-Chloride -Potassium-Chloride, with a separator (Dincer and Rosen, 2002) (Lv et al., 2015). The 

overall reaction in this battery is as given below: 

 

2 Li – AlFeS  ⇌  2Al  +  Fe  +  Li2S 
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2Li – Al  +  FeS2  ⇌  2Al  +  Fe  +  Li2FeS2 

  
 

The main commonl used Lithium batteries for EV applications are Lithium-poly and Lithium-ion batteries, 

which operate at mediocre temperatures (Cotterman, 2013) (Lv et al., 2015). Amongst the two, Lithium-poly 

batteries use Li-metal as one of their constituents, but Lithium-ion does not utilise Li-metal (Lv et al., 2015). 

Lithium-polymer batteries are tough and therefore, are used for packaging to a variety of shapes, and have poor 

density, low conductivity, high specific energy of 155 W-h/kg and power need of 315 W/kg (Akhil et al., 2013; 

Tie and Tan, 2013; Zhou et al., 2013; ECOFYS, 2014; Capasso and Veneri, 2015; Zheng et al., 2015; Rashid, 

2017). On the other side, Lithium-ion was proposed by Bell Labs in the late 1960s and later on taken up by 

Sony Industries for commercial production attributing to its high power density in the range 500 – 2000 W/kg, 

lightweight, small size, high energy density (Akhil et al., 2013; Zhou et al., 2013; ECOFYS, 2014; Capasso and 

Veneri, 2015; Zheng et al., 2015; Li et al., 2016) (Hadjipaschalis, Poullikkas and Efthimiou, 2009). But deep 

discharges can affect the life cycles of these batteries, by directly impacting their temperature (Zhou et al., 

2013). 

Li-ion batteries are further divided into Li-Cobalt Oxide (LiCoO2), Li-Nickel-Manganese-cobalt (Li- NMC) 

oxide (LiNiMnCoO2), Li-Manganese oxide (LiMn2O4), Li-Nickel cobalt aluminium oxide (LiNiCoAlO2), Li-

Iron phosphate (LFP) (LiFePO4), and Li-titanate (Li4Ti5O12) batteries (Capasso and Veneri, 2015) (Lv et al., 

2015) according to the positive electrode. Of these, Li-titanate (Li4Ti5O12) batteries support the fastest charging 

and are therefore used intensively for EV’s (Tie and Tan, 2013). 

Construction – The most recent researches say, that when we introduce oxygen-containing Lithium=functional 

groups through the plasma method, the performance of \Lithium-batteries improves (Zhang et al., 2021).  For 

the anode, Carbon is used in the form of Lithiated graphite; for electrolyte, Li-salts dissolved in (organic) 

carbonates; and Li-metal Oxide (LiMeO2, like LiMn2O4, LiCoO2, LiNiMnCoO2,LiFePO4, Li4Ti5O12,) and 

LiNiCoAlO2), along with a separator. (Khaligh and Li, 2010; Atwater and Dobley, 2011; Cotterman, 2013; 

Zhang et al., 2014; Kim et al., 2015; Yu et al., 2015). The equation is as given below (Chan and Chau, 2001) : 

LiMeO2   +  C  ⇌  Li1 − x MeO2   +  Lix C  
 

Working: During charging, Li-positive ion moves from cathode to anode, and integrates an electron, thereby 

getting accumulated in between carbon layers. And while discharging, this whole process reverses and an ion is 

formed again (Duvall and Alexander, 2005; Chen et al., 2009; Khaligh and Li, 2010; Zhang et al., 2014; Kim et 

al., 2015). But this process out-dates to 1991, when Sony was manufacturing Li-batteries, so more technologies 

are under research for utilization in EV’s, as they require high-pace and high energy batteries (Duvall and 

Alexander, 2005; Nazri and Pistoia, 2008; Khaligh and Li, 2010; Akhil et al., 2013; Lee et al., 2016).  

4. Comparative study of Lead Acid, Nickel, Zinc Halo, Metal-air, and Lithium-ion Batteries 

 

Figure 2 Comparison of different batteries in terms of Power Range (Akinyele and Rayudu, 2014; 

Nadeem et al., 2018; Krishan and Suhag, 2019) 
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Figure 3 Comparison of different batteries in terms of Power Density (Akinyele and Rayudu, 2014; 

Nadeem et al., 2018; Krishan and Suhag, 2019) 

 

 

Figure 4 Comparison of different batteries in terms of Energy density (Akinyele and Rayudu, 2014; 

Nadeem et al., 2018; Krishan and Suhag, 2019) 

 

 

Figure 5 Comparison of different batteries in terms of Efficiency (Akinyele and Rayudu, 2014; Nadeem et 

al., 2018; Krishan and Suhag, 2019) 
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Figure 6 Comparison of different batteries in terms of Battery Life (Akinyele and Rayudu, 2014; Nadeem et al., 

2018; Krishan and Suhag, 2019) 

 

 

Figure 7 Comparison of different batteries in terms of recharge cycles (Akinyele and Rayudu, 2014; Nadeem et 

al., 2018; Krishan and Suhag, 2019) 

5. Accepted Standards 

A simulation analysis has been performed on a virtual test vehicle keeping the characteristics/ specifications as 

mentioned in Table 2: 

Table I. Assumed specifications of Electric Vehicle 

S.No. Description Value 

1 Weight 1400 Kg 

2 Aerodynamic Frontal Area 2.91m2 

3 Drag coefficient Cd 0.18 

4 Constant Overhead power 143 W 

5 Wheel rolling radius 0.2m 

6 Wheel base 0.0024m 

7 Rolling coefficient Cr 0.015 

9 Battery Pack Voltage 320 V 

10 Cell capacity 94.375 Ah 

11 Motor max torque 275Nm 

12 Peak Output 129 PS 

13 Wheel radius 16 inches 
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6. Performance Analysis 

The algorithm depicted in Figure 8 has been used to build up a battery and to perform simulation of the 

aforementioned battery configurations. In this algorithm, we need to enter the value of Power and its variations 

and the algorithm will output the maximum power of the battery pack, its maximum charging power, state of 

charge, and different battery temperatures. 

 

With this battery algorithm, parameters like Battery Resistance, Open Circuit Voltage, Instantaneous Power, 

Isothermal Round-trip Efficiency (at 22 degree Celsius) of Lead Acid Battery, Lithium-ion Battery, Nickel-

Metal-Hydride Battery, Nickel Cadmium Battery and Nickel-Zinc Battery have been analyzed using Matlab. 

A. Battery Internal Resistance (Rint) 

Figure 9 shows algorithm to determine the Resistance with SoC approaching from 0 to 1 in a Battery Pack, as 

designed in MatLab. 

Figure 8 ESS (Battery Pack) Algorithm (MatLab Simulink ADVISOR) 
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As the State of Charge depletes in a battery with running of the eV, the battery resistance also varies. A fully 

depleted battery has a low state of charge, thus in order to drive the charging process and overcome the 

resistance inside the battery, a greater charging voltage is required. 

 

Figure 9(a) Lead-acid Battery 

 

Figure 9(a) shows that during charging, that is SoC approaching to 1, the temperature of battery is first 

almost constant and then rises to maximum, with a fall in Internal Resistance, approaching Zero. 

 

Figure 9(b) Li-ion Battery 

 

Figure 9 Algorithm for determining Battery Pack Resistance (MatLab Simulink ADVISOR) 
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Figure 9(b) shows that during charging, that is with SoC approaching to 1, the temperature of battery 

gradually decreases, with a fall in Internal Resistance, which is minimum, but not Zero. 

 

 

Figure 9(c) NiMH Battery 

Figure 9(c) shows that during charging, that is SoC approaching to 1, the temperature of battery rises, 

with a fall in Internal Resistance, approaching Zero. 

 

Figure 9(d) NiCd Battery 

Figure 9(d) shows that during charging, that is SoC approaching to 1, the temperature of battery is coincident 

with the Internal Resistance. 

 

Figure 10 Algorithm for determining Battery Pack Voltage (MatLab Simulink ADVISOR) 
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Figure 9(e) NiZn Battery 

Figure 9(e) shows that during charging, that is SoC approaching to 1, the temperature of battery goes down, with 

a fall in Internal Resistance, typically approaching Zero. 

This implies that the Ohmic Resistance inside a battery is independent of temperature. 

B. Battery Voltage 

Fig. 10 shows algorithm to determine the Voltage with SoC approaching from 0 to 1 in Battery Pack, as 

designed in MatLab. 

 

Figure 10(a) Lead Acid Battery 

Figure 10(a) shows that with SoC approaching to 1, the Voltage rises in direct proportionality. 

 

Figure 10(b) Li-ion Battery 

Figure 10(b) shows that with SoC approaching to 1, the Voltage first rises exponentially to an extent and then 

rises in direct proportionality. 

 

 

Figure 10(c) NiMH Battery 

 

Figure 10(c) shows that with SoC approaching to 1, the Voltage first rises exponentially to an extent and then 

rises in direct proportionality. 
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Figure 10(d) NiCd Battery 

Figure 10(d) shows that with SoC approaching to 1, the Voltage first rises in direct proportionality to an extent 

and then rises exponentially. 

 

Figure 10(e) NiZn Battery 

Figure 10(e) shows that with SoC approaching to 1, the Voltage first rises in direct proportionality to an extent 

and then rises exponentially. 

Considering fig 10(a) to 10(e), we can conclude that for all eV batteries, the SoC & Voltage rise in direct 

proportionality. 

C. Power 

Fig. 10 shows algorithm to determine the attitude of Power with SoC approaching from 0 to 1 in a Battery Pack, 

as designed in MatLab. 

Fig.11 represents an algorithm in which the State of Charge is fed to the system, and the system generates 

the maximum charging power. 
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Figure 11(a) shows that with SoC approaching to 1, the Power first rises gradually to an extent, then in 

direct proportionality and further slows down rising. 

 

 

Figure 11(a) Lead Acid Battery 

 

 

 

Figure 11(b) Li-ion Battery 

 

Figure 11 Algorithm for determining Battery Pack Power (MatLab Simulink ADVISOR) 
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Figure 11(b) shows that with SoC approaching to 1, the Power rises in conjunction with the temperature of the 

battery and Ohmic Resistance, and age. 

 

 

Figure 11(c) NiCd Battery 

 

Figure 11(c) shows that with SoC approaching to 1, the Power first rises in proportionality, then in 

gradually decreases to an extent, and further climbs in direct proportionality. 

 

 

Figure 11(d) NiZn Battery 

 

Figure 11(d) shows that with SoC approaching to 1, for a normal battery, the Power first rises in proportionality 

but for a new battery, this graph climbs up exponentially saving more energy immediately after 80% SoC. 

 

Considering Fig 11(a) to 11(d), we can come to a conclusion that the battery pack power rises, with rise in State 

of Charge of an eV Battery. 

 

D. Thermal Efficiency 

Fig. 12 shows algorithm to determine the attitude of Thermal Efficiency with SoC approaching from 0 to 1 in a 

Battery Pack, as designed in MatLab. 

Figure 12 depicts an algorithm to find out variation in thermal efficiency with varying Current. To determine 

this, varying current will be input in Qess_gen and the output shall be received at Qair & Tess . 
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The thermal efficiency can be found out using the formula: 

 

η = [Tess] / [Qair] 

 

 

Figure 12(a) Lead Acid Battery 

 

Figure 12(a) shows that with SoC approaching to 1, the thermal efficiency rises with rise in Current. 

 

Figure 12 Algorithm for determining Battery Pack thermal efficiency 
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Figure 12(b) Li-ion Battery 

 

Figure 12(b) shows that with SoC approaching to 1, the thermal efficiency rises with rise in Current. 

 

 

Figure 12(c) NiMH Battery 

 

Figure 12(c) shows that with SoC approaching to 1, the thermal efficiency acts parabolic with rise in 

Current. 

 

 

 

Figure 12(d) NiCd Battery 

 

Figure 12(d) shows that with SoC approaching to 1, the thermal efficiency stays constant with rise in 

Current. 
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Figure 12(e) NiZn Battery 

 

Figure 12(e) shows that with SoC approaching to 1, the thermal efficiency first rises gradually till 80% SoC and 

then exponentially with rise in Current. 

This implies that the Thermal efficiency is independent of Battery current. 

7. Next Generation Batteries: Sodium-Ion (or Sodium-Beta) 

 

A.  Introduction 

The first Sodium-ion battery was invented by Ford Motors in the late 1960s to promote electric mobility, but 

soon it was also accepted for use in high scale storage applications for use in electric grids (Zhou et al., 2013; 

ECOFYS, 2014; Zhang et al., 2014). Besides being cheap, the widespread use of this battery is attributed to 

characteristics like its high-temperature utility of 300-350 degrees (Dincer and Rosen, 2002; Akhil et al., 2013; 

Zhang et al., 2014), the high energy density of 150-240 W h/kg, and high-power density of 150-230 W/kg 

(Chen et al., 2009; Atwater and Dobley, 2011), long life of 4500 cycles (Lee et al., 2013; ECOFYS, 2014), and 

also its high efficiency of energy of about 85-90% (Chen et al., 2009; Atwater and Dobley, 2011; Cotterman, 

2013; Zhou et al., 2013). But apart from this, the battery also faces Sodium corrosion internally, and needs to be 

heated to about 320 degrees C, to maintain a functional molten state of the electrode (Dincer and Rosen, 2002; 

Zhou et al., 2013), and also develops high resistance to the flow of electricity (Atwater and Dobley, 2011).  

These are the only batteries, which use Solid-Sodium electrolyte as an anode. As a part of electrolyte, these 

batteries utilize beta-alumina that is (β″-Al2O3) since it has a good Sodium-ion conductivity at higher 

temperatures (Akhil et al., 2013). These batteries are divided into Sodium-Sulphur and Sodium-halide following 

cathode materials (Atwater and Dobley, 2011; Akhil et al., 2013).  

 

B. Construction 

This Sodium-Sulphur battery employs molten solid-Sodium in Anode, and molten Sulphur as Cathode, 

differentiated or partitioned with the help of solid Beta-Alumina ceramic-electrolyte (Zhang et al., 2014). The 

chemical reaction taking place in the Sodium-Sulphur battery is as follows: 

 

Na + xS ⇌ Na2 Sx 

 

where  x = 3-5 

 

C. Working 
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During discharging, Sodium-beta interface, and liberates positive Sodium ions, which further pass through the 

electrolyte of beta-alumina and reacts with Sulphur, to produce Sodium Polysulfides (Na2Sx). On the contrary, 

the electro-chemical reaction reverses while charging the battery (Chen et al., 2009; Atwater and Dobley, 2011; 

Akhil et al., 2013; Zhang et al., 2014). 

With the advent of the 1990s, another battery technology, with voltage, even higher than Sodium-Sulphur 

entered the electric vehicle market, named Solium – metal – Halide. This technology had a high energy density 

and was resistant to corrosion. Further research in this battery technology led it to be called as ‘Zero Emission 

Battery Research Activity (ZEBRA) (Akhil et al., 2013; Tie and Tan, 2013). These batteries are also recognized 

for their wide operating temperature range. One such battery is Sodium-metal-chloride (Na-MeCl2) with an 

operating temperature range of 260-310 degrees Celsius. Besides this, Na – S uses a semi-solid cathode, so it 

has better clearance about over-charging and over-discharging as compared to Na-S, coupled with additional 

advantages like a better life span, and lower initial and maintenance cost (Atwater and Dobley, 2011; Tie and 

Tan, 2013; Zhang et al., 2014). Apart from this, these batteries have a lower specific power which can go up to 

200 W-kg, and a very poor thermal management and self-discharge (Chau, Wong and Chan, 1999; Tie and Tan, 

2013; Zhang et al., 2014; Hosseinifar and Petric, 2016). 

If compared, the point that distinguishes these two sodium-ion or sodium-beta batteries is only the sodium 

aluminium-tetrachloride (Na-Al-Cl4) which is used in ZEBRA Batteries as an electrolyte (Atwater and Dobley, 

2011). Apart from this, ZEBRA Batteries utilize Sodium (molten) as an anode, a porous metal chloride (MeCl2) 

as a positive cathode, solid beta-alumina ceramic as a primary electrolyte, sodium aluminium tetrachloride 

(NaAlCl4) (molten) as a secondary electrolyte (Lv et al., 2015) (Hannan et al., 2017). Here, NiCl2, FeCl2, or a 

combination of the two, i.e. NiFeCl2 may be used as the metal chloride. The chemical equation so formed in this 

Ni-S battery is as follow: 

2Na  +  NiCl2  ⇌  Ni  +  2NaCl 

D. Charging & discharging:  

The process of charging and discharging is similar to that of Na-S battery. During discharging, the Sodium and 

Nickel Chloride form Sodium Chloride and Nickel and while charging, this reaction reverses (Akhil et al., 

2013), as indicated in the above reaction equation. And in case of an overcharging, as depicted in the following 

equation, the NaAlCl4 reacts with the Nickel (of primary electrolyte) and forms Nickel Chloride, Sodium in 

molten form and Aluminium-trichloride (Atwater and Dobley, 2011; Akhil et al., 2013). 

 

Ni + 2NaAlCl4 → NiCl2 + 2Na + 2AlCl3 

 

E. Business Scope 

With these properties, Reliance New Energy Solar Ltd (RNESL) bought Faridon, a UK based startup for $134 

Mi, and plans to shift Faridon’s state of the art setup to its Dirubhai Green Energy Giga Complex, Jamnagar 

(Alex, 2022). 

F. How Sodium-ion battery supersedes all other batteries (including Lithium-ion battery) 

Sodium-ion is the next generation ESS, attributed to the following reasons (Saumya, 2022) : 

a. Sustainability : Sodium is sixth most abundant element on planet earth unlike Copper, Lithium, etc.  

b. Cost – effective : The total Cost of extraction, processing and ownership of Sodium-ion battery is very 

less than any other battery material. 

c. Charging & Discharging : Sodium-ion battery charges faster discharges slower than Li-ion battery. 
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d. Thermal capabilities : Sodium-ion battery can 

work on a wideroperating temperature range of -30° to +60° 

C. 

e. Specific Energy : The specific energy of Sodium-

ion is at par with Lithium-ion batteries and reach around 

160 Wh/kg. 

f. Overall comparison between Sodium-ion, Lithium-

Nickel Manganese Cobalt, Lithium-Iron Phosphate and 

Lead acid batteries 

 

Hence if Sodium-ion batteries substitutes Lithium-ion 

batteries, the production of battery material could be 

lowered by 41% per GWh energy (Saumya, 2022). 

8. Results 

Considering the experimental work in this study, we can conclude the following: 

a. The Internal resistance of different batteries behave differently with independent variations in SoC & 

Temperature. 

b. In all the batteries, the Voltage is in direct proportion with the SoC. 

c. In all Batteries, the Instantaneous power inside a battery is proportional to the State of Charge inside 

the battery. 

d. Different batteries behave differently for Thermal Efficiency testing with varying Current. 

9. Further Scope of Future Work 

As we approach Electric vehicle technology, we intend to reduce the burden on the environment and therefore 

move to a greener India. But considering the factor that these batteries also pose harmful effects, the following 

are some challenges for the future: 

a) Environmental friendliness – While production, these batteries emit some gases, that may lead to 

respiratory, neuro and pulmonary diseases (Dunn et al., 2012; Gaines, 2014). Also after its usage, the final 

disposal should be done very cautiously(Emadi et al., 2005; Hacker et al., 2009; Omar et al., 2012). Hence the 

batteries need to be processed so that these are environmentally friendly, to support the human race. 

b) Ways to Fast Charging – Till now, there are only two ways of charging, namely charging on station 

and swapping of battery (Balasingam, Ahmed and Pattipati, 2020). The charge on the station is usually a 

cheaper way, but it takes a lot of time, even with fast charging hence is inconvenient (Mishra et al., 2021). 

Therefore, governments must look ahead to the adoption of battery swapping technology. 

c) Cost of ownership of Battery – Today in India, the running cost of an Electric Vehicle is lesser, but in 

contrast, the initial cost is too high. The same goes with the battery module, the initial cost is too high (Kumar et 

al., 2020). And a stable model is required, that can capture the non-linear behaviour of the relationship between 

the consumption of electricity and its associated prices (Vasant, 2019). Therefore, there is a high need of 

popularizing the advantages of these electric vehicles, as well as some subsidies from the governments shall be 

highly solicited for promotion. 

d) Human Safety – The utilization of a battery can be disastrous if exploited and not used appropriately, 

causing fire, shock, etc. Therefore, such amendments and standardizations are yet to be implemented in 

Automotive India Standards, AIS-038 (Malik and Vashist, 2022) 

e) Behaviour in different environmental conditions – The performance changes in different environmental 

conditions, about the pressure, the temperature of exchange of ions or otherwise chemical reactions. (Vashist, 

Pandey and Malik, 2023). The solution may be an in-depth study of such reactions in detail. 

Figure 13 Performance Characteristics of batteries 
(Source : Wood Mackenzie(Wood Mackenzie, 2021)) 
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10. Conclusion 

Different battery chemistries that are suitable for Indian market conditions are analyzed. The different 

chemistries that were taken for study include Lead Acid, Nickel, Zinc Halo, Metal-air, Lithium-ion, and these 

batteries were made to run on Advisor software (MATLAB) where their characteristics were determined with 

predefined specifications of a virtual vehicle.  
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