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Abstract: -The study presents a novel video representation technique for activity recognition, focusing on 

modeling video dynamics with activity attributes. The video sequence is divided into short-term segments 

characterized by its dynamic features. These segments are then represented using a dictionary of attribute 

dynamics templates based on a generative model known as the binary dynamic system (BDS). The process 

involves learning the dictionary of BDSs from a training dataset and quantizing attribute sequences extracted 

from videos into BDS codewords, resulting in a histogram known as the bag-of-words for attribute dynamics 

(BoWAD). Extensive experimental evaluation demonstrates the superiority of the BoWAD representation 

compared to other state-of-the-art methods in capturing temporal structure for complex activity recognition in 

videos. The proposed approach offers a robust and effective means to model video dynamics, thereby enhancing 

the accuracy and performance of activity recognition systems. The experimental analysis highlighted the 

impressive performance of the proposed approach in accurately identifying the tennis events' Bounce, Net, and 

Hit. The model achieved outstanding accuracy (87.92%), recall (92.08%), and precision (87.92%). 

Keywords: Activity Recognition, Attributes of Activities, Short-Term Segments, Dictionary Of Attribute 

Dynamics Templates, Binary Dynamic System (BDS), Learning Dictionary, Quantizing Attribute Sequences, 

Bag-Of-Words For Attribute Dynamics (Bowad), Temporal Structure Modelling. 

 

1. Introduction 

Recognizing human activities and events poses a crucial challenge in computer vision research. Two main 

research directions have gained significant attention in this area. The first direction focuses on modelling the 

temporal composition of activities, which involves using low-level video representations. Various methods have 

been proposed to model the temporal structure of low-level features extracted from videos, including both 

discriminative and generative models [1]. The second direction represents activities as collections of semantic 

attributes, enabling a higher level of abstraction where features denote occurrences of semantic concepts like 

scene types, actions, and objects [2]. This intermediate representation fosters better generalization, facilitates 

semantic reasoning, and allows knowledge transfer across different instances. 

Figure 1 illustrates the challenges in modelling the dynamics of attributes for complex activities, using the 

example of a "tennis-serve" activity and its associated trajectory [3]. Figure 1 illustrates the complexities in 

capturing the dynamics of attributes related to intricate activities. The top section depicts a "tennis-serve" 

activity. In contrast, the bottom section shows the corresponding trajectory, color-coded for different motions: 

red for "arm motion," green for "foot motion," and blue for "ball motion." It's important to note the intricate 

nature of the trajectory and that only a brief segment (highlighted in red) is crucial to the action of interest. 
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Fig. 1. Challenges In Modeling The Dynamics Of Attributes Of Complex Activities.(Top)“Tennis-Serve” Activity. (Bottom)Associated 

Trajectory (Red For “Arm Motion,” Green For “Foot Motion,” And Blue For “Ball Motion”). 

While both research directions have their merits, they also face limitations in recognizing complex activities. 

For instance, solely characterizing the temporal structure based on low-level features may not suffice for such 

activities. On the other hand, representing videos as an order with a smaller set of attributes lacks fine-grained 

activity discrimination, as it cannot distinguish activities expressing similar characteristics in different orders. 

To address these challenges, recent work [3] proposed unifying both directions by modelling the temporal 

structure of video projection in attribute space using binary dynamic systems (BDS). While BDS achieved state-

of-the-art performance, it still faces challenges, such as handling videos with multiple events of interest and 

fitting complex attribute space trajectories. 

To overcome these limitations, this study introduces a novel video representation called the bag-of-words for 

attribute dynamics (BoWAD) [4]. BoWAD is an extension of the bag-of-visual words (BoVW) popular in 

image classification. Unlike BoVW, which utilizes visual appearance templates, BoWAD relies on attribute 

dynamics templates, specifically temporally localized BDSs. This approach represents activities as collections 

of characteristic short-term behaviours, eliminating the need for a single BDS to model overly complex attribute 

trajectories. The study proposes a procedure for learning a dictionary of BDSs and quantizing videos based on 

this dictionary, demonstrating superior performance compared to state-of-the-art temporal structure modelling 

approaches in challenging datasets. Overall, BoWAD provides a unified and effective solution for recognizing 

complex activities in videos. 

2. Relatedwork 

In recent years, action recognition has emerged as a crucial problem in computer vision, and the bag-of-features 

(BoF) H. Wang et al. [5] representation has gained significant popularity in this field. The BoF approach 

involves representing videos as collections of feature vectors, enabling the modelling of temporal activity 

structures. Several models have been developed based on this representation, such as Laptev et al. [6] use of 

spatiotemporal binning pyramids to match vector-quantized histograms from different video regions. 

Additionally, Niebles et al. [7] and Gaidon et al. [1] have represented activities with many decomposable parts 

or atomic actions, exploring the potential of generative models in this context. Moreover, Laxton et al. [8], V. 

Kellokumpu et al. [9], B. Li et al. [10] and R. Chaudhry et al. [11] integrated confidence about objects and sub-

actions over time using dynamic Bayesian networks, while various active systems have been utilized to 

represent the evolution of human activity, employing features like local binary patterns, tracked parts, or frame-

wise motion histograms. 

Recent advancements in image analysis research have revealed the advantages of semantics or attribute-based 

representations over the BoF approach for action recognition. Liu et al. [12].  proposed using attributes as latent 

variables for support vector machines to enhance action recognition. Sadanand et al. [13] demonstrated 

substantial improvements over standard benchmarks by employing a bank of action detectors sampled across 

semantic and viewpoint spaces. Similarly, Rohrbach et al. augmented videos with text-script data, modelling 

activities as standard sets of attributes defined in terms of basic actions and objects. The introduction of the 
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binary dynamic system (BDS) model by Li and Vasconcelos [14] emphasized the significance of modelling 

video trajectories in attribute space to understand human behaviour better. 

In this study, the authors expand on attribute dynamics modelling by proposing to learn dictionaries of models 

for attribute dynamics [14]. The approach of G. Doretto et al. [15] builds upon the bag-of-systems framework, 

where dynamic textures (DTs) were previously employed to characterize emotional scenes. However, A. 

Ravichandran et al. [16], the main challenge lies in identifying the "centroid" of a collection of dynamic textures 

due to the non-Euclidean nature of the space of linear dynamic systems. To overcome this, the authors propose 

an alternative and principled solution explicitly designed for clustering attribute sequences, offering several 

advantages over the MDS-kM (multi-dimensional scaling and k-means) approach.  

Through their proposed method, they achieve superior recognition and accuracy in modelling temporal 

structures for complex activity recognition, further advancing the state-of-the-art in this important domain of 

computer vision research. 

3. Methodology 

In the context of activity recognition, we present a novel representation known as the "bag-of-words for attribute 

dynamics" (BoWADs). This new approach aims to capture and characterize the dynamics of attributes 

associated with various activities. By representing videos as collections of binary attributes, BoWADs offer a 

higher level of semantics, enabling better generalization and improved recognition of complex activities. The 

key idea behind BoWADs is to model video segments' short-term dynamics, providing a more effective way of 

inferring activities and discriminating between different actions. Figure 2 shows the proposed methodology. 
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Fig. 2. Proposedworkflowdiagram 

A. Words and Attributes 

In the context of activity recognition, we present a novel representation known as the "bag-of-words for attribute 

dynamics" (BoWADs). This new approach aims to capture and characterize the dynamics of attributes 

associated with various activities. By representing videos as collections of binary attributes, BoWADs offer a 

higher level of semantics, enabling better generalization and improved recognition of complex activities. The 

key idea behind BoWADs is to model video segments' short-term dynamics, providing a more effective way of 

inferring activities and discriminating between different actions. Figure 2 shows the proposed methodology. 

The bag of visual words (BoVW) has gained popularity as a widely used representation for image classification 

and, more recently, for action recognition. It involves representing an image as a Bag of Features (BoF) by 

learning a dictionary of representative feature vectors, termed visual words, and quantizing the extracted 

features for classification purposes. The BoVW representation is a histogram of visual word counts, frequently 

employed as a feature vector for image and video classification tasks. However, despite its widespread use, 

alternative feature spaces have shown significant benefits in encoding higher-level semantics. These alternatives 

represent images or videos as collections of binary attributes, offering a more insightful representation of the 

data [17]. 
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Fig. 3.Learninga BDS. Video sequences(left) Trajectories in attribute space (center) Trajectoryinthelatent state space(right). 

The parameterized function B(y;p) represents a multivariate Bernoulli distribution with parameter p ∈ [0, 1]K, 

while the component-wise logistic transformation σ(θ) is defined as σi(θ) = (1 + e(-θi))(-1). The observation 

model can be interpreted as a binary principal component analysis (binary PCA) applied to the binary data {yt}. 

Binary PCA is a dimensionality reduction technique specifically designed for binary data. It takes a matrix Y = 

[y1, ..., yτ] ∈ {0, 1} (K×τ) as input and produces an L-dimensional embedding of the natural parameter, which 

serves as an attribute score vector. Each component πi(v) in this vector represents a confidence score 

quantifying the presence of the ith attribute in video v. In this context, these scores are treated as posterior 

probabilities πc(v) = p(c|v) of attribute c given a low-level representation of video v, such as a Bag of Features 

(BoF) histogram of spatiotemporal descriptors.  

Figure 3 illustrates learning a BDS (Behavioral Dynamic System). Video sequences, shown on the left, are 

transformed into trajectories within an attribute space, as depicted in the center. Sequences with comparable 

semantics follow similar trajectories. The BDS then employs binary PCA to map these video trajectories into a 

lower-dimensional space, represented in green. Finally, a Gauss-Markov process is learned to describe the 

corresponding trajectories in this latent state space, as shown on the right. 

A. Bag of Words for Attribute Dynamics 

In recognizing tennis gameplay, the Binary Dynamic System (BDS) provides a more comprehensive model of 

video dynamics than the holistic attribute model. However, the BDS still presents two significant limitations 

illustrated in Figure 3. Firstly, there is no guarantee that a video sequence solely depicts the desired tennis 

activity, such as a particular shot or serve. Often, informative segments (e.g., a backhand stroke) may be 

surrounded by less relevant elements (e.g., players moving between shots), leading to parameter estimates that 

do not precisely represent the tennis event of interest. Secondly, as tennis matches involve various complex 

actions and movements, some of which may occur at different times, these state trajectories are unlikely to 

conform to the Gauss-Markov process. Nonetheless, these limitations are less likely to arise when the BDS is 

applied to short-term video segments. 

On the other hand, most tennis actions can be effectively identified by characterizing the short-term segments 

that make up the gameplay. For example, the attribute sequence "swing-hit," "run-approach," and "ball-land" 

may sufficiently differentiate a forehand shot from a backhand shot, which could be characterized by the 

attribute sequence "swing-hit," "run-backward," and "ball-land." Tennis actions can be effectively distinguished 

by examining the presence or absence of certain attributes in video segments. Based on these observations, the 

approach proposes extending the Bag of Visual Words (BoVW) representation to capture the short-term 

dynamics of attribute sequences in tennis gameplay videos. 

To implement this approach for recognizing tennis gameplay, tennis match videos are divided into temporal 

overlapping segments. Each segment represents a short portion of the gameplay and may contain a specific 

tennis action or movement. These segments then undergo attribute mapping to extract relevant attributes 

representing the tennis activities within each segment. The attribute sequence for a segment can be denoted 

asΠ(i) = {πt
(i)

}t=1
τi Πt (i) represents the attribute score vector at a time ‘t’ in the segment ‘i’. 
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By creating attribute sequences for each segment, the short-term dynamics of tennis gameplay can be effectively 

captured in a structured manner, allowing for more accurate recognition and classification of tennis actions. 

B. Learning and Recognition with BoWADs 

In the upcoming section (Section 5), we will demonstrate that BoWADs, when used in conjunction with 

standard histogram-based classifiers like support vector machines (SVMs) equipped with the histogram 

intersection kernel (HIK), serve as a highly effective representation for recognizing complex activities. 

However, before delving into the recognition aspect, let us focus on the initial challenge of quantizing attribute 

sequences. To do so, we commence by tackling the task of learning a dictionary for Attribute Dynamics (WAD 

dictionary). 

Traditional clustering methods, like k-means, aim to find prototypes within the space of training samples. For 

instance, in k-means, a cluster prototype corresponds to the centroid of the data points within the cluster, and the 

Euclidean distance metric is commonly used. However, extending this approach to the clustering of BoAS is not 

straightforward due to several challenges: 

Attribute sequences can have varying lengths, making direct comparison and clustering difficult. The attribute 

space of these sequences exhibits non-Euclidean geometry, further complicating the clustering process. The 

search for optimal prototypes under this nonlinear geometry may lead to intractable nonlinear 

optimization.Given our interest in characterizing the appearance and dynamics of attribute sequences, finding a 

prototype Binary Dynamic System (BDS) is more desirable than a set of prototype sequences. We propose a 

solution based on learning a Bag-of-Models (BoM) dictionary to address this. Let {zi} with zi∈, Z for i = 1 to N 

be a set of training samples. The goal is to learn a collection of representative models {Mi} in a model space M. 

This involves two essential mappings: 

The first mapping fM: Z ↦ M({zi}) ∈ M maps a collection of examples {zi} from the data space D to a model 

M({zi}) in the model space M. 

fℳ ∶ Z ⊇ {zi}› → M({zi}) ∈ ℳ           (1) 

The second mapping, M × M ↦dM (M1, M2) ∈ R+, measures the distance between two models, M1 and M2. 

ℳ× ℳ ∋ (M1, M2) ›→dℳ(M1, M2) ∈ R+        (2) 

We utilize the above mappings to create a model M(zi) for each training example zi. The training samples are 

then clustered at the model level using two alternating steps: 

In the assignment step, each zi is assigned to the cluster whose model is closest to M(zi) based on the metric dM 

(M1, M2).In the model refinement step, the model associated with each cluster is relearned from the training 

samples assigned using the mapping fM.This clustering process, summarized above as Bag-of-Models 

Clustering (BMC), generalizes the standard k-means algorithm. The learned Words for Attribute Dynamics 

(WAD) from the training BoAS are then utilized to quantize the BoAS extracted from the video sequence for 

classification. The resulting histogram of WAD counts is denoted as the Bag of Words for Attribute Dynamics 

(BoWAD) and serves as the feature vector for video classification. This representation is summarized as 

BoWAD-BMC. 

Furthermore, we extend the BDS learning process with a two-step decomposition, as discussed in Section 3.2. 

We first apply binary PCA to all attribute score vectors and then learn the parameters of the hidden Gauss-

Markov process through a least squares problem involving all latent state sequences obtained from binary PCA. 

This approach enables each BDS learned per cluster to effectively characterize the appearance and dynamics of 

all attribute sequences in that cluster. 

Finally, the assignment step uses the Bi-LSTM to classify between three BDSs. Initially proposed as a measure 

of dissimilarity between infinite output sequences of three Linear Dynamic Systems (LDSs), the Bi-LSTM has 

been adapted for distinguishing the outputs of three activity structures like Bi-Net Chuny (BC) Kernal [18]. 
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All experiments used a 5-dimensional state space for both BDSs and BoWADs. The low-level representation 

was the Bag of Features (BoF) of spatial-temporal interest points (STIPs), quantized into a vocabulary learned 

from the training set.  

C. ClassificationphaseusingBiLSTM 

In this section, the classification phase utilizes Bidirectional Long Short-Term Memory (BiLSTM) networks. 

The objective is to identify and categorize tennis activities effectively and accurately. The proposed approach 

involves the BiLSTM model, which will be further explained later. The primary goal is to distinguish between 

different activities with high precision and improve the recognition system's overall accuracy. 

1) Bidirectional Long Short-Term Memory (BiLSTM) Networks: In the research, the Bidirectional Long 

Short-Term Memory (BiLSTM) network was utilized to construct the model. BiLSTM is regarded as one of the 

most prominent Recurrent Neural Networks (RNNs) due to its capability to retain essential information while 

discarding transient data. The memory cell in BiLSTM incorporates a data gating system, enabling effective 

handling of long-term sequences and addressing gradient-related issues, thus facilitating feature extraction. Figure 

4 illustrates the configuration of input-output and forget gates in BiLSTM, allowing the network to detect 

interdependencies using multiple cells. The operations and equations of the three gates are further elaborated in 

the following section. The bidirectional nature of the BiLSTM allows the network to capture both past and future 

contextual information, which is beneficial for understanding complex activity patterns. 
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Fig. 4. Bi-LSTM structure. 

2) Classification and Output: The final step of the classification phase involves making predictions based on 

the output of the BiLSTM network. We use a fully connected layer on the BiLSTM to classify activity classes. 

The model is trained using labeled video data, and during the inference phase, it predicts the activity label for a 

given input video.The BiLSTM networks enable our model to effectively recognize video activities by 

exploiting spatial and temporal information. This approach has demonstrated strong performance in various 

activity recognition benchmarks and real-world applications. 

 

4. Experimental Results 

This section presents the results obtained from extensive testing and simulations conducted to evaluate a 

fictitious product review system's performance thoroughly. The experiments were performed on the MATLAB 

2019b platform, ensuring compatibility with the Windows operating system. 

We employed several essential metrics to assess the system's effectiveness, including accuracy, specificity, 

sensitivity, and precision. These metrics allow us to evaluate the simulator's performance 

comprehensively.Accuracy measures the overall correctness of the system's predictions, providing insight into 

how well it can classify reviews accurately. On the other hand, specificity evaluates the system's ability to 

correctly identify genuine reviews, ensuring counterfeit reviews are not incorrectly classified as genuine. 

Sensitivity, also known as recall or true positive rate, focuses on the system's capacity to detect counterfeit 

reviews accurately.On the contrary, precision focuses on the system's precision in correctly classifying 

counterfeit reviews, minimizing the possibility of false positives. By considering these metrics together, we 
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understand the simulator's performance and capability to distinguish between genuine and counterfeit product 

reviews effectively. 

Comparing the various outcomes and analyzing the performance metrics will provide valuable insights into the 

efficiency and reliability of the fictitious product review system. These evaluations will further refine the system 

and enhance its overall performance, ensuring a more accurate and dependable classification of product reviews. 

1) Specifications of parameters: In our study, we employed a random number generator to select the 

parameters for the CNN-BiLSTM algorithm. This approach was adopted to ensure unbiased and diverse 

parameter configurations for conducting comprehensive experiments. Table 1 presents a detailed listing of the 

specific parameter values, such as learning rates, batch sizes, activation functions, and other relevant settings. 

Each parameter was chosen from a predefined range to encompass a diverse set of values, allowing for a robust 

evaluation of the CNN-BiLSTM algorithm's performance across various configurations. This random selection 

process helps gain insights into the algorithm's behavior and its effectiveness in recognizing activities from 

textual data. 

TABLE I.  PARAMETERSPECIFICATIONS. 

Methods Parameter metrics Values 

CNN-Bi-LSTM The Network's Configuration  Fully connected 

 The Total Number of Epochs  100 

 Hidden Units Equipped with Bi-LSTM Technology 200 

 Rate of Learning 0.010 

 Activation Softmax 

 StepSize 100 

 FullyConnectedLayer Dropout 

 The Size of the Pool  Max-pooling 
 

Several comprehensive experiments were conducted to thoroughly evaluate the effectiveness of the proposed 

methods for tennis activity recognition. The test dataset consisted of 25 video sequences captured from a tennis 

tournament, each lasting one minute. These videos were recorded at a frame rate of 30 frames per second with a 

resolution of 640 x 480 pixels, resulting in approximately 1800 frames per video. Figure 5 displays examples of 

video frames. 

 

Fig. 5. Examples of Video frames. 
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The tennis ball's position and trajectory were visualized throughout the game's timeline to gain deeper insights 

into the dynamics of tennis gameplay. Figure 6 illustrates this visualization, with the yellow circle representing 

the ball's current location at different frames and the green line depicting its trajectory over time. Analyzing the 

ball's movement and interactions with the players and the court provided valuable information about the patterns 

and characteristics of different tennis activities. 

These extensive experiments and evaluations aimed to validate the effectiveness and reliability of the proposed 

methods in tennis activity recognition. The findings from these experiments have significant implications for 

enhancing the algorithms and their performance in real-world tennis video analysis scenarios. 

 

Fig. 6: Ball tracking Trajectory. 

In Figure 6, the players' positions and trajectories in the current frame number are visualized. The blue circle 

represents the position of the players, and Figure 7 further illustrates the movement of the players. The yellow 

line denotes the trajectory of the lower half of the player, while the green line shows the trajectory of the upper 

half of the player. This visualization provides valuable insights into the players' movements and interactions 

during the tennis gameplay, contributing to a comprehensive understanding of the dynamics of the match [19]. 

 

Fig.7. Player Tracking Trajectory. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. X No. Y (20--) 

__________________________________________________________________________________ 

142 

 

(a) (b) 
Fig. 8. Dataset Contents:  (a) Annotated –Action: Short Video Aligned With A Verb Phrase. (b) Video Commentary Dataset: Game Videos 

Aligned With Commentary. 

TABLE II.  DEPICTIONS OF THE VIDEO INPUT SEQUENCE. 

Input with Ground Truth 

 
In Winner: Serena Williams arrows a good 
serve at T, but Sharapova cannot return it. 

 
In Winner: Federer'sgood serve in the 
middle, Fedrer crafts a forehand return, 
short rally Delpotro cross-court forehand 
fails to land inside the court. 

Phrases 
(waits for the ball), (waits for the ball), 
….. (Prepares for serve), …., (hits a good 
serve), (sizzling serve), …. 

(Prepares for serve), …., (tosses ball for 
serve), (hits a good serve) …… (Waits for the 
ball) …… (returns a quick forehand return) 
……, (sprays a forehand) ……. 

Descriptions 
(Top 2 retrievals) 

1. In Winner: Serena Williams hits a 
good service; Sharapova 
struggles. 

2. In Winner: Serena Williams hits a 
good service; Sharapova 
struggles. 

1. In Winner: Delpotro Fine serve, 
Delpotro works a forehand 
return, brief rally, Delpotro 
rushes to net and punches a 
forehand volley winner. 

2. In Winner: Federer's Quick serve, 
Delpotro returns a quick 
forehand return, a couple of 
shorts are exchanged, 
andDelpotro nets a forehand 
down the line. 

 

Figure 8 (a) presents the contents of the Dataset, showcasing the alignment of annotated actions with 

corresponding verb phrases in short video clips. The video content captures the game's various stages, such as 

preparing for service, waiting for the ball, and executing a powerful serve that strikes the opponent player. The 

descriptions provide additional insights into the players' actions, specifically mentioning Winner Serena 

Williams hitting a good service and her opponent Sharapova struggling to respond. 

Figure 8 (b) also introduces the Video commentary dataset, where game videos are aligned with commentary 

phrases. The phrases correspond to various actions, such as preparing, tossing the ball for serve, and hitting a 

well-executed serve. The descriptions elaborate on the player's performance, with Winner Delpotro making a 

 
Upper Player: Smashes Down the Line. 

Down Player: Waits for the Ball 

 
Upper Player: Struggles to Reach the Ball. 

Down Player: Massive Serve. 

 
In Winner: Serena Williams Arrow a Good Serve At T, Sharapova Is 

Unable to Return It. 

 
In Winner: Serena Williams Arrows a Good Serve At T, Sharapova 

Is Unable to Return It. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. X No. Y (20--) 

__________________________________________________________________________________ 

143 

fine serve and working a forehand return. Delpotro's rush to the net and execution of a forehand volley winner is 

also highlighted [20]. 

Table 2 demonstrates the process of translating the input sequence of videos into a set of phrases. These phrases 

are then utilized to generate the final description of the top two retrievals. This method allows for a 

comprehensive and informative representation of the video content, enabling accurate and efficient recognition 

and retrieval of important actions and moments during the tennis gameplay. 

2) Simulation Measures: This section comprehensively evaluates the model's performance by analyzing its 

accuracy, specificity, sensitivity, and precision. These evaluation metrics provide crucial insights into the model's 

ability to correctly classify and recognize different patterns and actions. 

The model's accuracy is calculated using Equation (3). TP represents the number of true positives, TN indicates 

the number of true negatives, FP represents the number of false positives, and FN denotes the number of false 

negatives. The formula evaluates the proportion of correctly classified instances out of the total instances. 

As represented by Equation (4), sensitivity calculates the true positive rate, the proportion of correctly identified 

positive instances (actions) out of all the positive instances. It gives us an understanding of the model's ability to 

detect positive events correctly. 

On the other hand, specificity, as shown in Equation (5), measures the true negative rate, representing the 

proportion of correctly identified negative instances (non-actions) out of all the actual negative instances. This 

metric provides insights into the model's ability to classify non-action events accurately. 

Precision, indicated by Equation (6), calculates the proportion of true positive instances out of all that the model 

predicted as positive. It is a crucial metric to determine the correctness of the model's positive predictions. 

To summarize, the accuracy, sensitivity, specificity, and precision are represented as Ac, Se, Sp, and Pr, 

respectively. These evaluation metrics help comprehensively assess the model's performance [21] and determine 

its effectiveness in accurately recognizing and classifying tennis-related actions and patterns. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁   
                                                                                                     (3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁   
                                                                                                                 (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃   
                                                                                                                   (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃   
                                                                                                                   (6) 

From Equations (3) – (4), the accuracy, sensitivity, specificity, and precision were compared asAc, Se, Sp, 
andPr. 

3) Performance Evaluation: The proposed model's performance for event identification can be assessed by 

plotting the ground truth values. Figure 9 displays the effectiveness of different types of event detection for 

Bounce, Hit, and Net. The plot demonstrates the model's ability to identify these events accurately, providing 

valuable insights into its performance across various event categories. This evaluation allows for accurately 

detecting all three events in a play and provides comprehensive assessment results. Figure 10 illustrates the 

model's accuracy, recall, and precision, showcasing the effectiveness of event identification. 

To illustrate the effectiveness of different event detections further, Table 3 presents a confusion matrix. This 

matrix showcases the model's classification results, highlighting true positives, false positives, and false 

negatives, which aid in understanding the model's overall accuracy and misclassifications. These evaluations 

gain a comprehensive understanding of the proposed model's effectiveness in event identification, enabling 

informed decisions and optimizations to enhance its performance. 

TABLE III.  CONFUSION MATRIX OF EVENT DETECTION. 

 Bounce Hit Net Total 

Bounce 31 2 2 35 

Hit 2 36 4 42 

Net 1 3 34 38 
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Fig. 9. Effectiveness of Different Types of Event Detection. 

The accuracy results for different event detections in tennis are as follows:  

- Bounce Detection Accuracy: 88.57% (31 correct predictions out of 35). 

- Hit Detection Accuracy: 85.71% (36 correct predictions out of 42). 

- Net Detection Accuracy: 89.47% (34 correct predictions out of 38). 

Overall, Event Detection Accuracy across all action types is 87.92%. These accuracy values indicate the model's 

ability to classify and identify events during a tennis match. 

Accuracy Bounce Detection:  (31/35) *100% = 88.57% 

Accuracy Hit Detection:   (36/42) *100% = 85.71% 

Accuracy Net Detection:   (34/38) *100% = 89.47% 

Overall, Event Detection Accuracy is 87.92%. 

Table 4 presents a comprehensive classification of action types in tennis, encompassing total actions, correctly 

predicted ball hits, false predictions, and missed ball hits on the tennis court by the players. The performance 

evaluation matrix results, including precision and recall, are then computed to assess the model's accuracy and 

effectiveness in classifying various actions. 

TABLE IV.  CLASSIFICATION RESULTS WERE OBTAINED WITH 115 SEQUENCES. 

Action Type Total Actions Correct False Missed Precision Recall 

Bounce 

Hit 

Net 

35 

42 

38 

29 

31 

33 

4 

7 

3 

2 

4 

2 

87.87 

81.58 

91.67 

93.55 

88.57 

94.29 

Total 115 93 14 8 87.92 92.08 

 

The evaluation metrics used in the simulation include accuracy, recall, and precision, each playing a crucial role 

in assessing the method's effectiveness (details provided in the text). The experimental investigation 

demonstrates impressive results, achieving high rates. These findings validate the approach's efficacy in 

identifying fraudulent product reviews with considerable accuracy and precision. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. X No. Y (20--) 

__________________________________________________________________________________ 

145 

 

Fig. 10. Performance evaluations were conducted on a variety of simulation measures. 

TABLE V.  STATE OF ART COMPARISON 

Algorithms Accuracy 

SVM 78.28% 

LSTM 82.11% 

SVM+BoW 84.33% 

CNN+Bi-LSTM 87.92% 
 

Table 5 showcases the comparative performance of machine learning and deep learning algorithms measured by 

accuracy. The Support Vector Machine (SVM) registers an accuracy of 78.28%, indicative of its proficiency in 

classification tasks via optimal hyperplane identification. On the other hand, the Long Short-Term Memory 

(LSTM) architecture, designed for handling sequential data due to its capacity to learn long-term dependencies, 

clocks in at 82.11%. An intriguing blend of SVM with the Bag of Words (BoW) model, which transforms text 

into a frequency-based representation, boosts the accuracy to 84.33%. This amalgamation implies a potential 

text classification task. The standout performer in the table is the hybrid model, CNN+Bi-LSTM, recording an 

impressive 87.92% accuracy. This combination marries the spatial feature extraction capabilities of 

Convolutional Neural Networks (CNNs) with the sequential prowess of Bidirectional LSTMs, hinting at its 

utility in tasks like text classification. Overall, the table accentuates the merit of integrated models, especially 

the CNN+Bi-LSTM, underscoring the benefits of meshing different neural architectures to enhance model 

efficacy. The specific utility of these models would be contingent on the dataset and problem specifics. 

5. Conclusion 

This study presents a novel approach to address the activity recognition challenge by modeling attributes and 

dynamics. The method combines the advantages of histogram-based representations and the power of BDSs to 

capture video attribute dynamics effectively. Novel algorithms were developed to learn BDS dictionaries and 

quantify video data to achieve this. 

The proposed representation surpasses other state-of-the-art methods relying on attributes or temporal structures 

to recognize complex activities. In the context of tennis event detection, the model demonstrated high accuracy 

for different types of actions, with bounce detection achieving 88.57% accuracy, hit detection achieving 85.71% 

accuracy, and net detection achieving 89.47% accuracy. The overall event detection accuracy for tennis was 

87.92%, effectively identifying different events during a tennis match. 

Furthermore, the experimental analysis highlighted the impressive performance of the proposed approach in 

accurately identifying the tennis events' Bounce, Net, and Hit. The model achieved outstanding accuracy 

(87.92%), recall (92.08%), and precision (87.92%). 
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