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ABSTRACT. We present the concept of Erdal-G - « - -Geraghty contraction and develop fixed
point theorems in the arrangement of g-metric spaces using Erdal-G -« -y -Geraghty
contraction with relevant examples and applications to integral equations in this work.
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Introduction

The Banach contraction concept has proven a useful tool in the study of a fixed point. It is
frequently utilized in fields such as nonlinear analysis, applied mathematics, economics, and
physics. Because of its significance, the conclusion has been generalized in several ways.

Samet et al. [20] pioneered the notion of « - admissibility. Later, Karapinar et al. [14] extended
it to triangular « - admissibility. Abodayeh et al. [1] recently developed the concept of
triangular « - admissibility concerning another function g. Chary et al. [23] developed the
novel idea if rectangular « -G -admissible mapping in 2021, as well as rectangular « -G -
admissible concerning another function g in G -metric space. Karapinar [16] proposed a new

form of contraction, the « -y -Geraghty contraction, and found fixed point findings for it.
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Preliminaries

We are reminded of Geraghty’s theorem. To do this, we must notify the /7~ class of all functions
B:[0,00) —[0,1)that satisfy the criteria: limp(t,)=1<t, =0.

Lemma 2.1. [14] Let f represent a triangular a- admissible mapping. Assume there is a
o €Q such that «(g,, fg,)>1. Define the sequence ¢,as ¢,,, =Tg,. Then a(g,.s,)=1

forany m,ne N.

First, we write the class of functions that will be utilized extensively in the sequel: Let ¥
indicate the class of y :[0,00) —[0,o0)functions that meet the following conditions: a) v is

non- decreasing; b) y is sub additive, which means thaty (s+t)=w(s)+w(t); ) wis

continuous function; d) y (t)=0<t=0.

. Main Results

Definition 3.1. Assume (Q,G)is a G -metric space. Let o : QxQxQ — Rbe a function. A
mapping A :Q — Q is said to be an Erdal- G -« - -Geraghty contraction if there exists
S €T such that

a(@,p.6)v (G(Aa, Ap,Ag))< By (A(@. p.6)) )y (A(@. i)
31)
Where
A@,p,g)= max{G(w,Aw,Aw),G(p,Ap, Ap),G(s, Ag,Ag)} Va,pceQand yeV.
Our first new result is as follows
Theorem 3.1. Let (0, G)be a complete G-metric space, «: QxQxQ — Rbe a function, and

let A:Q — Qbeamap. Assume that the aforementioned circumstances are met.
1) Ais Erdal-G - « -y -Geraghty contraction

2) A is rectangular « -admissible

3) there exists@, € Q so that o(w,, Awy, Aw,) 21

4) A is continuous.

Then A has a fixed point @ €Q and {A”wl}convergent tow .
Proof: Assume @, € Q is satisfies «(w,, Aw,, Aw,)>1. Define {@ } cQ by @, = Aw, for
neN. Suppose that @, =, +1 insome cases n, € N. So, obviously @, is a fixed point of

A and hence the evidence to support is completed. Presume that@, # @,,, Vn e N. According

n+l
to lemma 2.1, we have

a(w,, @,

n+1? *n+l

)=>1. (3.2)
vn e N. From (3.1), we aquire
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l// (G (wml’ ZUn+2 ! wn+2 )) = V/(G (Awn ! Awml’ Awn+1))
Sa(w-n ' ZU'n+1, ZD-n+l)lr//(G (Awn ' Awml’Awml))

ﬂ(W (A(wn 1Dy ZUnafl)))l//(A(wn 1Dy ZUn+1))

IA

(3.3)

vn e N, where

G(

G(

_ max{G (ZUn ' wn-%—l' wn+l)’ G (wn ’ wn-%—l’ wn+l)’G (wn+1, wn+2’wn+2)1}
G (wn+l’wn+2’wn+2)

Here, we observed, A(w,,@,,,,@,,)=G(®,, @

n+17 *'n+27

wn,wn+l,wn+l),G(wn,Awn,Awn),G(w Aw Awn+l),}

n+1? n+1?
@, Ao, A@,,,)

n+1? n+l1?

A(w-n’w-ml’w-mrl) = maX{

wmz)is inconceivable because of the

precise meaning of 3.
V/(G (wn+l’ ZUn+2 ! ZUn+2 ’)) < ﬂ(l//(A(wn ! ZUn+l’w-n+l)))lty(A(w’n’w'm-l’ ZUn+1))
ﬂ (G (wn+1'wn+2'wn+2 )))I//(G (wn+1’wn+2’wn+2))

< l// (G (wml’ ZUn+2 ! ZUn+2 ))
@,.,)=G(@,,@,,,,.,). From (3.3), we get

S(l//

n+1?

Therefore, we declared A(w,,,

V/(G (AP PN )) < ‘//(G (@ @1 Ty ))
vn e N.According to the circumstance of y , declared that
C(@,.1,T,.2:@,.2) <G(@,,. 7,1, @1
vn e N.Hence, we conclude that G(a,,,,,,,,,) is neither negative nor growing. Given a
consequence, s> 0 o0ccurs in a way that
limG(a,,®,,.@,,)=Ss.

n—oo
We assert that s =0. Assume, on the other hand, that s> 0.Then, as a result of (3.3), our
situation is

4 (G (wn+l’ G120 Wpyp ))
4 (A(wn 1Dy ZUn+1))

< ,B(V/(A(wn T, g, wn+1))) <1

In the following,
Ilm ﬂ(l//(A(wn'wnJrl'wwl))) :1

n—oo

Because of S, thereis

!]iml//(A(wn'wn+l’wn+l))=o ’ (34)
as a result of which
s=1limG(a,,®,.,,,@,,)=0 (3.5)
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We notice that
Na,, @, ,)= max{G(wm,wn,wn),G(wm,Awm,Awm)G(wn,Awn,Awn),G(wn,Awn,Awn)}

utilising the conclusion

!]iLPOG (@ @1, @,y,1) =0,
We obtain that
mI’LerA(wm @,,@,)= mI,LTooG (@,.@,,) (3.6)
We conclude that {z, } is a G-Cauchy. On the other hand, pretend there is
e= lim sup{G(=, @, m,)} >0 (3.7)

m,n—oo

We infer from rectangular inequality

)+G(@,.,, 00,7, )+ G (o,

G(ZD'n,ZUm,ZUm)SG(ZUn,ZU o, n+1 ¥ m+l? m+1’wm'wm) (3-8)

n+1' ¥ n+l

We obtain through the use of (3.3), (3.8) and the characteristics of y
W(G(wn,wm,wm))SW(G(wn,wnﬂ,wml)-l-G(Awn,Awm,Awm)+G(wm+l,wm,,wm))

< y/(G(zvn,wm,wm))ﬂ//(G(Awn,Awm,Awm))+w(G(mm+l,wm,,wm))
< w(G(wn,wn+1,wn+1))+ﬂ((//(A(wn,wm,wm)))w(A(wn,wm,wm))

_H// (G (wm+1’ ZD.m ! ZUm ))
(3.9)
We may conclude from (3.6), (3.9) and (3.5)

Lim V/(G(wn,wm,wm))ﬁ lim ,B(l//(A(wn,wm,wm))) lim V/(A(zvm,wn,wn))

<im Al (M@, @p.,)) lim y (6(@,a,,)

From (3.7), obtain
1< lim Ay (A(@, @, a,)))

m,N—o0

Which deals

lim ﬁ(t//(A(wn,wm,wm)) =1

m,N—>o )

As a result, we obtain
lim A(@,,@,,@,)=0

m,n—w

and hence G(@,,@,,@,) =0, which is incongruous. Finally, {wn} is a G-Cauchy. Given the

completeness of Q, we are able to infer that there is one

@ =limz Q.

n—o

Because A is continuous, we possess lim@, =A@ andso @ =A@ .

nN—o
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Definition 3.2. Let (,G)be complete G -metric space «:QxQxQ — Rbe a map. Let
A:Q — Qbe amap. Assume {wn} iIsa a -G -regular if the subsequent criteria is fulfilled: If

{wn} is a sequence inQsuch that O!(ZUH,ZUM,ZUM)ZJ-VH and @, >@eQ as N> 10, then

there exists a sub-sequence {wn(k)} of {wn} such that a(wn(k),wn(k),w) >1 vk.

The continuity constraint of the mapping A in the preceding claim is removed in the next
statement.
Theorem 3.2. Assume (€2,G)is a complete G-metric space and ¢ is a mapping from

QOxOxQ to R and assume A:Q —Qis a mapping. Assume that the theorem 3.1
circumstances are fulfilled with{ZUn} isan a -G -regular. Then A has a fixed point & < 2,

and { Anwl} convergent to .

Proof. From the above theorem, we recognize that {Zvn} is given by @,,, =A@, for n20, and

con-verges to a certain & < <. Based on (3.2) and the theorem’s condition (4), there is a sub-

sequence {wn(k)}of {ZUn} in a way that
lI(IﬁrTJo(Jt(zvnk,zvnk,zv )21

Using (3.1) for everyk , We get that
a(wnk @, ,w*)l//(G (wn(kH, Ty sz*)) = a(wnk @, ,w*)w(G (Awn(k),Awn(k),Aw*))

<p (V’(A(%'wn(k)"U*)))‘”(A(wwk)"”n(k)’w*))
(3.10)
On the different one, there is

A(wnk @, ,w*) = maX{G(ZUnk @, ,w*),G (wnk A, Ao, ),G (zvnk Ao, Ao, ),G(w*,Aw*,Aw*)}

G(wnk,wnk,w*),G(wnk,Aw Awnk+1),G(wnk,Awnk+l,Awnk+l),

 +1!
= maX * * * n
G(w Ao Aw )
and hence,

lim l//(A(zUnk @, ,w*)):w(G(w*,w*,Aw*)) (3.11)

Nn—0

From (3.10), we have
v (G (wn(k)+1’ @Ky AW*))
t//(A(wnk @, ,w*))

a(wnk,wnk,w )

<Al )
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By allowing K— o0 inthe preceding disparity, we obtain

im p(y(4(z3, ,.7)) -2
And so

(//(G(w*,w*,Aw*)) = IImw( (wnk ,wnk,w*)) =0.

k—o0

Hence @ =A@ .
For the uniqueness of a fixed point of A, assume that the subsequent circumstance.

(H,) Forall @, peFix(A), there exists ¢ €Q such that a(@,6,¢)>1 a(p,6,¢)>1.

Theorem 3.3. Putting criterion (Hl)to argument 3.1 results in T being a distinct fixed point
of A.
Proof. According to argument 3.1, we begin with a fixed point, namely @ € Q and take p* € Q

to be another fixed point of A . Then, by presumption, ¢ €€ occurs in a way that
a(w*,g,g)Zl , a(p*,g,g)ZL (3.12)
Because A is &G —admissible, one obtains from (3.12),
a(w*,A”g,A”g)Zl and a(p*,A”g,A"g)Zl
for all n. Hence we have
G(w "¢, A”g) (w A" A 1g)G(Aw*,AA“‘l.g,AA”"lg)

ﬂ( ( An -1 An 1§))G(ZD'*,A“_1§,An_1g)
G(w_ An 1g,An_lg)

(3.13)

vne N. Thus G(w*,A”g,A"g) is non-increasing, and u > 0 occurs in a way that

limG (@, A", A"¢)=u

n—oo

From (3.13), we have
G (w*, A"g,A”g)
G (ZU*, An—lg’ An—lg)

< ,B(G (w*, A", A"’lg)) :

And thus
|imﬁ(G(w*,A“g,A“g)) =1.

n—oo

Hence
IimG (w*, A"c, A”g) =0

n—oo

Which implies jim A"c = . therefore, we get @ T=p.

n—o0
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. Consequences

If we take A (@, p,¢) =G(@, p,¢)in theorem 3.1. Then we get the bellow contraction. We say
that this contraction is called Erdal -G —« —y — Geraghty contraction.

a(@.pc)y (G(A@ Ap.AG))< By (C(@.pic)) v (G(@.p:5)) (4.)
forall @, p,c€Q and y e VY.

Theorem 4.1. Let (Q2,G) be a complete G-metric space, «: QxQxQ — R be a function,
and let A : Q@ — Q be amap. Assume that the theorem 3.1 circumstances are fulfilled with (4.1).

Then A has a fixed point @ €Q and {A"a,} convergent to "

Proof. Assumea, eQis a sequence such that «(w,, Aw,, Aw,)>1we observe through

theorem 3.1 that {ZUn} determined by@,,, = Aw, for all n converges to some @ €Q and

n+l
a(w, Aw,, Aw,) =1 foralln. Because A is continuous, @ is afixed point of A .

The continuity constraint of the mapping A in the preceding claim is removed in the next
statement.

Theorem 4.2. Let (€2,G) be a complete G-metric space, « : QxQxQ — R be a function and

let A:Q — QDbeamap. Assume that the theorem 3.2 circumstances are fulfilled with (4.1)
Proof. Let @, € Qbe such that (ew,, Aw,, A, ) =1, From theorem 3.1, we are aware that the

sequence {wn}determined by @,,=Aw@, for all n, converges to some @ €Q, and
a(w, Ao, Aw,) =1, for all n. Assume that the circumstance & -G-regular holds. As a result,
there is

limsupa (@,,a",@")>0.

n—oo

Thus, there exists a sub sequence @, of @, such that

Iima(wn,w*,w*): p>0.

N—o

Therefore it occurs

¥ (6(o,400000" A7 )| =1 (6( Ay A5 Ao

el s o)

_a(wnk,w @
1 .
Smy/(G(wn(k),w @ ))

@, O,

for all sufficiently large k. Hence, we obtain
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V/(G(za*,Aw*,Aw*)) = liﬂy/(G(mn(k)ﬂ,Aw*,Aw*))

< 1 Iimgy(G(wn(k)+1,Aw*,Aw*)) =0.

pkaw

Therefore @ is a fixed point of A .

Theorem 4.3. By including premise (H,) into theorem 4.1, we find that @ isthe unique fixed
point of A .

Proof. From theorem 3.2, we’ve got a fixed point, namelyw* €Q. Now let p'eQ bea

different fixed point of A . Then, by the presumption ¢ €Q occurs in a way that
a(@’.c.6)2L a(ps.c)>1 (4.2)
From (4.2) and noted that A is « —G —admissible, get a(w*,A” g,A"g)zl, and
a(p*,A" g,A”g) >1, For all n. Hence we have
y/(G (@ A", A”g)) <a(a’ A", A“g)z//(e (A", AN, AA“’lg))

< plo(or A2 o (0fo 402 %)
(ol n )

(4.3)

vne N. Then z//(G(w*,A" g,A”g)) is non increasing and there is a value u > 0 that is so

lim w(G (w*,/\" g,A”g)) =u.

n—o0

From (4.3), we have
(6l e )
(6 N e s)

< ﬂ(l// (G (w*, A"e, A“flg)))

And thus
!ﬁﬁ(w(G (w*, A" g,A”g))) =1.
Hence
iy (6(o A" %)) <0

Which implies

limA" ¢ = @
Similarly, we have

limA"¢c=p

nN—oo

Therefore, we getp =@ .
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The below one is suitable for the theorem 4.1.
Example 4.1. Assume Q=[0,0) andG (e, p,s)d@—p|+| p—¢|+|s-@| V@, p,ceQ

Assume ﬂ(t):ﬁ vt=0then el Assume w(t):% amapping A:Q— Q begiven
+
by

T .
—, if0<@ <],
Ao =16 | w

6w, ifw>1.
And a:QxQxQ—[0,) is given by

( ) 1if 0<a@,p,c<1
a\aw, P, = .
P& 0, otherwise.

Criterion (3) of theorem 4.1 is met by = =1.Criterion (4) of theorem 4.1 can be fulfilled by

@ =A”w1=6in, obviously, condition (2) is satisfied. Let @,p,g€Qbe such that

n

a(@,p,c)21. Then @,pcel0lland so Awe[0,1],Apel0,1],Ace[0,1] and
a(Aw@,Ap,Ag)=1. Hence, A is a-G-admissible and hence (2) is fulfilled. At last, we are

going to show that (1) is satisfied. If 0<a@, p,¢ <1, Then a(@, p,¢)=1 and we get
B(v (G(@.p.5)))w (G(m.p.5))-a(m.p.5)w (G (Am, Ap, Ag))
=B(v(G(@.p.5)))w (G(@.p.5))-w (G(Am, Ap,A))
|lag—pl+lp—-¢l+ls-a| .
2
= ——lla-pl+|lp-gl|l+lc—@
o -pltlp—cl+lc—al 12[| pl+lp—cl+lc-a|]
2
o-pl+|lp-¢|t|lc—@ 1
_Jwmplxlpzeltlezal Ly, o p-clvic-al
2+|m—pl|+|p-¢l|+ls—@| 12
_Na-pl+lp—¢l+lc-a|ll2-C+|o-p|+|p-cl+Ic—a|)]
122+|z—-pl+lp-cl+|ls—@])
lo-pl+lp-¢l+ls-a[IN0-(@-pl+|p—cl+|ls—@|)]
122+|a—p|+|p-cl+ls—a])

>0
For any @, p,¢ € Q2. Therefore

a(@,p.5)y (G(A@,Ap,Ag))=B(v (G(@.p.5)))w (G(@.p.5))
Since a(w@, p,g)=0. As aresult, all of the conditions of theorem 4.1 are met, and A has a

fixed point@ =0.
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5. Application
Assume the second order differential equation’s boundary value problem

2 flo,@(t)), 0,1].
_d_ZZ: (e.@(t).o<[0.]] (5.1)
do @ (0)=¢(1)=0.
Where f :[0,]]xR — Ris continuous mapping. Green’s function
determined by
6'(0,0) - a(l—u);-if 0<o<v<l
U(l—O');If 0<v<o<l.
Assume Q=C([0,1]) is continuous function defined on I = [0, 1]. Now that we’ve determined
the generalized metric G onQ.
G(a, ps)=lla-pl+llp-sl+lls-=|
=SUI|O|£U(0)—/3(G)|+SUPIP(0)—§(G)I+SU?IG(G)—W(G)I
Va,p,ceQThen (Q,G) is a complete G-metric space. Assume the subsequent
circumstances
(a) Occurs ¢ :R® — Rso that Vpel,a,beRusing £(q,w,e) >0, we have
| f(0,9)— f(o,w)[<In(| g —w|+D);
(b) Occurs @, eC(l)sothat Vpel,
{(@(0). [, G (@.0)f (@, (L)dv, [, G (e,0) f (@, (1)) dv) 2O
(c) Forall pel andforall @, p,c € Q,{(@(0), p(0),5(0)) >0 implies
¢([ G (e.0)f L.@)dv, [,G (@.0)f v, pE)dV, [, G (.0) f (. 5(V))dv) 0,
(d) for each @ of @ of points in C(l) with ¢ (@(0), p(0),5(0)) >0, rILrninf {(w, @ o)=0.

Theorem 5.1. Assume that requirements (a)-(d) are met, then (5.1) has at least one solution
@ eC*(I).

Proof. @~ e C?(1) is assumed to be a solution of (5.1) if and only if @ € C(l)is a solution of
the integral equation.

@(0) = [, G (o.0)f (L @), (5.2)
Forallo e 1. We derive A:C(l) —>C(l) by
Aa@(o)=[ G (o,0)f (. a)do, (5.3)

Vpel . Then, the difficulty (5.1) is equal to @ < C(I) fixed point of A . Assume @, p,5 € Q
such that ¢ (@ (o), p(0),5(c)) 20, for all & < 1 . From (a), we have
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G(A@,Ap,Ag)=| A@ (o)~ Ap(c)|+| Ap(c) - Ag (o) | +]| Ag(0) ~ Aa (o)
41,6 (0.0)f L.o()do-[ G (0,0)f . p)dv]
+1[,6 @) ©. PV~ [G (0.0)f (05 )dv)|
+[[G(e.0)f L.s)dv-[ G (o.0)f L, (w)dv)|
1[G (@) f (0.a@)~ T (. p)do|
+1[,6/ @V . PN~ T (v.sNdo|
S RICH S ICREE RGO
<[,6 @0 T L.a) = @.pO)+] T(0,pO) - T .5 O)]
SRCEOREEIOE
<[[G (0.0XIn @(0) = p() [+D+ Il p(0) ~6() [+D)+ (| 6(v) ~a(0) | +D}do

< Sullof:G'(G, v)dv{In(|@(v) - p(v) [ +1) +In(| (V) =5 (v) | +1) +In(| ¢ (v) — (V) [ +1)}

= %[ln(l @ (v) = p) | +1) +In(| p(v) =¢ (V) | +1) +In(| 5 (v) @ (v) | +1)]

<In((@(v) - p) |+ +In(| p(L) =5 (L) [+D) +In(| 5 (V) —@ (V) | +1)
<In(|@(v)—p)])+In( p(v) -5 ) ) +In([ g (V) —@ (V) ])
<In((@ (V) - p) |+ p(L) =5 (V) | +]5(V) —@ (V) ])
=In(G(m, p,s)) =In(G(@, p,5))+In1=In(C(a, p,c) +1)
Which yields that
ING(@, p,c) +1) < In(InG (@, p.c) +1)) +1= NINC @, p.6) +1) +1

IN(G(@, p,c) +1)

Place ¥ (@) =In(@ +1)and B(w) = v(@). Undoubtedly  :[0,90) —[0, ) is continuous, sub
w

IN(G(a@, p,¢)+1)

additive, and non-decreasing, and y is positive in (0,00) with y(0) =0, as well as v (@) <@
forany #eT. Thus we have y (G(A@, Ap,Ag))< ,B(l//(G(w,p,g)))t//(G (@, p.c)), forall
@, p,ceC(l) such thatl(@(o), p(0),¢(c))>0, for alocel. We derive
a.C(1)xC(I)xC(l) —[0,) by

OC(ZU ) — 1’ if é/(w'((f),p(()'),g((f)) 20,
e 0, otherwise.

Then, for all@, p,¢ € C(1), we have a(@, p,¢)G(A@, Ap,Ag)< ﬂ(G(w,p,g))G(w,p,g)

obviously, a(a@, p, p)=L1and a(p,p,s)=limplies a(@,p,c)=1 for all@,p,cC(l). If
a(@, p,c)=1 for allam,p,ceC(l), thenl(@w (o), p(0),c(c))>0. From (c) we have
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{(A@(o), Ap(c), Ag(o)) >1. Therefore A is rectangular o -G-admissible. According to (b)
there exists @, € C(l)so thata(@,, Aw,, Aw,) =1. According to (d), for any point @ of @ of

points in C (I) using a(@, , @,

n+1?

@,.,) =1, liminf a(@,,@,@) =1. Apply theorem (4.1), A has

a fixed point in C (1) that is there occurs @~ e C(l) so that A@ =@ and @ is a solution of
(5.2).
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