Fixed Points of Erdal-*G*-*α*-*ψ*-Geraghty Contractions Type Mappings and Application to Integral Equations

¹D. Sattemma, ²S. Vijaya Lakshmi, ³V. Srinivas Chary, ⁴G. Murali, ⁵G. Sudhaamsh Mohan Reddy

¹Research Scholar, Department of mathematics, Osmania University, Hyderabad, India

²Department of mathematics, University College of Science, Osmania University, Hyderabad, INDIA.

³School of Sciences, Department of mathematics, Mallareddy University, Hyderabad-500014, India.

⁴Department of mathematics, Sreenidhi University, Hyderabad-501301, India.

⁵Faculty of Science and Technology, ICFAI Foundation for Higher Education, Hyderabad-501203, India.

ABSTRACT. We present the concept of Erdal- $G - \alpha - \psi$ -Geraghty contraction and develop fixed point theorems in the arrangement of g-metric spaces using Erdal- $G - \alpha - \psi$ -Geraghty contraction with relevant examples and applications to integral equations in this work.

Keywords: relevant, integral, contraction, g-metric

Introduction

The Banach contraction concept has proven a useful tool in the study of a fixed point. It is frequently utilized in fields such as nonlinear analysis, applied mathematics, economics, and physics. Because of its significance, the conclusion has been generalized in several ways.

Samet et al. [20] pioneered the notion of α - admissibility. Later, Karapinar et al. [14] extended it to triangular α - admissibility. Abodayeh et al. [1] recently developed the concept of triangular α - admissibility concerning another function β . Chary et al. [23] developed the novel idea if rectangular α - G -admissible mapping in 2021, as well as rectangular α - G -admissible concerning another function β in G -metric space. Karapinar [16] proposed a new form of contraction, the α - ψ -Geraghty contraction, and found fixed point findings for it.

Preliminaries

We are reminded of Geraghty's theorem. To do this, we must notify the Γ class of all functions $\beta:[0,\infty)\to[0,1)$ that satisfy the criteria: $\lim_{n\to\infty}\beta(t_n)=1 \Leftrightarrow t_n=0$.

Lemma 2.1. [14] Let f represent a triangular α - admissible mapping. Assume there is a $\varsigma_0 \in \Omega$ such that $\alpha(\varsigma_0, f\varsigma_0) \ge 1$. Define the sequence ς_n as $\varsigma_{n+1} = T\varsigma_n$. Then $\alpha(\varsigma_n, \varsigma_m) \ge 1$ for any $m, n \in N$.

First, we write the class of functions that will be utilized extensively in the sequel: Let Ψ indicate the class of $\psi:[0,\infty)\to[0,\infty)$ functions that meet the following conditions: a) ψ is non-decreasing; b) ψ is sub additive, which means that $\psi(s+t)=\psi(s)+\psi(t)$; c) ψ is continuous function; d) $\psi(t)=0 \Leftrightarrow t=0$.

1. Main Results

Definition 3.1. Assume (Ω, G) is a G-metric space. Let $\alpha : \Omega \times \Omega \times \Omega \to R$ be a function. A mapping $\Lambda : \Omega \to \Omega$ is said to be an Erdal- $G - \alpha - \psi$ -Geraghty contraction if there exists $\beta \in \Gamma$ such that

$$\alpha(\varpi,\rho,\varsigma)\psi(G(\Lambda\varpi,\Lambda\rho,\Lambda\varsigma)) \leq \beta(\psi(\Delta(\varpi,\rho,\varsigma)))\psi(\Delta(\varpi,\rho,\varsigma))$$

(3.1)

Where

$$\Delta\big(\varpi,\rho,\varsigma\big) = \max\big\{G\big(\varpi,\Lambda\varpi,\Lambda\varpi\big),G\big(\rho,\Lambda\rho,\Lambda\rho\big),G\big(\varsigma,\Lambda\varsigma,\Lambda\varsigma\big)\big\} \ \forall \,\varpi,\rho,\varsigma \in \Omega \ \ \text{and} \ \ \psi \in \Psi.$$

Our first new result is as follows

Theorem 3.1. Let (Ω, G) be a complete G-metric space, $\alpha : \Omega \times \Omega \times \Omega \to R$ be a function, and let $\Lambda : \Omega \to \Omega$ be a map. Assume that the aforementioned circumstances are met.

- 1) Λ is Erdal-G α - ψ -Geraghty contraction
- 2) Λ is rectangular α -admissible
- 3) there exists $\varpi_1 \in \Omega$ so that $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \ge 1$
- 4) Λ is continuous.

Then Λ has a fixed point $\varpi^* \in \Omega$ and $\{\Lambda^n \varpi_1\}$ convergent to ϖ^* .

Proof: Assume $\varpi_1 \in \Omega$ is satisfies $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \ge 1$. Define $\{\varpi_n\} \subset \Omega$ by $\varpi_{n+1} = \Lambda \varpi_n$ for $n \in \mathbb{N}$. Suppose that $\varpi_{n_0} = \varpi_{n_0} + 1$ in some cases $n_0 \in \mathbb{N}$. So, obviously ϖ_{n_0} is a fixed point of Λ and hence the evidence to support is completed. Presume that $\varpi_n \neq \varpi_{n+1} \ \forall \ n \in \mathbb{N}$. According to lemma 2.1, we have

$$\alpha(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1}) \ge 1. \tag{3.2}$$

 $\forall n \in \mathbb{N}$. From (3.1), we aquire

$$\begin{split} \psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2}\right)\right) &= \psi\left(G\left(\Lambda\varpi_{n},\Lambda\varpi_{n+1},\Lambda\varpi_{n+1}\right)\right) \\ &\leq \alpha\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\psi\left(G\left(\Lambda\varpi_{n},\Lambda\varpi_{n+1},\Lambda\varpi_{n+1}\right)\right) \\ &\leq \beta\left(\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right)\right)\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right) \end{split}$$

(3.3)

 $\forall n \in \mathbb{N}$, where

$$\begin{split} \Delta \left(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1} \right) &= max \begin{cases} G\left(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1} \right), G\left(\boldsymbol{\varpi}_{n}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n} \right), G\left(\boldsymbol{\varpi}_{n+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n+1} \right), \\ G\left(\boldsymbol{\varpi}_{n+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n+1} \right) \end{cases} \\ &= max \begin{cases} G\left(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1} \right), G\left(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1} \right), G\left(\boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+2}, \boldsymbol{\varpi}_{n+2} \right), \\ G\left(\boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+2}, \boldsymbol{\varpi}_{n+2} \right) \end{cases} \end{split}$$

Here, we observed, $\Delta(\varpi_n, \varpi_{n+1}, \varpi_{n+1}) = G(\varpi_{n+1}, \varpi_{n+2}, \varpi_{n+2})$ is inconceivable because of the precise meaning of β .

$$\begin{split} \psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2},\right)\right) &\leq \beta\left(\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right)\right)\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right) \\ &\leq \beta\left(\psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2}\right)\right)\right)\psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2}\right)\right) \\ &<\psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2}\right)\right) \end{split}$$

Therefore, we declared $\Delta(\varpi_n, \varpi_{n+1}, \varpi_{n+1}) = G(\varpi_n, \varpi_{n+1}, \varpi_{n+1})$. From (3.3), we get

$$\psi(G(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2})) < \psi(G(\varpi_n,\varpi_{n+1},\varpi_{n+1}))$$

 $\forall n \in \mathbb{N}$. According to the circumstance of ψ , declared that

$$G(\varpi_{n+1}, \varpi_{n+2}, \varpi_{n+2}) < G(\varpi_n, \varpi_{n+1}, \varpi_{n+1})$$

 $\forall n \in \mathbb{N}$. Hence, we conclude that $G(\varpi_n, \varpi_{n+1}, \varpi_{n+1})$ is neither negative nor growing. Given a consequence, $s \ge 0$ occurs in a way that

$$\lim_{n\to\infty} G(\varpi_n, \varpi_{n+1}, \varpi_{n+1}) = s.$$

We assert that s = 0. Assume, on the other hand, that s > 0. Then, as a result of (3.3), our situation is

$$\frac{\psi\left(G\left(\varpi_{n+1},\varpi_{n+2},\varpi_{n+2}\right)\right)}{\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right)} \leq \beta\left(\psi\left(\Delta\left(\varpi_{n},\varpi_{n+1},\varpi_{n+1}\right)\right)\right) < 1$$

In the following,

$$\lim_{n\to\infty}\beta\Big(\psi\Big(\Delta\big(\varpi_n,\varpi_{n+1},\varpi_{n+1}\big)\Big)\Big)=1$$

Because of $\beta \in \Gamma$, there is

$$\lim_{n \to \infty} \psi\left(\Delta\left(\varpi_{n}, \varpi_{n+1}, \varpi_{n+1}\right)\right) = 0, \tag{3.4}$$

as a result of which

$$s = \lim_{n \to \infty} G(\boldsymbol{\varpi}_n, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1}) = 0$$
(3.5)

We notice that

 $\Delta \left(\varpi_{\scriptscriptstyle m},\varpi_{\scriptscriptstyle n},\varpi_{\scriptscriptstyle n}\right) = \max \left\{G\left(\varpi_{\scriptscriptstyle m},\varpi_{\scriptscriptstyle n},\varpi_{\scriptscriptstyle n}\right),G\left(\varpi_{\scriptscriptstyle m},\Lambda\varpi_{\scriptscriptstyle m},\Lambda\varpi_{\scriptscriptstyle m}\right)G\left(\varpi_{\scriptscriptstyle n},\Lambda\varpi_{\scriptscriptstyle n},\Lambda\varpi_{\scriptscriptstyle n}\right),G\left(\varpi_{\scriptscriptstyle n},\Lambda\varpi_{\scriptscriptstyle n},\Lambda\varpi_{\scriptscriptstyle n}\right)\right\}$ utilising the conclusion

$$\lim_{n\to\infty}G(\boldsymbol{\varpi}_n,\boldsymbol{\varpi}_{n+1},\boldsymbol{\varpi}_{n+1})=0,$$

We obtain that

$$\lim_{m,n\to\infty} \Delta(\boldsymbol{\varpi}_m, \boldsymbol{\varpi}_n, \boldsymbol{\varpi}_n) = \lim_{m,n\to\infty} G(\boldsymbol{\varpi}_m, \boldsymbol{\varpi}_n, \boldsymbol{\varpi}_n)$$
 (3.6)

We conclude that $\{\varpi_n\}$ is a G-Cauchy. On the other hand, pretend there is

$$\varepsilon = \lim_{\substack{m \ n \to \infty}} \sup \left\{ G\left(\varpi_n, \varpi_m, \varpi_m\right) \right\} > 0 \tag{3.7}$$

We infer from rectangular inequality

$$G(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{m}, \boldsymbol{\sigma}_{m}) \leq G(\boldsymbol{\varpi}_{n}, \boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{n+1}) + G(\boldsymbol{\varpi}_{n+1}, \boldsymbol{\varpi}_{m+1}, \boldsymbol{\varpi}_{m+1}) + G(\boldsymbol{\varpi}_{m+1}, \boldsymbol{\varpi}_{m}, \boldsymbol{\varpi}_{m})$$
(3.8)

We obtain through the use of (3.3), (3.8) and the characteristics of ψ

$$\begin{split} \psi \Big(G \big(\varpi_{n}, \varpi_{m}, \varpi_{m} \big) \Big) &\leq \psi \Big(G \big(\varpi_{n}, \varpi_{n+1}, \varpi_{n+1} \big) + G \big(\Lambda \varpi_{n}, \Lambda \varpi_{m}, \Lambda \varpi_{m} \big) + G \big(\varpi_{m+1}, \varpi_{m'}, \varpi_{m} \big) \Big) \\ &\leq \psi \Big(G \big(\varpi_{n}, \varpi_{n+1}, \varpi_{n+1} \big) \Big) + \psi \Big(G \big(\Lambda \varpi_{n}, \Lambda \varpi_{m}, \Lambda \varpi_{m} \big) \Big) + \psi \Big(G \big(\varpi_{m+1}, \varpi_{m'}, \varpi_{m} \big) \Big) \\ &\leq \psi \Big(G \big(\varpi_{n}, \varpi_{n+1}, \varpi_{n+1} \big) \Big) + \beta \Big(\psi \Big(\Delta \big(\varpi_{n}, \varpi_{m}, \varpi_{m} \big) \Big) \Big) \psi \Big(\Delta \big(\varpi_{n}, \varpi_{m}, \varpi_{m} \big) \Big) \\ &+ \psi \Big(G \big(\varpi_{m+1}, \varpi_{m}, \varpi_{m} \big) \Big) \end{split}$$

(3.9)

We may conclude from (3.6), (3.9) and (3.5)

$$\begin{split} & \lim_{m,n \to \infty} \psi \left(G \left(\varpi_{n}, \varpi_{m}, \varpi_{m} \right) \right) \leq \lim_{m,n \to \infty} \beta \left(\psi \left(\Delta \left(\varpi_{n}, \varpi_{m}, \varpi_{m} \right) \right) \right) \lim_{m,n \to \infty} \psi \left(\Delta \left(\varpi_{m}, \varpi_{n}, \varpi_{n} \right) \right) \\ & \leq \lim_{m,n \to \infty} \beta \left(\psi \left(\Delta \left(\varpi_{n}, \varpi_{m}, \varpi_{m} \right) \right) \right) \lim_{m,n \to \infty} \psi \left(G \left(\varpi_{m}, \varpi_{n}, \varpi_{n} \right) \right) \end{split}$$

From (3.7), obtain

$$1 \leq \lim_{m,n \to \infty} \beta \Big(\psi \Big(\Delta \big(\boldsymbol{\sigma}_n, \boldsymbol{\sigma}_m, \boldsymbol{\sigma}_m \big) \Big) \Big)$$

Which deals

$$\lim_{m \to \infty} \beta \Big(\psi \Big(\Delta \big(\varpi_n, \varpi_m, \varpi_m \big) \Big) \Big) = 1$$

As a result, we obtain

$$\lim_{m,n\to\infty} \Delta(\boldsymbol{\varpi}_n,\boldsymbol{\varpi}_m,\boldsymbol{\varpi}_m) = 0$$

and hence $G(\varpi_n, \varpi_m, \varpi_m) = 0$, which is incongruous. Finally, $\{\varpi_n\}$ is a G-Cauchy. Given the completeness of Ω , we are able to infer that there is one

$$\boldsymbol{\varpi}^* = \lim_{n \to \infty} \boldsymbol{\varpi}_n \in \Omega.$$

Because Λ is continuous, we possess $\lim_{n\to\infty} \varpi_n = \Lambda \varpi^*$ and so $\varpi^* = \Lambda \varpi^*$.

Definition 3.2. Let (Ω, G) be complete G -metric space $\alpha: \Omega \times \Omega \times \Omega \to R$ be a map. Let $\Lambda: \Omega \to \Omega$ be a map. Assume $\{\varpi_n\}$ is a α -G-regular if the subsequent criteria is fulfilled: If $\{\varpi_n\}$ is a sequence in Ω such that $\alpha(\varpi_n, \varpi_{n+1}, \varpi_{n+1}) \ge 1 \ \forall n$ and $\varpi_n \to \varpi \in \Omega$ as $n \to +\infty$, then there exists a sub-sequence $\{\varpi_{n(k)}\}$ of $\{\varpi_n\}$ such that $\alpha(\varpi_{n(k)}, \varpi_{n(k)}, \varpi) \ge 1 \ \forall k$.

The continuity constraint of the mapping Λ in the preceding claim is removed in the next statement.

Theorem 3.2. Assume (Ω, G) is a complete G-metric space and α is a mapping from $\Omega \times \Omega \times \Omega$ to R and assume $\Lambda : \Omega \to \Omega$ is a mapping. Assume that the theorem 3.1 circumstances are fulfilled with $\{\varpi_n\}$ is an α -G-regular. Then Λ has a fixed point $\varpi^* \in \Omega$, and $\{\Lambda^n \varpi_1\}$ convergent to ϖ^* .

Proof. From the above theorem, we recognize that $\{\varpi_n\}$ is given by $\varpi_{n+1} = \Lambda \varpi_n$ for $n \ge 0$, and con-verges to a certain $\varpi^* \in \Omega$. Based on (3.2) and the theorem's condition (4), there is a subsequence $\{\varpi_{n(k)}\}$ of $\{\varpi_n\}$ in a way that

$$\lim_{k\to\infty}\alpha\left(\varpi_{n_k},\varpi_{n_k},\varpi^*\right)\geq 1$$

Using (3.1) for every k, we get that

$$\begin{split} \alpha\left(\varpi_{n_{k}},\varpi_{n_{k}},\varpi^{*}\right)&\psi\left(G\left(\varpi_{n(k)+1},\varpi_{n(k)+1},\Lambda\varpi^{*}\right)\right) = \alpha\left(\varpi_{n_{k}},\varpi_{n_{k}},\varpi^{*}\right)\psi\left(G\left(\Lambda\varpi_{n(k)},\Lambda\varpi_{n(k)},\Lambda\varpi^{*}\right)\right) \\ &\leq \beta\left(\psi\left(\Delta\left(\varpi_{n(k)},\varpi_{n(k)},\varpi^{*}\right)\right)\right)\psi\left(\Delta\left(\varpi_{n(k)},\varpi_{n(k)},\varpi^{*}\right)\right) \end{split}$$

(3.10)

On the different one, there is

$$\begin{split} \Delta \Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}^{*} \Big) &= \max \Big\{ G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}^{*} \Big), G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}} \Big), G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}} \Big), G\Big(\boldsymbol{\varpi}^{*}, \boldsymbol{\Lambda} \boldsymbol{\varpi}^{*}, \boldsymbol{\Lambda} \boldsymbol{\varpi}^{*} \Big) \Big\} \\ &= \max \left\{ G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\varpi}^{*} \Big), G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}+1} \Big), G\Big(\boldsymbol{\varpi}_{n_{k}}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}+1}, \boldsymbol{\Lambda} \boldsymbol{\varpi}_{n_{k}+1} \Big), \Big\} \\ & G\Big(\boldsymbol{\varpi}^{*}, \boldsymbol{\Lambda} \boldsymbol{\varpi}^{*}, \boldsymbol{\Lambda} \boldsymbol{\varpi}^{*}, \boldsymbol{\Lambda} \boldsymbol{\varpi}^{*} \Big) \end{split}$$

and hence,

$$\lim_{n\to\infty} \psi\left(\Delta\left(\varpi_{n_k}, \varpi_{n_k}, \varpi^*\right)\right) = \psi\left(G\left(\varpi^*, \varpi^*, \Lambda\varpi^*\right)\right)$$
(3.11)

From (3.10), we have

$$\alpha\left(\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}^{*}\right)\frac{\psi\left(G\left(\boldsymbol{\varpi}_{n(k)+1},\boldsymbol{\varpi}_{n(k)+1},\Lambda\boldsymbol{\varpi}^{*}\right)\right)}{\psi\left(\Delta\left(\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}^{*}\right)\right)}\leq\beta\left(\psi\left(\Delta\left(\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}_{n_{k}},\boldsymbol{\varpi}^{*}\right)\right)\right)<1$$

By allowing $k \to \infty$ in the preceding disparity, we obtain

$$\lim_{k \to \infty} \beta \Big(\psi \Big(\Delta \Big(\boldsymbol{\varpi}_{n_k}, \boldsymbol{\varpi}_{n_k}, \boldsymbol{\varpi}^* \Big) \Big) \Big) = 1,$$

And so

$$\psi\left(G\left(\varpi^*,\varpi^*,\Lambda\varpi^*\right)\right) = \lim_{k\to\infty}\psi\left(\Delta\left(\varpi_{n_k},\varpi_{n_k},\varpi^*\right)\right) = 0.$$

Hence $\varpi^* = \Lambda \varpi^*$.

For the uniqueness of a fixed point of Λ , assume that the subsequent circumstance.

$$(H_1)$$
 For all $\varpi, \rho \in Fix(\Lambda)$, there exists $\varsigma \in \Omega$ such that $\alpha(\varpi, \varsigma, \varsigma) \ge 1$ $\alpha(\rho, \varsigma, \varsigma) \ge 1$.

Theorem 3.3. Putting criterion (H_1) to argument 3.1 results in ϖ^* being a distinct fixed point of Λ .

Proof. According to argument 3.1, we begin with a fixed point, namely $\varpi^* \in \Omega$ and take $\rho^* \in \Omega$ to be another fixed point of Λ . Then, by presumption, $\varsigma \in \Omega$ occurs in a way that

$$\alpha(\overline{\omega}^*, \varsigma, \varsigma) \ge 1, \ \alpha(\rho^*, \varsigma, \varsigma) \ge 1.$$
 (3.12)

Because Λ is α – G – admissible, one obtains from (3.12),

$$\alpha(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma) \ge 1$$
 and $\alpha(\rho^*, \Lambda^n \varsigma, \Lambda^n \varsigma) \ge 1$

for all n. Hence we have

$$\begin{split} G\Big(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma\Big) &\leq \alpha\Big(\varpi^*, \Lambda^{n-1} \varsigma, \Lambda^{n-1} \varsigma\Big) G\Big(\Lambda \varpi^*, \Lambda \Lambda^{n-1} \varsigma, \Lambda \Lambda^{n-1} \varsigma\Big) \\ &\leq \beta\Big(G\Big(\varpi^*, \Lambda^{n-1} \varsigma, \Lambda^{n-1} \varsigma\Big)\Big) G\Big(\varpi^*, \Lambda^{n-1} \varsigma, \Lambda^{n-1} \varsigma\Big) \\ &< G\Big(\varpi^*, \Lambda^{n-1} \varsigma, \Lambda^{n-1} \varsigma\Big) \end{split}$$

(3.13)

 $\forall n \in \mathbb{N}$. Thus $G(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma)$ is non-increasing, and $u \ge 0$ occurs in a way that

$$\lim_{n\to\infty} G(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma) = u$$

From (3.13), we have

$$\frac{G\!\left(\boldsymbol{\varpi}^{*},\boldsymbol{\Lambda}^{n}\boldsymbol{\varsigma},\boldsymbol{\Lambda}^{n}\boldsymbol{\varsigma}\right)}{G\!\left(\boldsymbol{\varpi}^{*},\boldsymbol{\Lambda}^{n-\!1}\boldsymbol{\varsigma},\boldsymbol{\Lambda}^{n-\!1}\boldsymbol{\varsigma}\right)}\!\leq\!\beta\!\left(G\!\left(\boldsymbol{\varpi}^{*},\boldsymbol{\Lambda}^{n-\!1}\boldsymbol{\varsigma},\boldsymbol{\Lambda}^{n-\!1}\boldsymbol{\varsigma}\right)\right)\!\cdot\!$$

And thus

$$\lim_{n\to\infty}\beta\Big(G\big(\varpi^*,\Lambda^n\varsigma,\Lambda^n\varsigma\big)\Big)=1.$$

Hence

$$\lim_{n\to\infty} G(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma) = 0$$

Which implies $\lim_{n\to\infty} \Lambda^n \varsigma = \rho^*$, therefore, we get $\varpi^* = \rho^*$.

2. Consequences

If we take $\Lambda(\varpi, \rho, \varsigma) = G(\varpi, \rho, \varsigma)$ in theorem 3.1. Then we get the bellow contraction. We say that this contraction is called Erdal $-G - \alpha - \psi$ – Geraghty contraction.

$$\alpha(\varpi,\rho,\varsigma)\psi(G(\Lambda\varpi,\Lambda\rho,\Lambda\varsigma)) \leq \beta(\psi(G(\varpi,\rho,\varsigma)))\psi(G(\varpi,\rho,\varsigma))$$
(4.1)

for all $\varpi, \rho, \zeta \in \Omega$ and $\psi \in \Psi$.

Theorem 4.1. Let (Ω, G) be a complete G-metric space, $\alpha : \Omega \times \Omega \times \Omega \to R$ be a function, and let $\Lambda : \Omega \to \Omega$ be a map. Assume that the theorem 3.1 circumstances are fulfilled with (4.1). Then Λ has a fixed point $\varpi^* \in \Omega$ and $\{\Lambda^n \varpi_1\}$ convergent to ϖ^* .

Proof. Assume $\varpi_1 \in \Omega$ is a sequence such that $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \ge 1$, we observe through theorem 3.1 that $\{\varpi_n\}$ determined by $\varpi_{n+1} = \Lambda \varpi_n$ for all n converges to some $\varpi^* \in \Omega$ and $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \ge 1$, for all n. Because Λ is continuous, ϖ^* is a fixed point of Λ .

The continuity constraint of the mapping Λ in the preceding claim is removed in the next statement.

Theorem 4.2. Let (Ω, G) be a complete G-metric space, $\alpha: \Omega \times \Omega \times \Omega \to R$ be a function and let $\Lambda: \Omega \to \Omega$ be a map. Assume that the theorem 3.2 circumstances are fulfilled with (4.1) Proof. Let $\varpi_1 \in \Omega$ be such that $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \geq 1$, From theorem 3.1, we are aware that the sequence $\{\varpi_n\}$ determined by $\varpi_{n+1} = \Lambda \varpi_n$ for all n, converges to some $\varpi^* \in \Omega$, and $\alpha(\varpi_1, \Lambda \varpi_1, \Lambda \varpi_1) \geq 1$, for all n. Assume that the circumstance α -G-regular holds. As a result, there is

$$\lim_{n\to\infty} \sup \alpha(\boldsymbol{\varpi}_n, \boldsymbol{\varpi}^*, \boldsymbol{\varpi}^*) \geq 0.$$

Thus, there exists a sub sequence $\overline{\omega}_{n_k}$ of $\overline{\omega}_n$ such that

$$\lim_{n\to\infty}\alpha\left(\boldsymbol{\varpi}_{n},\boldsymbol{\varpi}^{*},\boldsymbol{\varpi}^{*}\right)=p>0.$$

Therefore it occurs

$$\begin{split} \psi\Big(G\Big(\varpi_{n(k)+1},\Lambda\varpi^*,\Lambda\varpi^*\Big)\Big) &= \psi\Big(G\Big(\Lambda\varpi_{n(k)},\Lambda\varpi^*,\Lambda\varpi^*\Big)\Big) \\ &\leq \frac{1}{\alpha\Big(\varpi_{n_k},\varpi^*,\varpi^*\Big)}\beta\Big(\psi\Big(G\Big(\varpi_{n(k)},\varpi^*,\varpi^*\Big)\Big)\Big)\psi\Big(G\Big(\varpi_{n(k)},\varpi^*,\varpi^*\Big)\Big) \\ &\leq \frac{1}{\alpha\Big(\varpi_{n_k},\varpi^*,\varpi^*\Big)}\psi\Big(G\Big(\varpi_{n(k)},\varpi^*,\varpi^*\Big)\Big) \end{split}$$

for all sufficiently large k. Hence, we obtain

$$\psi\left(G\left(\varpi^{*}, \Lambda\varpi^{*}, \Lambda\varpi^{*}\right)\right) = \lim_{k \to \infty} \psi\left(G\left(\varpi_{n(k)+1}, \Lambda\varpi^{*}, \Lambda\varpi^{*}\right)\right)$$

$$\leq \frac{1}{p} \lim_{k \to \infty} \psi\left(G\left(\varpi_{n(k)+1}, \Lambda\varpi^{*}, \Lambda\varpi^{*}\right)\right) = 0.$$

Therefore ϖ^* is a fixed point of Λ .

Theorem 4.3. By including premise (H_1) into theorem 4.1, we find that ϖ^* is the unique fixed point of Λ .

Proof. From theorem 3.2, we've got a fixed point, namely $\overline{\varpi}^* \in \Omega$. Now let $\rho^* \in \Omega$ be a different fixed point of Λ . Then, by the presumption $\varsigma \in \Omega$ occurs in a way that

$$\alpha(\sigma^*,\varsigma,\varsigma) \ge 1, \ \alpha(\rho^*,\varsigma,\varsigma) \ge 1.$$
 (4.2)

From (4.2) and noted that Λ is $\alpha - G$ – admissible, get $\alpha(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma) \ge 1$, and

 $\alpha(\rho^*, \Lambda^n \varsigma, \Lambda^n \varsigma) \ge 1$, For all n. Hence we have

$$\begin{split} \psi\Big(G\Big(\varpi^*,\Lambda^{n}\,\varsigma,\Lambda^{n}\,\varsigma,\Lambda^{n}\varsigma\Big)\Big) &\leq \alpha\Big(\varpi^*,\Lambda^{n-1}\,\varsigma,\Lambda^{n-1}\varsigma\Big)\psi\Big(G\Big(\Lambda\varpi^*,\Lambda\Lambda^{n-1}\,\varsigma,\Lambda\Lambda^{n-1}\varsigma\Big)\Big) \\ &\leq \beta\Big(G\Big(\varpi^*,\Lambda^{n-1}\,\varsigma,\Lambda^{n-1}\varsigma\Big)\Big)\psi\Big(G\Big(\varpi^*,\Lambda^{n-1}\,\varsigma,\Lambda^{n-1}\varsigma\Big)\Big) \\ &<\psi\Big(G\Big(\varpi^*,\Lambda^{n-1}\,\varsigma,\Lambda^{n-1}\varsigma\Big)\Big) \end{split}$$

(4.3)

 $\forall n \in \mathbb{N}$. Then $\psi\left(G\left(\varpi^*, \Lambda^n \varsigma, \Lambda^n \varsigma\right)\right)$ is non increasing and there is a value $u \ge 0$ that is so

$$\lim_{n\to\infty}\psi\left(G\left(\varpi^*,\Lambda^n\varsigma,\Lambda^n\varsigma\right)\right)=u.$$

From (4.3), we have

$$\frac{\psi\left(G\left(\varpi^{*},\Lambda^{n}\varsigma,\Lambda^{n}\varsigma,\Lambda^{n}\varsigma\right)\right)}{\psi\left(G\left(\varpi^{*},\Lambda^{n-1}\varsigma,\Lambda^{n-1}\varsigma\right)\right)} \leq \beta\left(\psi\left(G\left(\varpi^{*},\Lambda^{n-1}\varsigma,\Lambda^{n-1}\varsigma\right)\right)\right)$$

And thus

$$\lim_{n\to\infty}\beta\Big(\psi\Big(G\big(\varpi^*,\Lambda^n\varsigma,\Lambda^n\varsigma\Big)\Big)\Big)=1.$$

Hence

$$\lim_{n\to\infty} \psi\left(G\left(\varpi^*,\Lambda^n\varsigma,\Lambda^n\varsigma\right)\right) = 0$$

Which implies

$$\lim_{n\to\infty}\Lambda^n\,\varsigma=\varpi^*$$

Similarly, we have

$$\lim_{n\to\infty}\Lambda^n\,\varsigma=\rho^*$$

Therefore, we get $\rho^* = \varpi^*$.

The below one is suitable for the theorem 4.1.

Example 4.1. Assume $\Omega = [0, \infty)$ and $G(\varpi, \rho, \varsigma) = |\varpi - \rho| + |\rho - \varsigma| + |\varsigma - \varpi| \quad \forall \varpi, \rho, \varsigma \in \Omega$ Assume $\beta(t) = \frac{1}{1+t} \quad \forall t \ge 0$ then $\beta \in \Gamma$. Assume $\psi(t) = \frac{t}{2}$ a mapping $\Lambda : \Omega \to \Omega$ be given by

$$\Lambda \varpi = \begin{cases} \frac{\varpi}{6}, & \text{if } 0 \le \varpi \le 1, \\ 6\varpi, & \text{if } \varpi \ge 1. \end{cases}$$

And $\alpha: \Omega \times \Omega \times \Omega \rightarrow [0, \infty)$ is given by

$$\alpha(\varpi, \rho, \varsigma) = \begin{cases} 1, & \text{if } 0 \le \varpi, \rho, \varsigma \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

Criterion (3) of theorem 4.1 is met by $\varpi = 1$. Criterion (4) of theorem 4.1 can be fulfilled by $\varpi_n = \Lambda^n \varpi_1 = \frac{1}{6^n}$, obviously, condition (2) is satisfied. Let $\varpi, \rho, \varsigma \in \Omega$ be such that $\alpha(\varpi, \rho, \varsigma) \ge 1$. Then $\varpi, \rho, \varsigma \in [0,1]$ and so $\Lambda \varpi \in [0,1], \Lambda \rho \in [0,1], \Lambda \varsigma \in [0,1]$ and $\alpha(\Lambda \varpi, \Lambda \rho, \Lambda \varsigma) = 1$. Hence, Λ is α -G-admissible and hence (2) is fulfilled. At last, we are going to show that (1) is satisfied. If $0 \le \varpi, \rho, \varsigma \le 1$, Then $\alpha(\varpi, \rho, \varsigma) = 1$ and we get

$$\beta(\psi(G(\varpi,\rho,\varsigma)))\psi(G(\varpi,\rho,\varsigma))-\alpha(\varpi,\rho,\varsigma)\psi(G(\Lambda\varpi,\Lambda\rho,\Lambda\varsigma))$$

$$=\beta(\psi(G(\varpi,\rho,\varsigma)))\psi(G(\varpi,\rho,\varsigma))-\psi(G(\Lambda\varpi,\Lambda\rho,\Lambda\varsigma))$$

$$=\frac{\frac{|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|}{2}}{1+\frac{|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|}{2}}-\frac{1}{12}[|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|]$$

$$=\frac{\frac{|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|}{2}}{2+|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|}-\frac{1}{12}[|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|]$$

$$=\frac{[|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|][12-(2+|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|)]}{12(2+|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|)}$$

$$=\frac{[|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|][10-(|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|)]}{12(2+|\varpi-\rho|+|\rho-\varsigma|+|\varsigma-\varpi|)}$$

$$\geq 0$$

For any $\varpi, \rho, \zeta \in \Omega$. Therefore

$$\alpha(\varpi,\rho,\varsigma)\psi(G(\Lambda\varpi,\Lambda\rho,\Lambda\varsigma)) = \beta(\psi(G(\varpi,\rho,\varsigma)))\psi(G(\varpi,\rho,\varsigma))$$

Since $\alpha(\varpi, \rho, \varsigma) = 0$. As a result, all of the conditions of theorem 4.1 are met, and Λ has a fixed point $\varpi^* = 0$.

5. Application

Assume the second order differential equation's boundary value problem

$$-\frac{d^2 \varpi}{d\sigma^2} = \begin{cases} f(\sigma, \varpi(t)), \sigma \in [0, 1]. \\ \varpi(0) = \varsigma(1) = 0. \end{cases}$$
 (5.1)

Where $f:[0,1]\times R \to R$ is continuous mapping. Green's function determined by

$$G'(\sigma, \upsilon) = \begin{cases} \sigma(1-\upsilon); & \text{if } 0 \le \sigma \le \upsilon \le 1; \\ \upsilon(1-\sigma); & \text{if } 0 \le \upsilon \le \sigma \le 1. \end{cases}$$

Assume $\Omega = C([0,1])$ is continuous function defined on I = [0, 1]. Now that we've determined the generalized metric G on Ω .

$$G(\varpi, \rho, \varsigma) = ||\varpi - \rho|| + ||\rho - \varsigma|| + ||\varsigma - \varpi||$$

$$= \sup_{\sigma \in I} |\varpi(\sigma) - \rho(\sigma)| + \sup_{\sigma \in I} |\rho(\sigma) - \varsigma(\sigma)| + \sup_{\sigma \in I} |\varsigma(\sigma) - \varpi(\sigma)|$$

 $\forall \varpi, \rho, \zeta \in \Omega$. Then (Ω, G) is a complete G-metric space. Assume the subsequent circumstances

- (a) Occurs $\zeta: R^3 \to R$ so that $\forall \rho \in I, a, b \in R$ using $\zeta(q, w, e) \ge 0$, we have $|f(\sigma, q) f(\sigma, w)| \le \ln(|q w| + 1)$;
- (b) Occurs $\varpi_1 \in C(I)$ so that $\forall \rho \in I$,

$$\zeta(\varpi_{1}(\sigma), \int_{0}^{1} G^{'}(\sigma, \upsilon) f(\upsilon, \varpi_{1}(\upsilon)) d\upsilon, \int_{0}^{1} G^{'}(\sigma, \upsilon) f(\upsilon, \varpi_{1}(\upsilon)) d\upsilon) \geq 0;$$

(c) For all $\rho \in I$ and for all $\varpi, \rho, \varsigma \in \Omega, \zeta(\varpi(\sigma), \rho(\sigma), \varsigma(\sigma)) \ge 0$ implies $\zeta(\int_0^1 G^{'}(\sigma, \upsilon) f(\upsilon, \varpi(\upsilon)) d\upsilon, \int_0^1 G^{'}(\sigma, \upsilon) f(\upsilon, \rho(\upsilon)) d\upsilon, \int_0^1 G^{'}(\sigma, \upsilon) f(\upsilon, \varsigma(\upsilon)) d\upsilon \ge 0;$

(d) for each
$$\varpi$$
 of ϖ_n of points in C(I) with $\zeta(\varpi(\sigma), \rho(\sigma), \zeta(\sigma)) \ge 0$, $\liminf_{n \to \infty} \zeta(\varpi_n, \varpi, \varpi) = 0$.

Theorem 5.1. Assume that requirements (a)-(d) are met, then (5.1) has at least one solution $\varpi^* \in C^2(I)$.

Proof. $\varpi^* \in C^2(I)$ is assumed to be a solution of (5.1) if and only if $\varpi \in C(I)$ is a solution of the integral equation.

$$\varpi(\sigma) = \int_0^1 G'(\sigma, \upsilon) f(\upsilon, \varpi(\upsilon)) d\upsilon, \tag{5.2}$$

For all $\sigma \in I$. We derive $\Lambda: C(I) \to C(I)$ by

$$\Lambda \varpi(\sigma) = \int_0^1 G'(\sigma, \upsilon) f(\upsilon, \varpi(\upsilon)) d\upsilon, \tag{5.3}$$

 $\forall \rho \in I$. Then, the difficulty (5.1) is equal to $\varpi^* \in C(I)$ fixed point of Λ . Assume $\varpi, \rho, \varsigma \in \Omega$ such that $\zeta(\varpi(\sigma), \rho(\sigma), \varsigma(\sigma)) \ge 0$, for all $\sigma \in I$. From (a), we have

 $G(\Lambda \varpi, \Lambda \rho, \Lambda \varsigma) = |\Lambda \varpi(\sigma) - \Lambda \rho(\sigma)| + |\Lambda \rho(\sigma) - \Lambda \varsigma(\sigma)| + |\Lambda \varsigma(\sigma) - \Lambda \varpi(\sigma)|$ $= \int_{0}^{1} G'(\sigma, \upsilon) f(\upsilon, \varpi(\upsilon)) d\upsilon - \int_{0}^{1} G'(\sigma, \upsilon) f(\upsilon, \rho(\upsilon)) d\upsilon$ $+ |\int_{0}^{1} G'(\sigma, \upsilon) f(\upsilon, \rho(\upsilon)) d\upsilon - \int_{0}^{1} G'(\sigma, \upsilon) f(\upsilon, \varsigma(\upsilon)) d\upsilon |$ + $\int_0^1 G'(\sigma, \upsilon) f(\upsilon, \varsigma(\upsilon)) d\upsilon - \int_0^1 G'(\sigma, \upsilon) f(\upsilon, \varpi(\upsilon)) d\upsilon$ | $= |\int_0^1 G'(\sigma, \upsilon)[f(\upsilon, \varpi(\upsilon)) - f(\upsilon, \rho(\upsilon))]d\upsilon|$ $+ |\int_0^1 G'(\sigma, \upsilon)[f(\upsilon, \rho(\upsilon)) - f(\upsilon, \varsigma(\upsilon))]d\upsilon|$ + $\left| \int_{0}^{1} G'(\sigma, \upsilon) [f(\upsilon, \varsigma(\upsilon)) - f(\upsilon, \varpi(\upsilon))] d\upsilon \right|$ $\leq \int_0^1 G'(\sigma, \upsilon) \{ |f(\upsilon, \varpi(\upsilon)) - f(\upsilon, \rho(\upsilon))| + |f(\upsilon, \rho(\upsilon)) - f(\upsilon, \varsigma(\upsilon))| \}$ + $|f(\upsilon, \varsigma(\upsilon)) - f(\upsilon, \varpi(\upsilon))| d\upsilon$ $\leq \int_{0}^{1} G'(\sigma, \upsilon) \{ \ln(|\varpi(\upsilon) - \rho(\upsilon)| + 1) + \ln(|\rho(\upsilon) - \varsigma(\upsilon)| + 1) + \ln(|\varsigma(\upsilon) - \varpi(\upsilon)| + 1) \} d\upsilon$ $\leq \sup \int_{0}^{1} G'(\sigma, \nu) d\nu \{ \ln(|\varpi(\nu) - \rho(\nu)| + 1) + \ln(|\rho(\nu) - \varsigma(\nu)| + 1) + \ln(|\varsigma(\nu) - \varpi(\nu)| + 1) \}$ $= \frac{1}{2} [\ln(|\varpi(\upsilon) - \rho(\upsilon)| + 1) + \ln(|\rho(\upsilon) - \varsigma(\upsilon)| + 1) + \ln(|\varsigma(\upsilon) - \varpi(\upsilon)| + 1)]$ $\leq \ln(|\varpi(\upsilon) - \rho(\upsilon)| + 1) + \ln(|\rho(\upsilon) - \varsigma(\upsilon)| + 1) + \ln(|\varsigma(\upsilon) - \varpi(\upsilon)| + 1)$ $\leq \ln(|\varpi(\upsilon) - \rho(\upsilon)|) + \ln(|\rho(\upsilon) - \zeta(\upsilon)|) + \ln(|\zeta(\upsilon) - \varpi(\upsilon)|)$ $\leq \ln(|\varpi(\upsilon) - \rho(\upsilon)| + |\rho(\upsilon) - \varsigma(\upsilon)| + |\varsigma(\upsilon) - \varpi(\upsilon)|)$ $= \ln(G(\varpi, \rho, \varsigma)) = \ln(G(\varpi, \rho, \varsigma)) + \ln 1 = \ln(G(\varpi, \rho, \varsigma) + 1)$

Which yields that

$$\ln(G(\varpi,\rho,\varsigma)+1) \leq \ln(\ln(G(\varpi,\rho,\varsigma)+1))+1 = \frac{\ln(\ln(G(\varpi,\rho,\varsigma)+1))+1}{\ln(G(\varpi,\rho,\varsigma)+1)} \ln(G(\varpi,\rho,\varsigma)+1)$$

Place $\psi(\varpi) = \ln(\varpi+1)$ and $\beta(\varpi) = \frac{\psi(\varpi)}{\varpi}$. Undoubtedly $\psi: [0,\infty) \to [0,\infty)$ is continuous, sub additive, and non-decreasing, and ψ is positive in $(0,\infty)$ with $\psi(0) = 0$, as well as $\psi(\varpi) < \varpi$ for any $\beta \in \Gamma$. Thus we have $\psi\left(G\left(\Lambda\varpi, \Lambda\rho, \Lambda\varsigma\right)\right) \le \beta\left(\psi\left(G\left(\varpi, \rho, \varsigma\right)\right)\right)\psi\left(G\left(\varpi, \rho, \varsigma\right)\right)$, for all $\varpi, \rho, \varsigma \in C(I)$ such that $\zeta(\varpi(\sigma), \rho(\sigma), \varsigma(\sigma)) \ge 0$, for all $\sigma \in I$. We derive $\alpha: C(I) \times C(I) \to [0,\infty)$ by

$$\alpha\big(\varpi,\rho,\varsigma\big) = \begin{cases} 1, & \text{if } \zeta(\varpi(\sigma),\rho(\sigma),\varsigma(\sigma)) \geq 0; \\ 0, & \text{otherwise.} \end{cases}$$

Then, for all $\varpi, \rho, \varsigma \in C(I)$, we have $\alpha(\varpi, \rho, \varsigma)G(\Lambda\varpi, \Lambda\rho, \Lambda\varsigma) < \beta(G(\varpi, \rho, \varsigma))G(\varpi, \rho, \varsigma)$ obviously, $\alpha(\varpi, \rho, p) = 1$ and $\alpha(p, \rho, \varsigma) = 1$ implies $\alpha(\varpi, \rho, \varsigma) = 1$, for all $\varpi, \rho, \varsigma \in C(I)$. If $\alpha(\varpi, \rho, \varsigma) = 1$ for all $\varpi, \rho, \varsigma \in C(I)$, then $\zeta(\varpi(\sigma), \rho(\sigma), \varsigma(\sigma)) \ge 0$. From (c) we have

 $\zeta(\Lambda\varpi(\sigma),\Lambda\rho(\sigma),\Lambda\varsigma(\sigma)) \ge 1$. Therefore Λ is rectangular α -G-admissible. According to (b) there exists $\varpi_1 \in C(I)$ so that $\alpha(\varpi_1,\Lambda\varpi_1,\Lambda\varpi_1) = 1$. According to (d), for any point ϖ of ϖ_n of points in C (I) using $\alpha(\varpi_n,\varpi_{n+1},\varpi_{n+1}) = 1$, $\liminf_{n\to\infty}\alpha(\varpi_n,\varpi,\varpi) = 1$. Apply theorem (4.1), Λ has a fixed point in C (I) that is there occurs $\varpi^* \in C(I)$ so that $\Lambda\varpi^* = \varpi^*$ and ϖ^* is a solution of (5.1).

References

- [1] K. Abodayeh, W. Shatanawi, Fixed point results for mapping of non-linear contractive conditions of α admissibility form, IEEE Access, 7(2019), 50280-50286.
- [2] M. U. Ali, T. Kamran, On (α^*, ψ) contractive multi-valued mappings, Fixed Point Theory Appl., 2013, 2013:137.
- [3] A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Analysis 72(2010), 2238-2242.
- [4] S. Banach, Sur les operations dans les ensembles abstraits et leur application auxequations integrales, Fund. Math., 3(1922), 133-181.
- [5] J.-S. Bae, S.-H. Cho, E.Karapinar, On fixed points of (η, θ) quasi contraction mappings in generalized metric spaces, 2013, 2013:329.
- [6] N.Bilgili, E. Karapinar, K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, Journal of Inequalities and Applications (2013), 2013:286
- [7] J. Caballero, J. Harjani and K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory and Applications. , 2012, 2012:231.
- [8] E. Karapinar, P. Kumam, P. Salimi, On α - ψ -Meir-Keeler contractive mappings, Fixed Point Theory Appl., 94(1)(2013).
- [9] S.H. Cho, J.S. Bae, Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces, Mathematical and Computer Modelling 53(2011) 945-951.
- [10] M. Geraghty, On contractive mappings, Bull. Aust. Math. Soc., Proc. Amer. Math. Soc. 40(1973) 604-608.
- [11] M. E. Gordji, M. Ramezani. Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric space and application to ordinary differential equations, Fixed Point Theory and Applications 2012, 2012:74.
- [12] E. Hille, R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, American Mathematical Society, Providence, RI, 1957.
- [13] D. Ilic, V. Rakocevic, Common fixed points for n maps on cone metric spaces, J. Math. Anal. Appl. 341(2008), 876-882.
- [14] E. Karapinar, On best proximity point of ψ -Geraghty contractions, Global Fixed Point Theory and Applications, (2013) 2013:200. Erdal Karapinar / Filomat 28:1 (2014), 37–48 4.
- [15] E. Karapinar, B. Samet, Generalized $\alpha \psi$ -contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal, 2012 (2012) Article id: 793486.

[16] E. Karapinar, α – ψ -Geraghty Contraction Type Mappings and Some Related Fixed Point Results, Filomat 28:1 (2014), 37–48.

- [17] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2)(2006), 289-297.
- [18] Z. Mustafa, W. Sathanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Internat. J. Math. Mathematical Sci., (10) (2009).
- [19] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226(1977) 257-290.
- [20] B. Samet, C. Vetro, P. Vetro Fixed point theorems for a α – ψ contractive type mappings, Nonlinear Anal. Theory, Methods Appl., 75(2012), 2154-2165.
- [21] P. Salimi, A. Latif, N. Hussain, Modified α ψ -contractive mappings with applications, Fixed Point Theory Appl., 2013 2013:151.
- [22] V.Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Hseyin Isik and Aydi Hassen, Some fixed point theorems for modified JS-G-contractions and an application to integral equation, Journal of Applied Mathematics and Informatics. 38, No. 5-6, 507-518, 2020.
- [23] V.Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Hseyin Isik and Aydi Hassen, Some fixed point theorems on $\alpha-\beta$ -G-complete G-metric spaces, Carpathian Mathematical Publications. 2021, 13, 1, 58–67.
- [24] V.Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Stojan Radenovic, Slobodanka Mitrovic, Coupled fixed point theorems of JS-G-contraction on G-metric spaces, Boletim da Sociedade Paranaense de Matematica, 2023, 41, 1–10.
- [25] V.Srinivas Chary, G. Sudhaamsh Mohan Reddy, D. Srinivasa Chary, Stojan Radenovic, Existence of fixed points in G-metric spaces, Boletim da Sociedade Paranaense de Matematica, 2023, 41, 1–18.
- [26] S.K. Yang, J.S. Bae, S.H. Cho, Coincidence and common fixed and periodic point theorems in cone metric spaces, Computers and Mathematics with Applications 61(2011) 170-177.