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Abstract:  

An E-super (a, d)-edge-antimagic graceful labeling (EEAGL) is a one-one and onto function λ from 

the union of the vertex set and edge set of G into the integers from 1 to p + q where P is the total number 

of vertices. The absolute value of λ(u) + λ(v) - λ(uv), uv in G consists of integers from a to a + (q-1) 

d which are consecutive with a, the initial term and d, the common difference. If the edge-weights of 

the graph G are labeled by the integers from 1 to q then the labeling is named as EEAGL. In this 

paper, we prove the above labeling for the disjoint union of multiple copies (DUMC) of cycle 

graphs, complete graphs and path graphs. Finally, we construct algorithms to find some classes of 

graphs are EEAGL. 
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1     Introduction 

Undirected and simple graphs only used in this paper. The order and size of the graphs are p and q 

respectively. The notions of graph theory are taken from [7]. 

The vertices and edges of the graph G assigns some positive value is called graph labeling. 

Refer [1,2] for EML and EAL of graphs. 

Marimuthu and Balakrishnan introduced the concept of EMGL and 

ESVML in [3,6]. In [4] and [5] we get more results about SEAGL. 

An EEAGL is a one-one and onto mapping λ from the union of the vertices and edges of G 

into the integers 1 to p + q. The absolute value of λ(u)+λ(v)−λ(uv), for uv in G, consists of integers from a  

to a+(q−1)d which are consecutive with a, the initial term and d, the common difference. 

In this paper, we prove the above labeling for the DUMC of cycle graphs, complete graphs and 

path graphs. Finally, we construct algorithms to find some classes of graphs are EEAGL. 

 

2        Disconnected Graphs 

2.1   Disconnected Cycle graphs 

Theorem 2.1.  If m ≥ 2 and n ≥3 then the DUMC  of the cycle graphs mCn admits an EEAGL. 

Proof: 

Step 1: ( Input) 

mCn: m copies of the cycle graph Cn; 

V(mCn) : Vertices of mCn ; 

V(mCn) : { 𝑢𝑖
𝑗
 : i in 1 to n,  j in 1 to m};  

E(mCn) : Edges of  mCn ; 

E(mCn) : {𝑢𝑖
𝑗
 𝑢𝑖+1

𝑗
 : i in 1 to n-1, j in 1 to m} U {𝑢𝑛  

𝑗
𝑢1

𝑗
∶  𝑗 𝑖𝑛 1 𝑡𝑜 𝑚}; 

 : V(mCn) U E(mCn) → { 1,2,---, 2mn}; 

W : 𝑊𝜆
1 U 𝑊𝜆

2 : the edge-weights of  mCn ; 

Step 2: 
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{ 

for  i in 1 to n , j in 1 to m  do 

{ 

( 𝑢𝑖  
𝑗

) = mn + i+ (j – 1) n 

} 

for  i in 1 to n-1 , j in 1 to m do 

{ 

( 𝑢𝑖
𝑗
 𝑢𝑖+1

𝑗
) = i + n(j-1) + 1 

} 

for j in 1 to m do 

{ 

( 𝑢𝑛  
𝑗

𝑢1
𝑗
) = n(j-1) +1 

} 

for i in 1 to n-1,  j in 1 to m  do 

{ 

𝑊𝜆
1 = { 𝑊𝜆

1( 𝑢𝑖
𝑗
 𝑢𝑖+1

𝑗
)= 2mn + I + n(j-1) 

} 

for j in 1 to m do 

{ 

𝑊𝜆
2 = { 𝑊𝜆

2( 𝑢𝑛
𝑗
 𝑢1

𝑗
)= 2mn + n(j-1) + n 

} 

{ 

W = { 2mn+1, 2mn+2,…,3mn} : consecutive integes 

} 

} 

Step 3 : Output ( EEAGL of  mCn ) 

 

2.2 Disconnected Complete graphs 

Theorem 2.2.  If m, n ≥ 2, then the DUMC of the complete graphs mKn 

has an EEAGL. 

Proof: 

Step 1: ( Input) 

mKn: m copies of the complete graph Kn; 

 V (mKn): Vertices of mKn; 

V (mKn): { 𝑢𝑖
𝑗
  i in 1 to  n ,  j  in  1 to  m } ; 

{ 𝑢1
𝑗
, 𝑢2

𝑗
, ---, 𝑢𝑛

𝑗
 } : The vertex set of the jth copies of Kn , j  in 1 to m; 

 E (mKn): Edges of mKn; 

E (mKn): ⋃ ⋃ {𝑢𝑖
𝑗
 𝑢𝑖+𝑘

𝑗
 ∶   k in 1 to  n − i }𝑛−1

𝑖=1
𝑚
𝑗=1  ; 

λ : V (mKn) ∪ E(mKn) → {1, 2, . . . , 
𝑚𝑛(𝑛+1)

2
}; 

Step 2: 

{ 

for i in 1 to n ,  j in   1 to m do 

{ 

λ( 𝑢𝑖
𝑗
 ) =  m ( n - i + 1 ) - j + 1 +

𝑚𝑛(𝑛−1)

2
 

}  

for   i in 1 to n-1 , k  in 1 to n-i and  j  in  1 to  m  do 

{ 

λ( 𝑢𝑖
𝑗
 𝑢𝑖+𝑘

𝑗
 ) = m ( n ( k + 1 ) -

𝑘(𝑘+1)

2
 + 1 - i ) +  1 - j - m n  
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i f  i + k  <  n  

T h e  e d g e - w e i g h t  o f  𝑢𝑖
𝑗
 𝑢𝑖+𝑘

𝑗
 =  W ( 𝑢𝑖

𝑗
 𝑢𝑖+𝑘

𝑗
 ) = m n 2 - m ( n ( k - 1 ) -

𝑘(𝑘+1)

2
 +  

( k + 1 ) + i ) + 1 - j  

 

} 

 

{ 

 W ( 𝑢𝑖
𝑗
 𝑢𝑖+𝑘

𝑗
 ) = { 1 + m n ( n + 1 ) / 2 , 2 + m n ( n + 1 ) / 2 , … , m n ( n + 1 ) / 2 + m n ( n - 1 ) / 2 }   

}  

}  

S t e p  3 :  O u t p u t  (  E E A G L  o f  m K n )  

 

 

2.3  Disconnected Path graphs 

Theorem 2.3. If m, n ≥ 2  then  the  DUMC  of  path  graphs  mPn  permits     an EEAGL. 

Proof: 

Step 1: ( Input) 

mPn: m copies of the path graph Pn;  

V (mPn): Vertices of mPn; 

V (mPn) : {𝑢𝑖
𝑗
  i in 1 to  n ,  j  in  1 to  m } ; 

E(mPn):  Edges of mPn; 

E(mPn) : { 𝑢𝑖
𝑗
 𝑢𝑖+1

𝑗
 ∶ i in 1 to n , j in 1 to m }; 

W : set of edge-weights ; 

Define λ : V (mPn) ∪ E(mPn) → {1, 2, . . . , m(2n − 1)}; 

 Step 2: 

{ 

for i in 1 to n − 1,  j in   1 to m do 

{ 

λ(𝑢𝑖
𝑗
 ) = m(n − 1) + j + (i − 1)m 

λ(𝑢𝑖
𝑗
 𝑢𝑖+1

𝑗
)  = j + (i − 1)m 

} 

{ 

W = {m(2n − 1) + 1, m(2n − 1) + 2, . . . , 3mn − m − 3} 

} 

} 

Step 3: Output ( EEAGL of mPn) 

 

3.   Friendship Graphs 

Theorem 3.1. For n ≥ 1, Fn, the friendship graph has an EEAGL. 

Proof:  

Step 1: ( Input) 

Fn, n ≥ 1 be the friendship graph. 

V (G): Vertices of Fn; 

V (G): 1 to 2n + 1; 

E(G): Edges of Fn; 

E(G): 2n + 2 to 5n + 1 

λ : The bijective function on V (G) ∪ E(G); 

 c : the center vertex of Fn; 

ui and vi : the other two vertices of the ith triangle; 
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W : Edge-weights  

Step 2: 

{ 

for i in 1 to n do 

{ 

λ(c) = 4n + 1 

λ(ui) = 3n + i 

λ(vi) = 5n + 2 − i 

} 

for i in 1 to n do 

{ 

λ(uic) = n + 2i − 1 

λ(vic) = 3n + 2 − 2i  

λ(uivi) = i 

W = {5n + 2, 5n + 3, . . . , 8n + 1} is consecutive integers. 

} 

} 

Step 3: Output ( EEAGL friendship graphs) 

 

15 

. 

 

 

 

 

 

 

 

14 

 

 

 

 

 

 

 

Figure 3.1: An EEAGL of F4 

 

4.    Cycles 

Theorem 4.1. If n ≥ 3, then the cycle Cn has an EEAGL. 

Proof: 

Step 1: ( Input) 

Cn, n ≥ 3 be the cycle graphs. 

V (G): Vertices of Cn; 

 V (G) : 1 to n; 

E(G): Edges of Cn; 

E(G): n + 1 to 2n 

λ : The bijective function on V (G) ∪ E(G); 

 Step 2: 

{ 

for i in 1 to n do 
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4 3 

. 

 
5 2 

 . . 

{ 

λ(ui) = n + i 

} 

for i in 1 to n − 1 do 

{ 

λ(uiui+1) = i 

} 

for i  in 1 to n do 

{ 

λ(un u1) = n 

} 

{ 

set of edge weights = {2n + 1, 2n + 2, --- 3n} = consecutive integers 

} 

} 

Step 3: Output ( EEAGL cycle graphs) 
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6 1 7 

 

 

Figure 4.1: An EEAGL of C5 

 

5.   Fan Graphs 

Theorem 5.1. If 2 ≤ n ≤ 6 and d = 1 then the fan graph Ƒn admits an 

EEAGL. 

Proof: 

Step 1: ( Input) 

Ƒn, n ≥ 2 be the fan graphs. 

V (G): Vertices of Ƒn ; 

V (G) : 1 to n + 1; 

E(G) : Edges of Ƒn ; 

E(G): n + 2 to 3n 

c : the center vertex of Ƒn ; 

λ1 : V (Ƒn) → {1, 2, . . . , n + 1} 

λ2 : E(Ƒn) → {n + 2, n + 3, . . . , 3n} 

Step 2: 

{ 

for n = 2 do 

{ 

λ1(u1) = 4 

λ1(u2) = 5 

λ1(c) = 6 
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} 

for n = 3 do 

{ 

λ1(u1) = 6 

λ1(u2) = 7 

λ1(u3) = 8 

λ1(c) = 9 

} 

for n = 4 do 

{ 

λ1(u1) = 8 

λ1(u2) = 9 

λ1(u3) = 11 

λ1(u4) = 12 

λ1(c) = 10 

} 

for n = 5 do 

{ 

λ1(u1) = 11 

λ1(u2) = 10 

λ1(u3) = 12 

λ1(u4) = 14 

λ1(u5) = 15 

λ1(c) = 13 

} 

for n = 6 do 

{ 

λ1(u1) = 13 

λ1(u2) = 12 

λ1(u3) = 14 

λ1(u4) = 16 

λ1(u5) = 18 

λ1(u6) = 17 

λ1(c) = 15 

} 

for i in 1 to 2n − 1 do 

{ 

The set of edge-weights wλ = wλ(qi) = 4 + i   ∀qi ∈ Ƒn 

} 

for i is odd  do 

{ 

λ2(qi) = 
𝑖+1

2
 

} 

for i is even do 

{ 

λ2(qi) = n + 
𝑖

2
 

} 

for i in 1 to 2n − 1 do 

{ 

W  = | 𝑤𝜆1
(qi) - 𝑤𝜆2

(qi) | 
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. . 

2 
4 3 

. 

. 

} 

} 

Step 3: Output ( EEAGL of fan graphs)  

 

6 1 7 5 9 
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