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Abstract:

An E-super (a, d)-edge-antimagic graceful labeling (EEAGL) is aone-one and onto function A from
the union of the vertex set and edgeset of G into the integers from 1 to p + g where P is the total number
of vertices. The absolute value of A(u) + A(v) - A(uv), uv in G consists of integers from a to a + (g-1)
d which are consecutive with a, the initial term and d, the common difference. If the edge-weights of
the graph G are labeled by the integers from 1 to q then the labeling is named as EEAGL. In this
paper, we prove the above labeling for the disjoint union of multiple copies (DUMC) of cycle
graphs, complete graphs and path graphs. Finally, we construct algorithms to find some classes of
graphs are EEAGL.
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1 Introduction

Undirected and simple graphs only used in this paper. The order and size of the graphs are p and g
respectively. The notions of graph theory are taken from [7].

The vertices and edges of the graph G assigns some positive value is called graph labeling.
Refer [1,2] for EML and EAL of graphs.

Marimuthu and Balakrishnan introduced the concept of EMGL and

ESVML in [3,6]. In [4] and [5] we get more results about SEAGL.

An EEAGL is a one-one and onto mapping A from the union of the vertices and edges of G
into the integers 1 to p + g. The absolute value of A(u)+A(v)—A(uv), for uv in G, consists of integers from a
to a+(g—1)d whichare consecutive with a, the initial term and d, the common difference.

In this paper, we prove the above labeling for the DUMC of cycle graphs, complete graphs and
path graphs. Finally, we construct algorithms to find some classes of graphs are EEAGL.

2 Disconnected Graphs

2.1 Disconnected Cycle graphs

Theorem 2.1. If m > 2 and n >3 then the DUMC of the cycle graphs mCn admits an EEAGL.
Proof:

Step 1: ( Input)

mCy: m copies of the cycle graph Cn;

V(mC,) : Vertices of mCy ;

V(an):{uij ;iinlton, jin1ltom},

E(mC,, . Edges of mC, ;

E(MCy) : {u/ v/, :iinlton-1,jin1tom}U{u) u]: jin1tom};
:V(mC,) U E(mCp) — { 1,2,---, 2mn};

W : Wit U W7 : the edge-weights of mCh;

Step 2:

3132


mailto:krishnaveniresearch7@gmail.com

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

{

for iinlton,jinltom do

{

(uij)zmn+i+(j—1)n

}

for iinl1ton-1,jin1tomdo

{

(u/ul, )=i+n(-1)+1

}

forjin1tomdo

{

(uh u]) =n(-1) +1

}

foriinlton-1, jinltom do

{

Wit ={ Wi (u! ul,)=2mn +1+n(j-1)
}

forjin1tomdo

{

W2 = { W2(ul ul)=2mn +n(j-1) + n
}

{

W= {2mn+1, 2mn+2,...,.3mn} : consecutive integes
}

}
Step 3 : Output ( EEAGL of mC,)

2.2 Disconnected Complete graphs

Theorem 2.2. If m,n > 2, then the DUMC of the complete graphs mK,
has an EEAGL.

Proof:

Step 1: ( Input)

mK,: m copies of the complete graph Ky;

V (mKp): Vertices of mKq;

V (mKp): {u{ iinlton,jinltom};

{ u{, ué, -, ufl }: The vertex set of the j* copies of Kn, j in 1 to m;

E(mK.,): Edges of mKq;
E (mKn): UTL, Ul {u/ uf,, © kinlto n—i};

A1V (mKe) UE(MK) — {1, 2, ..., 220y,
Step 2:
{
foriinlton, jin 1tomdo
{
Aul )= m(n-i+1)-j+1+ 200D
}
for iinlton-1,k inlton-iand j in 1to m do
{
k(k+1)

?\(u{u{+k):m(n(k+1)- +1-i)+ 1-j-mn

2
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if i+k < n
kOet1)

The edge-weight of u{u{+k= W(u{u{+k)=mn2-m(n(k—1)— 2

(k+1)+i)+1-j
}
{

W(u{uij+k)={1+mn(n+1)/2,2+mn(n+1)/2,...,mn(n+1)/2+mn(n—1)/2}
}

}
Step 3: Output ( EEAGL of mKy,)

2.3 Disconnected Path graphs

Theorem 2.3. If m, n > 2 then the DUMC of path graphs mP, permits an EEAGL.
Proof:

Step 1: ( Input)

mPn: m copies of the path graph Py;

V (mPy): Vertices of mPy;

V(mPy) :{u/ iinlton,jinltom};

E(mP,): Edges of mPy;

E(mPy) : {u{u{+1 tiinlton,jinltom},

W : set of edge-weights ;

Define A2 : V (mP,) UE(mP,) — {1,2,...,m(2n-1)};

Step 2:

{

foriinlton-1, jin 1tomdo
{

Aul)y=mn—1)+j+({i—-1)m

Al ul, ) =j+({-1)m

b

{
W={m2n-1)+1,m2n—-1)+2,...,3mn—m—3}
T

by
Step 3: Output ( EEAGL of mPy)

3. Friendship Graphs

Theorem 3.1. For n >1, Fn, the friendship graph has an EEAGL.
Proof:

Step 1: ( Input)

Fn, N >1 be the friendship graph.

V (G): Vertices of Fn;

V(G): 1to 2n+1;

E(G): Edges of Fn;

E(G): 2n+2to 5n+1

A : The bijective function on V (G) U E(G);

c : the center vertex of Fn;

ui and v; : the other two vertices of the it triangle;
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W : Edge-weights
Step 2:

{

for i in1tondo
{

A(c)=4n+1
A(Ui)) =3n+i
A(Vi) =5n+2—i
¥

for i in1tondo

{

Auic)=n+2i—1
A(vic) =3n+2 — 2i

)L(UiVi) =i

W ={5n+2,5n+3,...,8n+ 1} is consecutive integers.
¥

¥

Step 3: Output ( EEAGL friendship graphs)

4. Cycles
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Figure 3.1: An EEAGL of F4

Theorem 4.1. If n >3, then the cycle C, has an EEAGL.

Proof:
Step 1: ( Input)

Cn, n >3 be the cycle graphs.
V (G): Vertices of Cy;

V(G): 1ton;

E(G): Edges of Cp;

E(G): n+1to 2n

A . The bijective function on V (G) U E(G);

Step 2:
{

for iin1tondo

14
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{

A(Ui) = n+i

¥
foriin1ton-1do
{

A(Uili+1) = i

¥

for i in1tondo
{

A(unui) =n

¥

{

set of edge weights = {2n + 1, 2n + 2, --- 3n} = consecutive integers
¥

¥
Step 3: Output ( EEAGL cycle graphs) [ |

Figure 4.1: An EEAGL of Cs

5. Fan Graphs
Theorem 5.1. If 2 <n <6 and d = 1 then the fan graph Fn admits an
EEAGL.
Proof:
Step 1: ( Input)
JFn,n =2 be the fan graphs.
V (G): Vertices of Fin;
V(G):1ton+1;
E(G) : Edges of Fhn;
E(G): n+21to 3n
c : the center vertex of fin;
AV (Fn) —-{1,2,...,n+1}
Ao tE(Fn) = {n+2,n+3,...,3n}
Step 2:
{
for n=2do
{
/Il(ul) =4
/11(U2) =5
/11(C) =6
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¥

for n=3 do

{

/Il(ul) =6
/11(U2) =7
/11(U3) =8
/11(C) =9

¥

for n=4do

{

il(ul) =8
ﬂ,l(Uz) =9
/11(U3) =11
/11(U4) =12
A1(c) =10

¥

forn=5do

{

/11(U1) =11
/11(U2) =10
/11(U3) =12
/11(U4) =14
).1(U5) =15
ﬂ.l(C) =13

¥

for n=6do

{

/11(U1) =13
/11(U2) =12
/11(U3) =14
/11(U4) =16
/11(U5) =18
A1(ue) = 17
A1(c) =15

s
foriin1to2n—-1 do
{

The set of edge-weights wy, = w(qi) =4+ i YQi € Fn
¥

for i is odd do
{ .
A2(ai) =7
¥

for i is even do
{ .
J2(qi) =n+~
3
foriin1to2n—-1 do
{

W= |wy, (i) - wy, (@i) |
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¥

¥

Step 3: Output ( EEAGL of fan graphs) [ |

6 1 7 5 9
2
4 3
8
Figure 5.1: An EEAGL of F;
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