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Abstract:- Major problem of distribution network is to allocate Distributed Generation (DG) optimally to
enhance the performance of the system. In this research, two types of DG sources are ideally positioned in a 69-
bus radial distribution network (RDN) under uncertainty to minimize network real power losses (RPL),
maximize voltage control (VC), and improve voltage stability index (VSI). The uncertainty in power availability
from photo voltaic (PV) and wind turbine (WT) DG sources along with load demand, have been simulated using
the 2m point estimate approach (PEM). From the results obtained it is observed probabilistic approach provides
more realistic results considering the uncertainties present in the RDN. In this paper comparative assessment of
Grey Wolf Optimization (GWO) with Teaching Learning Based Optimization (TLBO) and Quasi-Oppositional
TLBO (QOTLBO) techniques have been performed. Results prove the efficacy of GWO algorithm over other
existing techniques.

Keywords: Distributed Generation, Real power losses, Voltage Control and stability, Uncertainty, Point
estimate method, Grey Wolf Optimization.

1. Introduction

Utilisation of DG sources in RDN is now required to fulfil rising load demand and the fast deployment of fossil
fuels. Among the several DG technologies because of their lower operating costs, higher service dependability
and enhanced power quality, PV and WT are the most often employed DG sources in power system networks.
However, wind and solar energy sources provide variable and unpredictable power because of the fluctuating
behaviour of radiation from the sun and air velocity. Besides these, load demand of the network is also
uncertain. In the current work, optimal location of PV and WT DG source in RDNs has been determined to
reduce RPL, enhance voltage stability and improve voltage profile of the systems considering uncertainties
present in DG power output as well as load criterion. The 2m point estimate method (PEM) was used to model
the volatility in load demand and electricity supply from both wind and solar DG units.

Allocation of DG sources in optimum places have profoundly impacted on many factors of RDNs. In [1], M.H.
Moradi and M.Abedini, in [2] S. Sultana and P.K. Ray, in [3] Sharma et al. determined DG allocation in RDNs
to reduce loss and to enhance voltage profile and voltage stability of the networks by applying different
optimization techniques. Many other researchers also determined DG allocation in RDNs to improve
performance of the networks as depicted in [4-11]. But only few researchers considered uncertainties of DG
sources and load in DG allocation problems. In the present work the authors have determined optimal placement
of PV-WT based DG sources in RDN recognizing wind uncertainty, solar power output and load demand by
applying Multi-objective Grey Wolf Optimization (MOGWO). In comparison to other well-known meta-
heuristic techniques, the GWO algorithm [12] is able to deliver better results for various benchmark functions
since it is modelled on the organizational hierarchy and hunting process of the grey wolves. Additionally, the
GWO algorithm outperforms many previously developed optimization algorithms in terms of exploration and
exploitation. The enhanced performance of the GWO method has prompted the present authors to use it to
assign DG sources in RDN in the most effective way possible in order to decrease RPL, to control voltage, and
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preserve voltage stability in the face of uncertainty. To show the usefulness and superiority of the algorithm, the
GWO algorithm's findings were compared to the TLBO and QOTLBO algorithms.

2. Problem Formulation

The current study intends to minimise RPL, maximize VC and increase VSI of RDNs by optimally deploying
PV and WT-based DG sources in networks while accounting for variability in wind, solar power production,
and demand of the load. In this work, variation of power available from WT and PV DG sources are modelled
by Weibull and beta distribution, while uncertainty in load demand is modelled as a normal distribution.

2.1 Modeling of wind power

The unpredictable power available from WT is formulated as [13,14]:

0, V<V
b a, +b,v, vV, SV,
wind P <

r? Vr<V—Vco

0, V>V,

@)

3, =RV /(Va—V), b,=R/(V,—vy) )

where wind speed is v; cut-in wind speed is v,;; cut-out wind speed is v.,; rated wind speed is v;; rated output
power of WT is P,.

The following formulation below shows the probability density function (PDF) of wind speed behavior
[13,14,15]:
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where k,, and c,, are the shape and scale factors of Weibull distribution function; The mean () and standard
deviation (o) of wind speed are calculated as follows:

u,=c, I’ (1+ ij
Ky (6)

2
o, =C. F(lJr—j—,u\f,
& @
where I represents the gamma function.
2.2 Modeling of PV power

The power output from PV is expressed as follows [16]:
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where s; is the solar irradiance in KW/m?; s, is the average solar irradiance; T, is the cell temperature in °C; T, is
the ambient temperature in °C; Nor represent the nominal operating temperature of a PV cell in °C (Degree
Celsius); K, and K; are voltage and current temperature coefficients in V/°C and A/°C; Ns is the number of PV
modules; FF is the fill factor; I is the short circuit current in Amp; V. is the open circuit voltage in Volt; the
current and voltage at maximum power point in Amp and Volt are denoted by lypp and Vypep respectively.

Beta distribution function is used to replicate the stochastic behaviour of solar irradiation, as follows [16]:
I'a, + _ _

f(s) =Msi”‘s '1-s)*",  0<s <l,a,20,52>0
(e )U(5,)

=0, otherwise (13)

where, a5 and s are the shape parameters of the beta distribution function; I' represents the gamma function.

The mean (i) and standard deviation (o) of solar irradiance are calculated as follows using the aforementioned
formulae:

py=—"

) a+p; (14)
2

o e (I a)

(o + 1) as)

2.3 Modeling of load demand

The following is a representation of the probability density function for load demand [13,14]:

f(PIoad):exp[_(Pload_:up)Z/ZO"Z)]/\/%O'p (16)

where u, and o, are the mean and standard deviation of load demand.
2.4 2m Point Estimate Method along with spatial correlations between WT, PV sources and load

The present work employs Hong’s 2m PEM method to model the load demand and the available output power
of WT and PV units which are both unpredictable [17,18]. In 2m PEM, each random variable in a stochastic
situation is replaced with two deterministic points on each sides of the relevant distribution function's mean
value. In the case of m input random variables (IRVS), the research problem is solved twice for each random
variable: once for the point above the mean and again for the point below the mean. Other random variables are
held at their mean value in this case. Finally, the output random variable’s mean and standard deviation of can
be determined by applying 2m PEM. The spatial correlations among sources and loads have been taken into
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account in this study using 2m PEM technique. This is accomplished by converting correlated input variables

into uncorrelated variables via orthogonal transformation [19].
2.5 Mathematical formulations of the DG allocation problem
25.1 Case 1: Minimization of RPL

The objective function for minimizing RPL of the RDN in p.u. is expressed as:

Br
f1 = PapL :Z IiZRi
i1

(17)

where, Pyp, is total RPL of Nb - bus RDN; Br is the total branch number in the RDN ( Br = Nb—1); I, is

the i" branch current; R is the i branch resistance.

Considering uncertainty, the objective function to minimize the mean value of RPL of the network is stated as:

Min OF, = Min (m_ f,) =Min (m_P,,)

where, m_ for m_ Py, is the mean value of RPL in p.u. which is calculated by 2m PEM method.

2.5.2  Case 2: Improvement of VC

The objective function to improve VC of RDN in p.u. is expressed as:
Nb ,
f2 = Z(\/J _Vrated)
j=1

where, V/; is the voltage of " bus; V4 is the rated voltage (1 p.u.).

Considering uncertainty, the objective function to minimize mean value of VC of RDN is expressed as:
Min OF, =Min(m_ f,)

where, M _ f2 is the mean value of VC in p.u. calculated by 2m PEM method.

2.5.3  Case 3: Enhancement of VSI

The objective function to enhance VSI of the RDN is expressed as:

fsz( L J n=23,......,Nb
(S1(n)

where, VSI of node n given by:

SI(n) = V.| —4[P,(MR +Q,(MX, |M.[ = 4[P,(MX, —Q,(MR |’

(18)

(19)

(20)

(21)

(22)

where, V, is the voltage of bus s; P,(n) and Q, (n) are total real and reactive power load fed through bus N ;

R, and X; are the i" branch resistance and reactance;

Considering uncertainty, the objective function to minimize the mean value of f3 is expressed as:

Min OF, =Min(m_ f,)

(23)
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where, M _ f, is the mean value of f, calculated by using 2m PEM method.

2.5.4  Case 4: Minimization of RPL alongwith improvement of VC and VSI

The objective function for minimization of RPL alongwith improvement of VC and VSI is expressed as:
f, = {(Wl x f,) + (W, x f,) + (W, x fs)} (24)

where, W,, W,, W, are the weighting factors such that W, +W, +W, =1.

Considering uncertainty, the objective function to minimize mean value of f, is expressed as:

Min OF, = Min (m_ f,) (25)
where, m_ f, is the mean value of f, calculated by using 2m PEM method.

2.6 Equality and inequality constraints

The limitations utilised to solve the cases listed above are as follows:

2.6.1 Load balance constraints

The following equations must be met for each bus:

Nb
Py — P _‘VJ‘Z‘YJk“\/k|COS(5J ~&=0;)=0
i (26)

Nb

Qyi —Qy _’\/J‘Z‘YJKH\/k|Sin(5J —6=6;) =0
k=1 (27)

where, ng and ng are generator’s active power and reactive power output at bus j; de and de are active

power demand and reactive power demand at bus j; V i is voltage of bus j; Yj admittance of the line connecting

bus j and bus k ; 5J- is phase angle of voltage at bus j; Nb denotes total number of buses in a particular RDN;

<91-k denotes admittance angle of line connected between bus j and k.

2.6.2  Voltage limits

Each bus's voltage must be maintained within its a specified limits i.e.

V<V, <V, 28)

where, V; s voltage of bus j; iji” and V™ are the minimum and maximum voltages at bus j;

2.6.3 Line current limit constraint

Each branch’s line current must be maintained within branch's maximum current carrying capability limit. It is
represented as:

I < 1™ (29)

max
I i

where |, denotes the i™ branch current of the RDN; denotes the maximum current carrying capacity of i"

branch current of the RDN;

3. Algorithm for optimal placement of DG in RDN considering uncertainties
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In the present work locations of DG sources are the decision variables whereas power generated by WT, PV DG
sources and active powers of load demand at each bus (except bus no. 1) are the uncertain variables. In this
work objective functions are evaluated by using 2m PEM technique. In the present work GWO has been applied
for optimal placement of DG in a RDN. Fig. 1 depicts below the step-by-step techniques for DG allocation in

RDN considering uncertainty using GWO algorithm.

Initialize no. of search agents,
maximum no. of iterations, branch
resistance, reactance, load data of RDN

¥

Define uncertain parameters and determine the
output power of WT and PV sources, active power
of load demand at each bus using 2m PEM

L 2

Generate an initial population matrix and run the
load flow for all 2m uncertain sets with each
individual search agent and DG power output

Constraints
satisfied?

No

Evaluate the values of the
functions i, 2, 3 and fa with
each set of 2/m uncertain sets

L2

Evaluate mean value and standard deviation of the
functions using 2m PEM and calculate the values of
objective functions OFi1, OF2, OF3 and OFa

Calculate the minimal value of objective function or
fithess function and the position of the search agent
corresponding to that value

Set initial iteration no. iter = 1, and the
weighting factors

Update the
position of each search
agent using GWO

imits of location of DG
satisfied?

Run the load flow for all 2m uncertain sets with
each updated search agent along with DG output
power and load under uncertainty

No

Constraints
limit satisfied?

Again evaluate the values of
the functions 7, 72, f3 and fa
with each set of 2/m uncertain
sets

v

Evaluate mean value and standard deviation of the
functions using 2m PEM and calculate the values of
objective functions OF1, OF2, OF3 and OFa

L2

Calculate the minimal value of objective function or ]

fitness function and the position of the search agent
corresponding to that value

Increase the iteration
by 1, i.e., iter= iter+ 1

Yes

iter<=max_iter?

4 !

optimization, store the best the best non dominated solution
compromised solution using Fuzzy Logic Theory

For single objective I For tri-objective optimization, store

L J

Fig.1 Flowchart for DG
allocation in  RDN
considering uncertainty
using GWO algorithm
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4, Simulation Results and Discussion

In this work, allocation of PV and WT DG sources have been determined in 69-bus RDN under uncertainty
depending on their area of location as shown in Table 1. Here power factors of DG sources are considered as
unity and 0.95 lagging. 69-bus RDN data are given in [20] and maximum line current data of 69-bus RDN are
taken from [21]. Real and reactive power losses obtained for 69-bus system are 224.7 kW and 102.13 kVAR
with the help of Backward-Forward Sweep load flow method. In the present work 3 nos. of DGs are optimally
allocated in the RDN. The maximum active power generation rating of PV and WT is 1.5 MW. Different
parameters considered for modelling PV-WT DG sources and correlation coefficients considered between DG
sources and loads are presented in Tables 2-4. In the present work performance of GWO algorithm is compared
with the performance of TLBO and QOTLBO algorithms. Control parameters utilised in GWO algorithms
during simulation are: search agents no.= 40 and maximum iteration no. = 300.

Table 1. Area wise distribution of DG and corresponding type of DG for 69-bus system

Areaof DG Bus no. Type of DG
Area | 2-8, 28-35 PV
Area ll 36-52 PV
Area 1l 9-17, 53-69 WT
Area IV 18-27 WT

Table 2. Parameters used in Beta distribution of PV DG

Parameter Value
Shape parameter of beta distribution function, o 6.38
Shape parameter of beta distribution function, fs 3.43
Short circuit current, I (A) 5.32
Open circuit voltage, Vq. (V) 21.98
Current at maximum power point, Iypp (A) 4.76
Voltage at maximum power point, Viypep (V) 17.32
Voltage temperature coefficient, K, (V/°C) 0.0144
Current temperature coefficient, K; (A/ °C) 0.00122
No. of PV modules, N 20000
Nominal operating temperature of PV cell, Not (°C) 43
Ambient temperature, Tx( °C) 25

Table 3. Parameters used in Weibull distribution of WT DG

Parameter Value
Cut-in wind speed v (m/s) 3
Cut-out wind speed v, (m/s) 20
Rated wind speed v, (m/s) 115
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Rated output power of WT P, (MW) 1.5
Shape parameter of Weibull distribution function, k,  1.75

Scale parameter of Weibull distribution function, c,, 8.78

Table 4. Correlation coefficients of different DG sources and loads

Area of DG/Load DG type/Load Correlation coefficients

Same area PV-PV 0.75
Different area PV-PV 0.4
Same area WT-WT 0.5
Different area WT-WT 0.3
Different area PV-WT 0.05
Same area Load-Load 0.9
Different area Load-Load 0.5
4.1 Optimal allocation of PV and WT DGs in 69-bus RDN considering uncertainty

411 Case 1: Uncertainty based allocation of DG for RPL minimization

Table 5 depicts the mean values of RPL and corresponding standard deviation obtained by TLBO, QOTLBO
and GWO algorithms with DG operating at p.f. unity and 0.95 under uncertainty for Case 1. The results reveal
that mean values of RPL attained by GWO algorithm is significantly less compared to TLBO and QOTLBO
algorithms. Besides that simulation time required per iteration for GWO algorithm is also much less. The
convergence characteristics of the mean values of RPL shown in Fig. 2 reveal that GWO algorithm converges
earlier than other algorithms.

Table 5. Results of RPL reduction attained by different algorithms considering uncertainties

Method p.f.of DG Mean value Standard Bus no. Simulation time
of RPL (MW) deviation (MW) correspf)r_1ding to per iteration
DG position (sec)
TLBO 1 0.0799 0.0217 69, 61, 62 22.72
QOTLBO 1 0.0789 0.0218 66, 61, 62 21.52
GWO 1 0.0761 0.0198 61, 62, 12 10.05
TLBO 0.95 0.0405 0.0275 17, 62, 65 23.27
QOTLBO 0.95 0.0356 0.0253 63, 62, 69 22.02
GWO 0.95 0.0310 0.0260 62, 61, 12 11.32

Fig. 2. Convergence graphs for RPL reduction attained by different algorithms
4.1.2 Case 2: Uncertainty based allocation of DG for VC enhancement

Mean values of VC and corresponding standard deviations obtained by different algorithms for Case 2 are
represented in Table 6. Comparison of the results shows that better results are obtained by GWO algorithm
compared to TLBO and QOTLBO algorithms for the test system. Table 6 also represents that GWO algorithm
takes less simulation times per iteration than other algorithms. Fig. 3 reveals that GWO algorithm converges
faster than other algorithms.
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Table 6. Results for VC improvement attained by different algorithms considering uncertainties

Mean value of Bus no.
voltage S_ta_n dard corresponding to
Method deviation (p.u.) deviation (p.u.) DG position
p.f. of DG Simulation time
per iteration
(sec)

TLBO 1 0.0074 0.0121 63, 20, 60 22.52
QOTLBO 1 0.0065 0.0129 62, 63, 16 21.33
GWO 1 0.0060 0.0122 65, 18, 64 10.04
TLBO 0.95 0.0065 0.0134 69, 60, 65 23.26
QOTLBO 0.95 0.0052 0.0118 62, 65, 24 21.72
GWO 0.95 0.0035 0.0129 65, 63, 14 12.08

Fig. 3. Convergence graphs for VC improvement attained by different algorithms
4.1.3 Case 3: Uncertainty based allocation of DG for VSI enhancement

Table 7 represents the mean values of VSI™* and corresponding standard deviations attained by various
algorithms for Case 3. Here GWO algorithm shows comparatively better result than TLBO and QOTLBO
algorithms. Also GWO takes less simulation time than other algorithms. Fig. 4 demonstrates that convergence
of GWO is faster compared to other algorithms.

Table 7. Results for VSI improvement attained by different algorithms considering uncertainties

Mean value of Standard Bus no. Simulation time
Method p.f. of DG 1 . corresponding to per iteration
VSI deviation o
DG position (sec)
TLBO 1 1.1375 0.0412 64, 57,7 23.26
QOTLBO 1 1.0945 0.0622 69, 62, 64 22.04
GWO 1 1.0908 0.0545 64, 61, 15 10.66
TLBO 0.95 1.0551 0.0605 62, 63, 19 24.21
QOTLBO 0.95 1.0546 0.0593 63, 62, 16 22.82
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GWO 0.95 1.0513 0.0589 64, 61, 16 13.12

Fig. 4. Convergence characteristics for VSI™ obtained by different algorithms
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4.1.4 Case 4: Uncertainty based allocation of DG for RPL minimization, VC and VSI
enhancement

Table 8 depicts the mean values and standard deviations of RPL, VC and VSI™ obtained for Case 4 by applying
diffderent algorithms. Here also the simulation time for GWO algorithm is comparatively less compared to other
algorithms. Fig. 5 represents pareto-optimal front graphs achieved by GWO algorithm in Case 4. In this case
also GWO represents comparatively better performance than TLBO and QOTLBO.

Table 8. Performance analysis of different algorithms for Case 4

Objective function value

Mean Standard
Method value of deviation

RPL of RPL

(MwW)  (MW)

DG operating at p.f. = 1

TLBO 0.0887 0.0172
QOTLBO  0.0817 0.0213
GWO 0.0797 0.0191

DG operating at p.f. =0.95

TLBO 0.0375  0.0241
QOTLBO 0.0341  0.0245
GWO 0.0328  0.0256

Mean value
of voltage
deviation

(p.u)

0.0069
0.0064
0.0063

0.0044
0.0044
0.0035

Standard
deviation
voltage

deviation (p.u.)

of

0.0120
0.0133
0.0129

0.0120
0.0121
0.0130

Mean
value of
vsit

1.0927
1.0943
1.0906

1.0529
1.0554
1.0514

Standard
deviation
of VSI?!

0.0545
0.0624
0.0545

0.0602
0.0594
0.0600

Bus No.

64,25,62
15,62,64
64,61,16

63,19,64
63,62,18
64,61,14

Simulation
time per
iteration

(sec.)

912.55
811.95
472.52

943.75

842.16
494.26
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Mean value of (1/Voltage stability index)

1.094

1.092

1.09
12

x10°

Mean voltage deviation (p.u.) Mean active power loss (MW)

With DG operating at unity p.f. With DG operating at 0.95 lagging p.f.

X :0.0328
1.056 Y : 0.0035
Z:1.0514

X: 0.0797
Y : 0.0063
Z : 1.0906

11.054

1.052

0.09

0.036

*100 0.034
3 0.032

Mean value of (1 / Voltage stability index)

0.08
6 0.075

Fig. 5. Pareto-optimal front attained by GWO algorithm for Case 4

5.

Conclusion

The ideal positions of PV-WT DG sources in RDN have been found in this study to minimize RPL, to improve
system voltage and to enhance the VSI while accounting for uncertainties in PV, WT DG output power and
load. In this work, TLBO, QOTLBO and GWO algorithms are used to find the best placements for DG sources
in 69-bus test RDN. The results reveal that when DG sources are optimally allocated using the MOGWO,
system performance quality is improved along with superior computing efficiency. When uncertainties in the
RDNs are taken into account, the simulation results show that the probabilistic method can yield more efficient

solutions.
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