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Abstract:- Major problem of distribution network is to allocate Distributed Generation (DG) optimally to 

enhance the performance of the system. In this research, two types of DG sources are ideally positioned in a 69-

bus radial distribution network (RDN) under uncertainty to minimize network real power losses (RPL), 

maximize voltage control (VC), and improve voltage stability index (VSI). The uncertainty in power availabilit y 

from photo voltaic (PV) and wind turbine (WT) DG sources along with load demand, have been simulated using 

the 2m point estimate approach (PEM). From the results obtained it is observed probabilistic approach provides 

more realistic results considering the uncertainties present in the RDN. In this paper comparative assessment of 

Grey Wolf Optimization (GWO) with Teaching Learning Based Optimization (TLBO) and Quasi-Oppositional 

TLBO (QOTLBO) techniques have been performed. Results prove the efficacy of GWO algorithm over other 

existing techniques. 

Keywords: Distributed Generation, Real power losses, Voltage Control and stability, Uncertainty, Point 

estimate method, Grey Wolf Optimization. 

 

1. Introduction 

Utilisation of DG sources in RDN is now required to fulfil rising load demand and the fast deployment of fossil 

fuels. Among the several DG technologies because of their lower operating costs, higher service dependability 

and enhanced power quality, PV and WT are the most often employed DG sources in power system networks. 

However, wind and solar energy sources provide variable and unpredictable power because of the fluctuating 

behaviour of radiation from the sun and air velocity. Besides these, load demand of the network is also 

uncertain. In the current work, optimal location of PV and WT DG source in RDNs has been determined to 

reduce RPL, enhance voltage stability and improve voltage profile of the systems considering uncertainties 

present in DG power output as well as load criterion. The 2m point estimate method (PEM) was used to model 

the volatility in load demand and electricity supply from both wind and solar DG units.  

Allocation of DG sources in optimum places have profoundly impacted on many factors of RDNs. In [1], M.H. 

Moradi and M.Abedini, in [2] S. Sultana and P.K. Roy, in [3] Sharma et al. determined DG allocation in RDNs 

to reduce loss and to enhance voltage profile and voltage stability of the networks by applying different 

optimization techniques. Many other researchers also determined DG allocation in RDNs to improve 

performance of the networks as depicted in [4-11]. But only few researchers considered uncertainties of DG 

sources and load in DG allocation problems. In the present work the authors have determined optimal placement 

of PV-WT based DG sources in RDN recognizing wind uncertainty, solar power output and load demand by 

applying Multi-objective Grey Wolf Optimization (MOGWO). In comparison to other well-known meta-

heuristic techniques, the GWO algorithm [12] is able to deliver better results for various benchmark functions 

since it is modelled on the organizational hierarchy and hunting process of the grey wolves. Additionally, the 

GWO algorithm outperforms many previously developed optimization algorithms in terms of exploration and 

exploitation. The enhanced performance of the GWO method has prompted the present authors to use it to 

assign DG sources in RDN in the most effective way possible in order to decrease RPL, to control voltage, and 
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preserve voltage stability in the face of uncertainty. To show the usefulness and superiority of the algorithm, the 

GWO algorithm's findings were compared to the TLBO and QOTLBO algorithms. 

2. Problem Formulation 

The current study intends to minimise RPL, maximize VC and increase VSI of RDNs by optimally deploying 

PV and WT-based DG sources in networks while accounting for variability in wind, solar power production, 

and demand of the load. In this work, variation of power available from WT and PV DG sources are modelled 

by Weibull and beta distribution, while uncertainty in load demand is modelled as a normal distribution. 

 

2.1 Modeling of wind power  

The unpredictable power available from WT is formulated as [13,14]: 
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where wind speed is v; cut-in wind speed is vci; cut-out wind speed is vco; rated wind speed is vr; rated output 

power of WT is Pr. 

The following formulation below shows the probability density function (PDF) of wind speed behavior 

[13,14,15]: 
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,      where   vr < v  ≤ vco                                       (5) 

where kw and cw are the shape and scale factors of Weibull distribution function; The mean (µw) and standard 

deviation (σw) of wind speed are calculated as follows:  
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where Г represents the gamma function.  

2.2 Modeling of PV power  

The power output from PV is expressed as follows [16]: 
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where si is the solar irradiance in kW/m
2
; sa is the average solar irradiance; Tc is the cell temperature in ºC; TA is 

the ambient temperature in ºC; NOT represent the nominal operating temperature of a PV cell in ºC (Degree 

Celsius); Kv and Ki. are voltage and current temperature coefficients in  V/ºC and A/ºC; Ns is the number of PV 

modules; FF is the fill factor; Isc is the short circuit current in Amp; Voc is the open circuit voltage in Volt; the 

current and voltage at maximum power point in Amp and Volt are denoted by IMPP and VMPP respectively. 

Beta distribution function is used to replicate the stochastic behaviour of solar irradiation, as follows [16]: 
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where, αs and βs are the shape parameters of the beta distribution function; Г represents the gamma function. 

The mean (μs) and standard deviation (σs) of solar irradiance are calculated as follows using the aforementioned 

formulae: 
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2.3 Modeling of load demand  

The following is a representation of the probability density function for load demand [13,14]: 

ppploadload PPf  2/]2/)(exp[)( 22
                                                                                  (16)

 

 where μp and σp are the mean and standard deviation of load demand. 

2.4 2m Point Estimate Method along with spatial correlations between WT, PV sources and load 

The present work employs Hong’s 2m PEM method to model the load demand and the available output power 

of WT and PV units which are both unpredictable [17,18]. In 2m PEM, each random variable in a stochastic 

situation is replaced with two deterministic points on each sides of the relevant distribution function's mean 

value. In the case of m input random variables (IRVs), the research problem is solved twice for each random 

variable: once for the point above the mean and again for the point below the mean. Other random variables are 

held at their mean value in this case. Finally, the output random variable’s mean and standard deviation of can 

be determined by applying 2m PEM. The spatial correlations among sources and loads have been taken into 
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account in this study using 2m PEM technique. This is accomplished by converting correlated input variables 

into uncorrelated variables via orthogonal transformation [19].  

2.5 Mathematical formulations of the DG allocation problem  

2.5.1 Case 1: Minimization of RPL  

The objective function for minimizing RPL of the RDN in p.u. is expressed as: 

2
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where, RPLP  is total RPL of Nb - bus RDN; Br is the total branch number in the RDN ( 1Br Nb  ); iI
 
is 

the i
th
 branch current; iR

 
is the i

th
 branch resistance. 

Considering uncertainty, the objective function to minimize the mean value of RPL of the network is stated as: 
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                                                             (18) 

where, 1_m f or _ RPLm P
 
is the mean value of RPL in p.u. which is calculated by 2m PEM method.  

2.5.2 Case 2: Improvement of VC 

The objective function to improve VC of RDN in p.u. is expressed as: 

2
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where, jV
 
is the voltage of j

th
 bus; ratedV

 
is the rated voltage (1 p.u.). 

Considering uncertainty, the objective function to minimize mean value of VC of RDN is expressed as: 

2 2( _ )Min OF Min m f
                                                  (20) 

where, 2_m f
 
is the mean value of VC in p.u. calculated by 2m PEM method.  

2.5.3 Case 3: Enhancement of VSI  

The objective function to enhance VSI of the RDN is expressed as: 
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where, VSI of node n given by:
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where, sV
 
is the voltage of bus s; ( )nP n

 
and ( )nQ n  are total real and reactive power load fed through bus n ; 

iR
 
and iX  are the i

th
 branch resistance and reactance;  

Considering uncertainty, the objective function to minimize the mean value of 3f  is expressed as: 

3 3( _ )Min OF Min m f
                                                  (23) 
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where,
 3_m f

 
is the mean value of 3f  

calculated by using 2m PEM method. 

2.5.4 Case 4: Minimization of RPL alongwith improvement of VC and VSI  

The objective function for minimization of RPL alongwith improvement of VC and VSI is expressed as: 

 )()()( 3322114 fwfwfwf 
                                                                                               

(24) 

where, 1 2 3, ,w w w
 
are the weighting factors such that 1 2 3 1w w w   .  

Considering uncertainty, the objective function to minimize mean value of  f4 is expressed as: 

)_( 44 fmMinOFMin                                                                               (25) 

where, m_ f4 is the mean value of  f4 calculated by using 2m PEM method. 

2.6 Equality and inequality constraints 

The limitations utilised to solve the cases listed above are as follows: 

2.6.1 Load balance constraints 

The following equations must be met for each bus: 
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where, gjP  and gjQ  are generator’s active power and reactive power output at bus j; djP
 
and djQ

 
are active 

power demand and reactive power demand at bus j; jV  is voltage of bus j; Yjk admittance of the line connecting 

bus j and bus k ; j  
is phase angle of voltage at bus  j; Nb denotes total number of buses in a particular RDN; 

jk denotes admittance angle of line connected between bus  j and k. 

2.6.2 Voltage limits 

Each bus's voltage must be maintained within its a specified limits i.e.  

min max

j j jV V V 
                                                         (28) 

where, jV  is voltage of bus j; 
min

jV and 
max

jV are the minimum and maximum voltages at bus j;  

2.6.3 Line current limit constraint 

Each branch's line current must be maintained within branch's maximum current carrying capability limit. It is 

represented as: 

max

i iI I
                                        

(29)                                    

where iI denotes the i
th
 branch current of the RDN; 

max

iI denotes the maximum current carrying capacity of i
th

 

branch current of the RDN; 

3. Algorithm for optimal placement of DG in RDN considering uncertainties 
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In the present work locations of DG sources are the decision variables whereas power generated by WT, PV DG 

sources and active powers of load demand at each bus (except bus no. 1) are the uncertain variables. In this 

work objective functions are evaluated by using 2m PEM technique. In the present work GWO has been applied 

for optimal placement of DG in a RDN.   Fig. 1 depicts below the step-by-step techniques for DG allocation in 

RDN considering uncertainty using GWO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Flowchart for DG 

allocation in RDN 

considering uncertainty 

using GWO algorithm 
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4. Simulation Results and Discussion 

In this work, allocation of PV and WT DG sources have been determined in 69-bus RDN under uncertainty 

depending on their area of location as shown in Table 1. Here power factors of DG sources are considered as 

unity and 0.95 lagging. 69-bus RDN data are given in [20] and maximum line current data of 69-bus RDN are 

taken from [21]. Real and reactive power losses obtained for 69-bus system are 224.7 kW and 102.13 kVAR 

with the help of Backward-Forward Sweep load flow method. In the present work 3 nos. of DGs are optimally 

allocated in the RDN. The maximum active power generation rating of PV and WT is 1.5 MW. Different 

parameters considered for modelling PV-WT DG sources and correlation coefficients considered between DG 

sources and loads are presented in Tables 2-4. In the present work performance of GWO algorithm is compared 

with the performance of TLBO and QOTLBO algorithms. Control parameters utilised in GWO algorithms 

during simulation are: search agents no.= 40 and maximum iteration no. = 300. 

Table 1. Area wise distribution of DG and corresponding type of DG for 69-bus system 

 

 

 

 

 

 

Table 2.  Parameters used in Beta distribution of PV DG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Parameters used in Weibull distribution of WT DG 

Area of DG Bus no. Type of DG 

Area I 2-8, 28-35 PV 

Area II 36-52 PV 

Area III 9-17, 53-69 WT 

Area IV 18-27 WT 

Parameter Value 

Shape parameter of beta distribution function,  αs 6.38 

Shape parameter of beta distribution function, βs 3.43 

Short circuit current, Isc (A) 5.32 

Open circuit voltage, Voc (V) 21.98 

Current at maximum power point, IMPP (A) 4.76 

Voltage at maximum power point, VMPP (V) 17.32 

Voltage temperature coefficient, Kv (V/ºC) 0.0144 

Current temperature coefficient, Ki (A/ ºC) 0.00122 

No. of PV modules, Ns 20000 

Nominal operating temperature of PV cell, NOT  (ºC) 43 

Ambient temperature, TA( ºC) 25 

Parameter Value 

Cut-in wind speed vci (m/s) 3 

Cut-out wind speed vco (m/s) 20 

Rated wind speed vr  (m/s) 11.5 
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Table 4.  Correlation coefficients of different DG sources and loads 

 

 

 

 

 

 

 

4.1 Optimal allocation of PV and WT DGs in 69-bus RDN considering uncertainty 

4.1.1 Case 1: Uncertainty based allocation of DG for RPL minimization 

Table 5 depicts the mean values of RPL and corresponding standard deviation obtained by TLBO, QOTLBO 

and GWO algorithms with DG operating at p.f. unity and 0.95 under uncertainty for Case 1. The results reveal 

that mean values of RPL attained by GWO algorithm is significantly less compared to TLBO and QOTLBO 

algorithms. Besides that simulation time required per iteration for GWO algorithm is also much less. The 

convergence characteristics of the mean values of RPL shown in Fig. 2 reveal that GWO algorithm converges 

earlier than other algorithms.  

Table 5. Results of RPL reduction attained by different algorithms considering uncertainties 

Fig. 2. Convergence graphs for RPL reduction attained by different algorithms 

4.1.2 Case 2: Uncertainty based allocation of DG for VC enhancement 

Mean values of VC and corresponding standard deviations obtained by different algorithms for Case 2 are 

represented in Table 6. Comparison of the results shows that better results are obtained by GWO algorithm 

compared to TLBO and QOTLBO algorithms for the test system. Table 6 also represents that GWO algorithm 

takes less simulation times per iteration than other algorithms. Fig. 3 reveals that GWO algorithm converges 

faster than other algorithms. 

Rated output power of WT Pr (MW) 1.5 

Shape parameter of Weibull distribution function, kw 1.75 

Scale parameter of Weibull distribution function, cw 8.78 

Area of DG/Load DG type/Load Correlation coefficients 

Same area PV-PV 0.75 

Different area PV-PV 0.4 

Same area WT-WT 0.5 

Different area WT-WT 0.3 

Different area PV-WT 0.05 

Same area Load-Load 0.9 

Different area Load-Load 0.5 

Method p.f. of DG Mean value 

of RPL (MW) 

Standard 

deviation (MW) 

Bus no. 

corresponding to 

DG position 

Simulation time  

per iteration 

(sec) 

TLBO  1 0.0799 0.0217 69, 61, 62 22.72 

QOTLBO  1 0.0789 0.0218 66, 61, 62  21.52 

GWO  1 0.0761 0.0198 61, 62, 12  10.05 

TLBO  0.95 0.0405 0.0275 17, 62, 65 23.27 

QOTLBO 0.95 0.0356 0.0253 63, 62, 69 22.02 

GWO  0.95 0.0310 0.0260 62, 61, 12 11.32 
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Table 6. Results for VC improvement attained by different algorithms considering uncertainties 

Fig. 3. Convergence graphs for VC improvement attained by different algorithms 

4.1.3 Case 3: Uncertainty based allocation of DG for VSI enhancement 

Table 7 represents the mean values of VSI
-1

 and corresponding standard deviations attained by various 

algorithms for Case 3. Here GWO algorithm shows comparatively better result than TLBO and QOTLBO 

algorithms. Also GWO takes less simulation time than other algorithms. Fig. 4 demonstrates that convergence 

of GWO is faster compared to other algorithms.  

Table 7. Results for VSI improvement attained by different algorithms considering uncertainties 

 

Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p.f. of DG 

Mean value of 

voltage 

deviation (p.u.) 

Standard 

deviation (p.u.) 

Bus no. 

corresponding to 

DG position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation time 

per iteration 

(sec) 

TLBO 1 0.0074 0.0121 63, 20, 60 22.52 

QOTLBO 1 0.0065 0.0129 62, 63, 16 21.33 

GWO 1 0.0060 0.0122 65, 18, 64 10.04 

TLBO 0.95 0.0065 0.0134 69, 60, 65 23.26 

QOTLBO 0.95 0.0052 0.0118 62, 65, 24 21.72 

GWO 0.95 0.0035 0.0129 65, 63, 14 12.08 

Method p.f. of DG 
Mean value of  

VSI
-1

 

Standard 

deviation 

 Bus no. 

corresponding to 

DG position 

Simulation time 

per iteration 

(sec) 

TLBO 1 1.1375 0.0412 64, 57, 7 23.26 

QOTLBO 1 1.0945 0.0622 69, 62, 64 22.04 

GWO 1 1.0908 0.0545 64, 61, 15 10.66 

TLBO  0.95 1.0551 0.0605 62, 63, 19 24.21 

QOTLBO  0.95 1.0546 0.0593 63, 62, 16 22.82 
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Fig. 4. Convergence characteristics for VSI
-1 

obtained by different algorithms 

 

4.1.4 Case 4: Uncertainty based allocation of DG for RPL minimization, VC and VSI 

enhancement  

Table 8 depicts the mean values and standard deviations of RPL, VC and VSI
-1 

obtained for Case 4 by applying 

diffderent algorithms. Here also the simulation time for GWO algorithm is comparatively less compared to other 

algorithms. Fig. 5 represents pareto-optimal front graphs achieved by GWO algorithm in Case 4. In this case 

also GWO represents comparatively better performance than TLBO and QOTLBO. 

Table 8. Performance analysis of different algorithms for Case 4 

Method 

Objective function value 

Bus No. 

Simulation 

time per 

iteration 

(sec.) 

 Mean 

value of 

RPL 

(MW) 

Standard 

deviation 

of RPL 

(MW) 

Mean value 

of  voltage 

deviation 

(p.u.) 

Standard 

deviation of  

voltage 

deviation (p.u.) 

  Mean 

value of 

VSI
-1

 

Standard 

deviation 

of VSI
-1

 

DG operating at p.f. = 1 

TLBO  0.0887 0.0172 0.0069 0.0120 1.0927 0.0545 64,25,62 912.55 

QOTLBO  0.0817 0.0213 0.0064 0.0133 1.0943 0.0624 15,62,64  811.95 

GWO  0.0797 0.0191 0.0063 0.0129 1.0906 0.0545 64,61,16 472.52 

DG operating at p.f. = 0.95 

TLBO  0.0375 0.0241 0.0044 0.0120 1.0529 0.0602 63,19,64 943.75 

QOTLBO  0.0341 0.0245 0.0044 0.0121 1.0554 0.0594 63,62,18 842.16 

GWO  0.0328 0.0256 0.0035 0.0130 1.0514 0.0600 64,61,14 494.26 

 

GWO  0.95 1.0513 0.0589 64, 61, 16 13.12 
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Fig. 5. Pareto-optimal front attained by GWO algorithm for Case 4  

5. Conclusion 

The ideal positions of PV-WT DG sources in RDN have been found in this study to minimize RPL, to improve 

system voltage and to enhance the VSI while accounting for uncertainties in PV, WT DG output power and 

load. In this work, TLBO, QOTLBO and GWO algorithms are used to find the best placements for DG sources 

in 69-bus test RDN. The results reveal that when DG sources are optimally allocated using the MOGWO, 

system performance quality is improved along with superior computing efficiency. When uncertainties in the 

RDNs are taken into account, the simulation results show that the probabilistic method can yield more efficient 

solutions. 
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