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1. Introduction

Summability theory plays a very important role in the field of approximation theory. It became very interesting
to find the estimate error (degree of approximation) of functions by using various product summability means.
Liendler [20], Rhoades [4], Qureshi and Neha [17], Sahney and Goel [9] have determined the degree of
approximation of functions belonging to Lipschitz class by Cesaro, Norlund and generalized Norlund (N,p,q)
means. Later on Lal and Singh [7], Kushwaha [5] have studied the error estimates by trigonometric Fourier
approximation of functions belonging to various Lipschitz classes by (C,1)(E,1) and (C,2)(E,1) product
summability means respectively. Recently Nigam and Sharma [16] have determined the degree of
approximation of functions belonging toLip{{(t),r} class by using (C,1)(E, §)product method. But nothing
seems to have been done so for to obtain the estimate of the error of signals (functions) belonging to
Lip{¢(t),r} class by using (C,2)(E,&)product summability method which have second order Cesaro means.
The product of Euler means with second order Cesaro means is an advantage over the (C,1)(E,1)
and(C, 2)(E, 1) product summability means. So we can say that the results of Nigam and Sharma [2] and
Kushwabha [5] are the particular case of the result that we have determined.

2. Definitions and Notations

Let Z u, be a given infinite series with {s,} for its n** partial sum.
n=0

Let {t,f‘s } denote the sequence of (E,8) = EZ means of the sequence{s, }. If the (E, &) transform of {s,} is
defined as

n
n

tf"(f;x)=ﬁ2(k)6”_ksk -5 as n-oow (2.1)

k=0

The series Z U, is said to besummable to the number s by the (£, §) method. (Hardy[1])
n=0

Let {t,fz} denote the sequence of (C,2) = C? mean of the sequence{s, }. If the (C,2) transform of s, is
defined as
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t2(f;x) = k+1Ds(f;x)>s as n - o (2.2)

2 n
n+1(n+2) kzzo(" Bl

Then the series Z u, issaid to be summable to the number s by the (C, 2)method . (Cesaro)
n=0

Thus if the (C, 2) transform of (E, &) transform defines (C, 2)(E, §) transformation and denoted by C2. ES.
Thus if

CEscre ) — 2
n (f'x)_(n+1)(n+2)

i(n —k+1) {ﬁi (ﬁ) Sk_vsk}] -s as n-o (23)
k=0

v=0

Wheret,sz‘f denote the sequence of C,Es means that is (C,2)(E, &) product means of the sequence s,. The

seriesZun is said to be summable to the number s by (C,2)(E,§) method. We know that (C,2)(E, &)
n=0
method is regular.

Let f be 2m-periodic, Lebesgue integrable function on [—m, ] and the Fourier series associated with f(x) at a
point x is defined by

1 (o] (o]
f(x)~za0 + Z(an cosnx + b, sinnx) = Z A, neN (2.4)
n=1 n=0

with partial sum s, (f; x).
We use following notations through out the paper

) =fx+t) = 2f(x) + f(x —t)

n k
B 1 1 k\ ,_,sin(v+1/2)t
() = n(n+1—)<n+2);(" “ktD mz {() T T}l 25)
And L,- norm is defined by
2m %
Ifl, = ( [ ireor dx) . or=1
0

and the estimation of errors which is known as degree of approximation of a function f given by Zygmund [19].

E,(f) = min|lt, (x) — fCIl,

wheret,, (x) is some n'" degree trigonometric polynomial. This method of approximation is called the
trigonometric Fourier approximation.

A function f € Lipa if
flx+1t)—flx)=0(¢tl*) for 0<a<l, t>0.
and function f € Lip(a,r) if

1

2m r
<f |f(x+t)—f(x)|rdx> =0(|t]*) for 0<ac<l, r=>1.
0

Given a positive increasing function ¢(t) and an integer r > 1,t € Lip{{(¢),r} if
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1

2n ¥
(f lfGx+1t) — f(x)lrdx> =0{¢(®)}
0

If{(t) = t*then Lip{{(t),r} class coincides with the Lip(a,r) class and if r —» oo then Lip(a,r) class reduces
to the Lipa class.

Kushwahal[5] has proved a theorem on approximation of function by (C, 2)(E, 1) product summability method
as following-

Theorem:- If f: R — R is 2m-periodic,Lebesgueintegrable on [— T, n] and belonging to Lip(a, r) class then the
estimate error of signals (functions) f by the (C, 2)(E, 1) product means of Fourier series of f satisfies

Zo(n k4 1) {Ziki (ﬁ) s, (f; x)}l (2.6)

C2E1 (£, — 2
fn (f'x)_(n+1)(n+2)

of its Fourier series is given by

1

lczEE = £1l = 0{¢ (25)} 2.7)

n+1

3. Main Theorem

Theorem-If a function fbe2m periodic, Lebesgue Integral on [—m, ] and belonging to Lip{{(t), r} class then
the estimate error of functions (signals) f by the (C, 2)(E, ) product means of Fourier series of f is given by

lc2e2 —f|l, = 0 [(n - 1)1”((7%1)] (3.1)

Provided that ¢ (t) satisfies the following conditions:

1 r 1r
n (| (o) _ 1
([58) o) ol

and
T M r 1/r ~ )
{fl/(nﬂ)( g() ) dt} =0((n+1)°) (3.3)

where: is an arbitrary positive number such that s(1 —¢) — 1> 0, %+§ =1, 1 <r < oo, These conditions
(3.2) and (3.3) hold in C2EY that is (C,2)(E, 8) means of the Fourier series.

4, Lemmas

We prove following lemmas for the proof of main theorems:

Lemma 1- |k, ()| = 0(n+1); for OStSﬁ.

1 .
Proof:-For 0<t< —7sin nt < n sint.

n k . 1
1 1 k » sin (v + 5) t
ren (O] m(n+ D(n+ 2) ;(”_k“) (1+5)k2){(v)5k sin (2) }
= = >
n k
1 1 K\ ey (2v + 1) sin(t/2)
t(n+ 1(n +2) kzo(” —k+D (1+6)F ZO {(v) " sin(t/2) }H
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1
(n+ 1) (n+2)

k
ﬁ;{(f) sV (2 + 1)}
k
i+ D) <1+6>'<{Z( )sk—VH

;(n—k+1)
kzzo(n—k+1)

1
a(n+ 1)(n+2)

Since E'ﬁ:o(',f)t?k“’ = (14 8)*

! Zn:(n—k+1){(2k+1)

1
"t Dt 2) |4y sy (1t ‘”k}

1+

1 n
=TT D2k D@D

1 n
= m;{(n —k+ 1)(2k + 1)}

1
- m;{(" + 1)k + 1) — k(2k + 1)}

n+1) s 1 n
IR e e PILCRR

Y )

n+1)
T Tt DT 2)2(2" - i DmT D 1)(n T2

3 (n+1)3 1 nn+1)2n+1) nn+1)
_n(n+1)(n+2)_n(n+1)(n+2)[ 6 T2 ]
3 (n+1)3 1 nn+1)(4n+5)
_n(n+1)(n+2)_n(n+1)(n+2){ 6 }
=0n+1)

Lemma 2- |x,(t)| =0 (%), for ﬁ <t<m

Proof:-For # <t < m; byapplying Jordans lemma sin(t/2) = t/m. and sinnt < 1.

Z 1 k k N sin (v + 1) t

;(n —k+1) m;{(y) 5k Sm—(%)z}
k

Z(" K+ Doy 5)k Z {(k) LA t/in}l

v

7r(n+1)(n+2)t{z( - {(1 +O)k 4 H

1 K
(n+1)(n+2)t[z( B {(1+5)k (1+9) H

1

@l = T DmT D

S Tt 1)(n +2)
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1
(n+1)(n+2)t{z( _k+1)}

(n+l)(n+2)t{z( - zk}

n+1 4

T )+ 2t e Z( )~ (n +1)(n+ 2)t kZ(;k

__n(nh+)  n(+D/2
S (+D(+2)t  (n+D(n+2)t

5. Proof of the theorem
Following Titchmarsh [6] and using Riemann-Lebesgue theorem s, (f; x)nt" partial sum of the series is given
by
sin(n + 1/2)t
sint/2

(0 - f) =5 [ 6®)
0

Using the (E, §) transform of s,, (f; x) is given by

K
(E5) _1 (" e® 1 kN ooy
= f) = 2m ), sin(t/2) {(1 + 8)k VZO (v) 547 sin(v + 1/2)t} dt

Now denoting (C, 2)(E, §) transformation of s,, (f; x) is given by

k
) sin(v + 1/2)t
aA+orx {Z 5k f O/ dt}l

v=0

C2)(ES
6P - fe0 =

1 n
_n(n+1)(n+2)];(n_k+1)

- f "o (©re, (Dt

( f f )qs(t)xn(t)dt

=1 + L,(say)

We consider

1/(n+1)
IL| sf 16O, (D]de
0

Using Holder’s inequality and the fact that ¢ (¢) € Lip{¢(t), r}and using the lemma (1)-

% 1 s 1/s
< lfmn t;&) dt]. lfo(nﬂ){i(t)lr:n(t)l} dt]
1 \[ YD (@l oN° 17
N 0(n+1)U0 { t }dt]
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1

fﬁ (n + 1)¢(0)
0 t

N O(n-lm)

Since {(t) is a positive increasing function and using second mean value theorem for integrals-

1/(n+1)
L= O(nil)dnil){i + tl_sdt}
- ofe (i e

} dtl by lemma 1.

1\s

1/s

1
Forsome 0 <e <—.
n+1

- ofe o+ v

= 0{( +1)1( ! )} Si 1+1—1
- n ¢ n+1 mee LTSS
Now consider

T

l< [ @il
1/(n+1)

Using Holders inequality

2

" wwm|’]”
1| SUl/(n+1){ {(® } a

s 1/s
=U1{“%T®?dt

(n+1)
r s 1/s
= 0{(n+ 1)} f . {—g(t)i'fjl(t)l} dt
| (n+1)
- s 1/s
= 0o{(n+1)4 fl %} dt ,by lemma 2
| (n+1)

. 1 1
Now putting ¢t =~ , and dt = ——dx

(n+1) s 1/s
12 — 0{(,” + 1)1} |:f * {((1/35)} d_x]
1

/n xl—l xZ

Since {(t) is a positive increasing function and using second mean value theorem for integrals

1 +D) gy /s
I, = 0{(n+1)t((m>}[f m] , forsome 1/m<n<m+1)
1

1 M+D gy /s
= 0{(n+ 1)15(1”—1)}[[1 m] , forsome 1/m<1<(n+1)
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psooo1 3+ 1/s
0 (n+1)€(n )} {5(1—0—1}1 l

{
oftn+ ¢ (- )} [en + Di-0-17]
4

0

(n T 1)} (G 1]

1 1 1
1/r i — —_ =
{(n+1) ('( +1)} Since r+s 1
Combining I; and I, yields-
1
2 _ — 1/r
|C2ES ~ 1] 4m+n dmmﬂ

Now using L,- norm, we get

lczed — £l

{fMMHf—ﬂ%&Fﬁ

0

Uozn {(n + )¢ (ﬁ)}r dx]l/r
— {(n + DV (%H)} {(Lanx>1/r}

1
= 1re——
{(n + D¢ (n + 1)}
This completes the proof of the theorem.
6. Some particular cases
1. If {(t) =t*,0 < a <1 then Lip{¢(¢t),r} class r = 1, reduces to Lip(a,r) class, then the estimate
error of function (signals) by (C, 2)(E, §) means is given by
1
lc2ee —f|l =0 (na_—m) 1/r<a<1. (6.1)
2. If § = 1 then the estimate error of function (signals) belonging to Lip{{(t),r} class by (C, 2)(E, 1)
means is given by
1
MQQ—N=OQNYQ». 62)
3. If r - oo in case (1), then lip(a, r) class reduces to the class lipa, then the estimate error of function
(signals) by (C, 2)(E, ) means is given by
1
|c2e —f||=0 <n_"‘) ) 0<a<1 (6.3)
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