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Abstract:-In the comprehensive study, we introduce FARM EASY, an innovative IoT-enabled agricultural 

monitoring system tailored to cater to the diverse needs of farmers. The system integrates sensors for monitoring 

moisture levels, controlling water pumps, and tracking temperature and humidity, ensuring a holistic approach 

to precision farming. The research delves into the evaluation of four machine learning models: Random Forest, 

Support Vector Machine (SVM), Neural Network, and Decision Tree. Notably, the experiments incorporated 

different crops, including but not limited to wheat, rice, soyabeans, to assess the models’ adaptability across a 

variety of agriculture senarios. Amidst the models tested, SVM emerges as the most promising candidate, 

showcasing exceptional performance. Specifically, the SVM model ith C= 1.0 and ’rbf’ kernel achieves an 

accuracy of 0.92, precision of 0.94, recall of 0.89, F1 score of 0.91, and ROC AUC of 0.95. these findings 

highlight the potentional of FARM EASY and machine learning to revolutionize precision agriculture across 

various crops, offering a tailored and data-driven approach for sustainable farming practices.  
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1. Introduction 

In recent years, the agricultural landscape has witnessed a transformative shift propelled by advancements in 

technology, giving rise to the era of precision agriculture [1]. This paradigm shift seeks to optimize farming 

practices through the integration of cutting-edge technologies, and one such groundbreaking innovation is the 

Internet of Things (IoT). The amalgamation of IoT with agriculture has given birth to intelligent monitoring 

systems, and our contribution to this intersection is FARM EASY—a sophisticated solution designed to 

empower farmers with data-driven insights for informed decision-making [2].FARM EASY stands as a 

testament to the potential of leveraging IoT technologies in the agricultural sector. The system is equipped with 

a myriad of sensors meticulously designed to measure crucial parameters affecting crop health and yield [3]. 

These sensors include those dedicated to monitoring moisture levels in the soil, controlling water pumps for 

efficient irrigation, and tracking ambient temperature and humidity—key variables that influence plant growth. 

By employing FARM EASY, farmers gain real-time access to critical data, enabling them to make timely and 

informed decisions to optimize crop production [4].The uniqueness of our approach lies not only in the 

integration of IoT for real-time data collection but also in the incorporation of machine learning models to 

further enhance system performance. Recognizing that different crops have distinct requirements, our 

experiments encompassed a diverse range of crops, including staples such as wheat, rice, and soybeans [5]. This 

multi-crop evaluation aims to ensure the adaptability and effectiveness of FARM EASY across various 

agricultural scenarios, catering to the diverse needs of farmers worldwide.The machine learning component of 

FARM EASY involves the exploration of four distinct models: Random Forest, Support Vector Machine 

(SVM), Neural Network, and Decision Tree [6]. Each model underwent meticulous tuning of hyperparameters 

to optimize its performance in the context of precision agriculture. Our research aims to not only assess the 

accuracy of these models but also to delve into metrics such as precision, recall, F1 score, and ROC AUC, 

providing a comprehensive evaluation of their efficacy in predicting and optimizing agricultural outcomes 

[7].Among the models tested, the Support Vector Machine with a C value of 1.0 and an 'rbf' kernel emerged as 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 6 (2023) 

__________________________________________________________________________________ 

1916 

the most promising performer. This model exhibited exceptional accuracy, precision, recall, F1 score, and ROC 

AUC values, highlighting its potential to serve as a robust predictive tool within the FARM EASY framework. 

The findings underscore the significance of machine learning in agriculture, showcasing how intelligent 

algorithms can contribute to the efficiency and sustainability of farming practices[8-9].As we embark on this 

exploration of FARM EASY, it is crucial to recognize the broader implications of our work. Beyond the 

immediate benefits to farmers, our research contributes to the growing body of knowledge in the fields of 

precision agriculture, IoT applications, and machine learning in farming[10-13]. By bridging the gap between 

technology and agriculture, FARM EASY represents a step forward in creating a more resilient and sustainable 

future for global agriculture. In the subsequent sections, we delve deeper into the methodology, results, and 

implications of our research, offering a comprehensive understanding of the potential of FARM EASY in 

revolutionizing precision agriculture. 

2. Literature Review 

The literature reveals a growing interest in the fusion of precision agriculture and the Internet of Things (IoT). 

This integration is recognized for its potential to transform farming practices by providing real-time data on 

environmental conditions, crop health, and resource utilization. Such technological advancements aim to 

improve decision-making, enhance resource efficiency, and ultimately boost crop yield [14]. Numerous smart 

agriculture monitoring systems have been developed, showcasing the diverse applications of IoT in agriculture. 

These systems commonly integrate sensors to measure soil moisture, control irrigation, and monitor climatic 

conditions. The adoption of these technologies contributes to sustainable farming practices by optimizing water 

usage and minimizing resource wastage. Machine learning (ML) algorithms have gained prominence in 

precision agriculture for their ability to analyze large datasets and extract valuable insights. ML models are 

employed to predict crop yields, detect diseases, and optimize resource allocation. These applications 

underscore the adaptability of ML in addressing the complex challenges faced by modern agriculture. Recent 

studies have focused on developing precision agriculture solutions tailored to specific crops. Understanding the 

unique needs of crops, such as wheat, rice, and soybeans, is crucial for designing effective monitoring and 

optimization strategies. This approach ensures that agricultural technologies remain adaptable and relevant 

across diverse farming scenarios[15]. The literature emphasizes the significance of IoT-enabled crop monitoring 

systems for efficient water management. These systems use sensors to measure soil moisture levels, allowing for 

precise control of irrigation. The integration of such technologies has shown promising results in optimizing 

water usage, reducing wastage, and improving overall crop health.While the potential benefits of precision 

agriculture are evident, the literature also discusses challenges associated with its implementation. Issues such as 

data privacy, interoperability of IoT devices, and the need for farmer education are highlighted. Addressing 

these challenges is crucial for unlocking the full potential of precision agriculture and ensuring its widespread 

adoption. Studies exploring the performance of various machine learning models in agriculture provide insights 

into the strengths and limitations of different algorithms. Metrics such as accuracy, precision, recall, F1 score, 

and ROC AUC are commonly used to assess the predictive capabilities of these models. Understanding the 

performance nuances is essential for selecting the most suitable model for specific agricultural applications.The 

literature review underscores the growing synergy between precision agriculture, IoT technologies, and machine 

learning. It highlights the need for crop-specific solutions, the significance of efficient water management, and 

the challenges and opportunities associated with the integration of these technologies in agriculture. The 

subsequent sections of this research paper delve into the methodology, experimentation, and findings, 

contributing to the expanding body of knowledge in the field of smart and precision agriculture. 

3. Methodology 

i) Data Collection: The study began with the collection of diverse datasets representing different crops, 

including wheat, rice, and soybeans. Data encompassed variables such as soil moisture levels, temperature, 

humidity, and water pump usage. IoT sensors, strategically placed in experimental fields, facilitated real-time 

data acquisition. 

ii) FARM EASY System Integration: The FARM EASY monitoring system, equipped with IoT sensors, 

was strategically deployed across experimental fields. The system included modules for measuring moisture 

levels, controlling water pumps, and monitoring temperature and humidity. Integration protocols ensured 

seamless communication between sensors and the central data processing unit. 
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iii) Machine Learning Model Selection: Four machine learning models were selected for evaluation: 

Random Forest, Support Vector Machine (SVM), Neural Network, and Decision Tree. Each model offered 

unique strengths, and the selection aimed to assess their performance in diverse agricultural scenarios. 

iv) Hyperparameter Tuning: To optimize the performance of each machine learning model, 

hyperparameter tuning was conducted. Specific parameters, such as n_estimators and max_depth for Random 

Forest, C and kernel for SVM, hidden layers and activation for Neural Network, and max_depth for Decision 

Tree, were fine-tuned through iterative experimentation. 

v) Model Training: The selected machine learning models underwent training using the collected 

datasets. The training process involved the division of data into training and validation sets to ensure robust 

model performance. Iterative training cycles allowed the models to learn patterns and relationships within the 

agricultural data. 

vi) Performance Evaluation Metrics: The performance of each machine learning model was evaluated 

using a comprehensive set of metrics. These included accuracy, precision, recall, F1 score, and Receiver 

Operating Characteristic Area Under the Curve (ROC AUC). These metrics provided a nuanced understanding 

of each model's ability to predict and optimize agricultural outcomes. 

vii) Cross-Validation: Cross-validation techniques were employed to validate the performance of the 

machine learning models. This involved splitting the dataset into multiple folds, training the model on different 

subsets, and validating on the remaining data. Cross-validation ensured robustness and mitigated the risk of 

overfitting. 

viii) Comparative Analysis: A comparative analysis was conducted to assess the relative performance of 

the machine learning models. The goal was to identify the model that demonstrated superior accuracy and 

reliability across different crops and environmental conditions. 

ix) Iterative Refinement: The methodology involved an iterative refinement process based on the insights 

gained from initial model evaluations. Refinements included further tuning of hyperparameters and adjustments 

to the FARM EASY system based on observed performance. 

The methodology outlined above aimed to comprehensively evaluate the FARM EASY system's performance in 

conjunction with different machine learning models across various crops. The subsequent sections detail the 

experimental results and their implications for the integration of IoT and machine learning in precision 

agriculture. 

Data Set Used  

In this research, the dataset forms a crucial cornerstone, representing a harmonious collaboration between 

locally collected sensor data and Kaggle's renowned Smart Agricultural Production Optimizing Engine. This 

innovative approach sought to leverage the strengths of both proprietary sensor data and a publicly available 

optimization engine to enrich the breadth and depth of insights into precision agriculture. 

i) Sensor Data Collection: Our research commenced with the deployment of IoT sensors strategically 

placed across experimental fields. These sensors meticulously measured key agricultural parameters such as soil 

moisture levels, temperature, humidity, and water pump usage. The locally sourced sensor data provided a 

granular, real-time perspective on the intricate dynamics of the agricultural environment. 

ii) Kaggle's Smart Agricultural Production Optimizing Engine: Simultaneously, Kaggle's Smart 

Agricultural Production Optimizing Engine, a publicly accessible and widely recognized resource, became an 

integral part of our research. This optimization engine encapsulates a wealth of knowledge and predictive 

capabilities designed to enhance agricultural production. Leveraging this engine allowed us to benefit from 

existing models and algorithms, fostering a collaborative synergy between proprietary sensor data and 

community-driven, open-source solutions. 

iii) Dataset Fusion and Enrichment: The fusion of our locally collected sensor data with Kaggle's Smart 

Agricultural Production Optimizing Engine resulted in a robust and comprehensive dataset. This amalgamation 

provided a unique opportunity to enrich the dataset with diverse perspectives, incorporating both real-world, on-

field nuances captured by our sensors and the broader, algorithmically-driven insights derived from Kaggle's 

optimization engine. 

 

4. Advantages of Combined Dataset 
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i) Comprehensive Insights: The combined dataset offered a holistic view of agricultural conditions, 

merging detailed local observations with globally informed predictions. 

ii) Enhanced Model Training: The dataset enriched with Kaggle's insights provided a diverse range of 

scenarios for machine learning models, enhancing their training and predictive capabilities. 

iii) Validation through Diverse Perspectives: By validating predictions against ground-truth sensor data, 

the dataset allowed for a nuanced assessment of the optimization engine's effectiveness across different crops 

and environmental conditions. 

5. Implications of Precision Agriculture 

i) Tailored Solutions: The enriched dataset allowed for the tailoring of precision agriculture solutions, 

ensuring adaptability to the unique requirements of various crops and farming scenarios. 

ii) Optimized Resource Utilization: Integration with Kaggle's engine contributed to optimized resource 

utilization, particularly in terms of water management, thereby promoting sustainable agricultural practices. 

6. Challenges and Considerations 

While the fusion of datasets presented numerous advantages, challenges such as data normalization, model 

interoperability, and ensuring the representativeness of both datasets required careful consideration. The 

research methodology included robust validation processes to address these challenges and ensure the reliability 

of the combined dataset. 

Experimental Result 

In Figure 1, we present the real-time dashboard of FarmEasy, offering a dynamic visualization of critical 

agricultural parameters with a specific focus on moisture levels. This dashboard provides farmers with an 

intuitive and comprehensive overview of the current moisture status across their fields, enabling them to make 

informed decisions in real-time. The interface is designed to be user-friendly, featuring color-coded indicators 

and interactive charts that vividly represent the moisture levels in different sections of the farm. The dashboard's 

responsiveness ensures that farmers can swiftly navigate through various metrics, gaining instant insights into 

soil moisture variations. With live updates, historical trends, and predictive analytics, FarmEasy's real-time 

dashboard not only enhances the monitoring of moisture levels but also serves as a powerful decision support 

tool for optimizing irrigation strategies and promoting water conservation in precision agriculture. The 

integration of such advanced visualization tools aligns with the broader goal of FarmEasy to empower farmers 

with actionable insights, ultimately contributing to more efficient and sustainable farming practices. 

 

Figure 1 Real time Dashboard (FarmEasy) indicating  Moisture Level 
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In Figure 2, we present the dynamic real-time dashboard of FarmEasy, offering a comprehensive overview of 

two pivotal elements crucial to precision agriculture: water pump status and rain sensing. This intuitive 

dashboard provides farmers with instant insights into the operational status of water pumps across their fields, 

ensuring efficient irrigation management. Additionally, it incorporates real-time rain sensing data, allowing 

farmers to dynamically adapt their irrigation strategies based on current weather conditions. The user-friendly 

interface employs visual indicators and interactive charts to vividly represent the status of water pumps and rain 

sensing, facilitating quick and informed decision-making. With live updates and historical trends, FarmEasy's 

real-time dashboard not only optimizes water resource management but also enhances the overall efficiency and 

sustainability of farming practices. This integration aligns with FarmEasy's commitment to empowering farmers 

with actionable insights, fostering resilient and technology-driven approaches in precision agriculture. 

 

Figure 2 Real time Dashboard (FarmEasy) indicating  Water Pump and Rain Sense 

 

In Figure 3, we showcase the dynamic real-time dashboard of FarmEasy, focusing on key environmental 

parameters critical for precision agriculture: temperature and humidity. This innovative dashboard provides 

farmers with instantaneous insights into the current atmospheric conditions, enabling them to make informed 

decisions tailored to their crops' specific requirements. The user-friendly interface employs intuitive 

visualizations, such as color-coded indicators and interactive charts, to vividly represent temperature and 

humidity levels across different sections of the farm is shown in  actual implementation in Figure 4. By offering 

live updates, historical trends, and predictive analytics, FarmEasy's real-time dashboard becomes a valuable tool 

for optimizing farming practices. The integration of temperature and humidity monitoring aligns with 

FarmEasy's commitment to empowering farmers with actionable insights, promoting precise environmental 

control, and contributing to the overall success and sustainability of modern precision agriculture. 
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Figure 3 Real time Dashboard (FarmEasy) indicating Temperature  and humidity 

 

 

Figure 4 Actual Implementation of device 
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Machine Learning  Result: 

i) Model Performance: The performance of the machine learning models varied across different crops. 

The Support Vector Machine (SVM) with a C value of 1.0 and an 'rbf' kernel consistently outperformed other 

models. It exhibited high accuracy (0.92), precision (0.94), recall (0.89), F1 score (0.91), and ROC AUC (0.95) 

across wheat, rice, and soybeans. 

ii) Crop-Specific Adaptability: The experiments demonstrated the importance of considering crop-specific 

needs in precision agriculture. While the SVM model excelled across all crops, subtle variations in performance 

were observed. Understanding these nuances is crucial for tailoring monitoring and optimization strategies to 

meet the unique requirements of different crops. 

iii) FARM EASY System Integration: The FARM EASY system effectively collected and processed real-

time data, showcasing its potential in precision agriculture. The seamless integration of IoT sensors for 

measuring moisture levels, controlling water pumps, and monitoring temperature and humidity contributed to 

the robustness of the system. 

iv) Optimized Resource Utilization: The integration of IoT and machine learning through FARM EASY 

resulted in optimized resource utilization. The models, particularly SVM, demonstrated an ability to predict 

optimal irrigation timings, leading to improved water management. This has significant implications for 

resource conservation and sustainability in agriculture. 

v) Data-Driven Decision Making: The combination of IoT-generated data and machine learning models 

empowered farmers with data-driven insights. The system's ability to predict crop health, water requirements, 

and environmental conditions facilitates informed decision-making. This shift towards data-driven decision-

making is pivotal for enhancing agricultural productivity and efficiency. 

Table 1 Comparative Result 

Experiment Model Hyperparameters Accuracy Precision Recall F1 

Score 

ROC 

AUC 

1 Support 

Vector 

Machine 

C=1.0, kernel='rbf' 0.92 0.94 0.89 0.91 0.95 

2 Random 

Forest 

n_estimators=100, 

max_depth=10 

0.85 0.88 0.82 0.85 0.92 

3 Neural 

Network 

Hidden layers=(64, 32), 

activation='relu' 

0.88 0.90 0.85 0.87 0.93 
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4 Decision Tree max_depth=8 0.80 0.82 0.78 0.80 0.88 

 

Inference from table 1 

1. Support Vector Machine (SVM): 

 Performance Dominance:SVM, configured with C=1.0 and an 'rbf' kernel, emerges as the 

top-performing model across all metrics. 

 High Precision and Recall:The model exhibits high precision (0.94) and recall (0.89), 

indicating its ability to accurately classify positive instances while capturing a significant proportion of actual 

positives. 

2. Random Forest: 

 Balanced Performance:Random Forest, with n_estimators=100 and max_depth=10, 

demonstrates a balanced performance across accuracy, precision, recall, F1 score, and ROC AUC. 

 Versatility:Although not outperforming SVM, Random Forest showcases versatility, making 

it a reliable option across various scenarios. 

3. Neural Network: 

 Competitive Performance: The Neural Network, configured with hidden layers=(64, 32) and 

activation='relu,' delivers competitive performance, particularly in terms of accuracy (0.88) and precision (0.90). 

 Effective Learning: The model's ability to learn intricate patterns in the data is reflected in its 

competitive F1 score (0.87) and ROC AUC (0.93). 

4. Decision Tree: 

 Moderate Performance:The Decision Tree, with max_depth=8, exhibits moderate 

performance, with a balanced trade-off between accuracy, precision, recall, and F1 score. 

 Simplicity and Interpretability:While not the top performer, the Decision Tree's simplicity 

and interpretability make it a valuable choice for scenarios where model interpretability is crucial. 

Implications for Integration of IoT and Machine Learning in Precision Agriculture: 

i) Enhanced Predictive Capabilities: The results underscore the potential of integrating IoT and machine 

learning for enhanced predictive capabilities in agriculture. The SVM model's accuracy in predicting crop 

outcomes indicates the value of sophisticated algorithms in anticipating and responding to dynamic agricultural 

conditions. 

ii) Tailored Precision Agriculture Solutions: The crop-specific adaptability observed in the experiments 

emphasizes the need for tailored precision agriculture solutions. Integrating machine learning models that can 

adapt to the unique requirements of different crops ensures the applicability and effectiveness of smart farming 

technologies across diverse agricultural landscapes. 

iii) Resource Efficiency and Sustainability: The optimized resource utilization, particularly in water 

management, highlights the potential for IoT and machine learning to contribute to resource efficiency and 

sustainability in agriculture. By precisely regulating water usage based on real-time data, farmers can mitigate 

waste and conserve valuable resources. 
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iv) Practical Implementation of FARM EASY: The successful integration and performance of the FARM 

EASY system demonstrate its practical viability. The system's ability to seamlessly collect, process, and 

interpret data positions it as a promising tool for practical implementation in precision agriculture settings. 

v) Path Towards Smart Agriculture Adoption: These experimental results provide a stepping stone for the 

wider adoption of smart agriculture technologies. The successful integration of IoT and machine learning 

models in FARM EASY suggests a practical and effective path toward the realization of smart agriculture's 

potential benefits on a broader scale. 

7. Conclusion 

In conclusion, this research establishes the superiority of the Support Vector Machine (SVM) model, configured 

with C=1.0 and an 'rbf' kernel, in predicting and optimizing agricultural outcomes, making it a pivotal tool for 

precision agriculture applications. While SVM demonstrated dominance, the versatility of Random Forest and 

competitiveness of the Neural Network provide alternative solutions for diverse scenarios, with the simplicity 

and interpretability of Decision Trees offering a valuable option. The fusion of locally collected sensor data with 

Kaggle's Smart Agricultural Production Optimizing Engine enriched the dataset, enhancing the research's 

robustness and paving the way for real-time decision support in agriculture. The implications of tailored 

solutions and optimized resource utilization underscore the potential of integrating IoT and machine learning, as 

exemplified by the FARM EASY system, in fostering sustainability and efficiency in farming practices. Future 

directions include exploring ensemble approaches, dynamic adaptability strategies, and the practical 

implementation of machine learning models in precision agriculture scenarios, further advancing the 

transformative potential of smart farming technologies. 

8. Future Work 

Future work in the realm of precision agriculture and smart farming technologies should delve into several 

promising avenues. Firstly, exploring advanced ensemble approaches that harness the collective strengths of 

multiple machine learning models could lead to even more accurate and resilient predictive capabilities. 

Additionally, investigating dynamic adaptability strategies, such as continuous learning models, would 

contribute to the development of systems that can autonomously adjust to evolving agricultural conditions. 

Practical implementation of the selected machine learning models, particularly in real-time scenarios and 

integration with precision agriculture systems like FARM EASY, presents a critical area for further exploration. 

Furthermore, research efforts could focus on addressing the challenges associated with data privacy, 

interoperability of IoT devices, and the need for extensive farmer education to ensure the seamless adoption and 

sustainability of smart farming technologies. Finally, exploring the integration of emerging technologies, such 

as edge computing and blockchain, could enhance the efficiency, security, and transparency of data management 

in precision agriculture. Continued interdisciplinary research and collaboration are essential to propel the field 

forward and fully unlock the potential of smart farming for the benefit of agricultural sustainability and 

productivity. 
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