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Abstract— In this paper, we propose to investigate the coefficient bounds for certain subclasses of bi-
univalent functions. Some interesting applications of the results are also obtained.

Keywords— Bi-univalent functions, Starlike functions, Convex functions, bi-starlike functions and bi-convex
functions.

1. INTRODUCTION
Let A denote the class of functions of the form

f(2)=2+) a," (1.1)
n=2

which are analytic in the open unit disc U ={z:z e C and |Z|<l } and satisfy the conditions specified by
R.M.Ali, S.Devi and W.C.Ma in the references [1,2,4,713,14,15]

and  F(F (W) =w (|w|< ro(f);ro(f)z%j
where
fHw)=w—a,w’ +(2a —a,)w’ —...  (1.2)
A function f € A satisfies bi-univalent definition in U if both f(z) and f *(z) are univalent in

U . It can be found in recent [1,3,5,6,8] and [11,12,13,14,15,16].
With the reference of [7], f(z) be an analytic and univalent function with positive real part one, and symmetric
with respect to the real axis. Expansion in Taylor’s series

#(2)=1+Bz+B, 2" +... (13)
with B; > 0

By S (4(2)) and k(¢(2)) derived as [13,14],

The classes S™(#(2)) and k(4(z)) are the delays of a classical sets of a SCF by [7]. Also f and
f "are respectively SCF. These classes are denoted respectively by S; (#(2)) and Ky (4(2)) (see [1]).
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Similarly, S (7, #(z)) and K(,#(z)) of SCC order y(y € C\{0}) , [7.10]
and

k(r,¢(2)) = {f f €S and 1+_[Zf ()

f'(2)
Also a function f is BS-BC of complex order y(y € C\{O})if both f and f are respectively

SCC order and derived as y(y € C\{0}) . S5.(7,6(2)) and ks (7,4(2)) .[17]

Here, ICB for certain subclass of BUF are obtained. Several related classes are derived, and a connected [10].
As per definition f(z) class, then

1+ﬂ(1—,1)@+,1(f @)+t "(z))—l} < 4(2) 105)

1j <4(z);2€U } (1.4)

and

}/{(1 A)———= - (W) + A((F7HwW)) '+ tw( f ™ (w))) "—1} =< @(w) (1.6), [2 & 4].
Note that the special values of t,7, 4 and ¢(Z) leads to the class [3,14]. Wy (7, 4,t,#(2)) leads as follows.
[11]

For A =1the class
Wy (7, 1t,4(2)) = Rs (7, 4,6(2)) is

L 1[(F @) +tef (@) -1]< $(2)
y
and

1+%[( F7H(w) '+ tw( f(w)) "~ 1] < ¢(w)

The class Ry (7,4,¢(2)), [14, 3].
For A =¢,t = 0the class

W, (7, ,0,4(2)) = By (7,0, 4(2)) i
1+%_(1—a)%+af '(z)—1}< #(2)
and
12 o) Wy 1}<¢(w)
V4 W

Remark1.1. By [11], [16]). for ¥ =1

o) =020

,0< <1

and ¢(z2) = ( Zjn 0<n<y,

1+(1-2p)z

= j By (o, f) and

the classes By | (
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1+zY . _ _ _
By| a,| = | |=B’(a) were introduced and studied by Frasin and Aouf [5,7].
1-z =

(1) For A=1and t = Othe classes
W, (7,1,0,4(2)) = P, (7,4(2)) i
1+ 1 112)-1]< 4(2)
and ’
1+§[(f-1(w» ~1]< g(w)
RemarkL.2.For ¥ =1, [15],
#(2) = 1+(1—2,B)z
A
and 4(2) =(

the classes

P, [a,—“(i‘ Zﬂ)zj =R.(8)

,0< <1

1+z

n
— | ,0<np<l,
1—2) 7

and

1 n
P; L(Ej }E PZ”, introduced in [12] , [6].

For , the following coefficient estimation holds.
In order to derive our results, we shall need the following lemma.[7]

With the reference of Lemmma 1.1. in [7, 9] is consider to find P, where P is the family of all
functions P, analytic in U, for which R{p(z)} > O where

2. COEFFICIENT BOUNDS
Theorem 2.1. If f eWs.(,4,1,4(2)), then

E ULYCY 1)
ﬁyn+21a+ansf+n+za+2of(a-39|

and

2

e liBbie
1+2A(1+3t) [L+A@0+20))

Proof. Two analytic functions, will be existe namely, r,s:U —U , with r(0) =0=s(0), [7], from

f eWs (7, 4,1,6(2)) such that

22)

1+ﬂ(1—z)¥+,1f '(z)—l} —Hr) @3

and
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[(1 I BPITRI '—1]:¢(s(z» @4
y W

We observed that p(z), q(z) are analytic and they are constant at z = 0.7(z) and s(z) in terms of
p(z) and q(z) from [9].

Or equivalently,

(z2)-1
r(z) = Z@m .......... (2.5)
s(z) = Z&i .......... (2.6)
1+1{(1—1)M+M'(2)—1}:¢ P@-1) o
4 z p(z)+1
and
((1 ﬂ)fI(W)M(f*(w))'—ljw(w] (28)
e g(w) +1
Using (2.5) and (2.6) together with (1.3), it is evident

p(z)—l _ E E _1 ) E ),
¢[p<z)+1j_l+281p1”[281[p2 zp1j+482pljz o (29)

w) -1 1 1 1
¢[32W;+J 1+ 1q1vv+( (qz qu+4qufJW2 +.. (2.10)
Since is of the form (1.1), a computation shows that its inverse has the expression given by (1.2).
It follows from (2.7), (2.8), (2.9) and (2.11) that

%(1+ A(d+2t))a, = % B.p (2.11)
1 1 1
%(1+ 2A(L+3t)) = > Bl[ P, -5 pfj+z B,p! (2.12)

—£(1+ A+2t))a, :% .0 (2.13)
4

and

1+2201+3t 1 1 1
w(Zaé—as)jBl(qz—zqujBﬂf (2.14)

From (2.11) and (2.13), it follows that
p,=-q, (2.15)

and
%[1+A(1+2t)]2a§ SBApE4q) (216

From (2.1) and Lemma 1.1, derived |p2| <2 & |q2| <2

Using (2.24) and (2.14), resultant of (2.11) is
4q, = VP P2=02) A*Bip?
% = Tr2aaes T (teaaszn)

(2.17)
With once again, we readily get the bound given in (2.2)

that
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Remark 2.1[7]. Taking A =1 in Theorem 2.1, we obtain the for A =1 and ¥ =1 in Theorem 2.1

If we set #(2) = :]L_+ ,L:\Z ,—1<B < A<l in the classWs (7, 4,1,6(2)), we have Wy (7, 4,t,(A, B)) and

defined as

1+ l{(l—/l)ﬂwl(f (2) +1zf "(2)) —1} A2 Uand
y z 1+ Bz

1+ 1{(1—1) PO | acf 2wy tw(f -1(w)))"—1} JLHAW U
14 w 1+ Bw
[1, 10, 14].
Corollary 2.1. If W5 (7, 4,1, (A, B)), then
|a2 < |7/| (A_ B)

\/|;/[1+2/1(1+3t)](A—B)+[l+/1(1+2t)]2(A+ B)|
and
A(A-B) |7 (A-B)’
1+22(01+3t) [1+A0+2)]
1+(1-2p)z
1-z
f eWs. (7, 4,1, B) then the following conditions are

jag|<

[7], Taking #(2) = ,0< B <linthe class Wy (7, 4,¢(2)), we have Wy (7, 4,1, B) and if

satisfied:
RP+1[0—@E§Q+1(VU%Hﬁ"U»—g}>ﬂ,ZEU
Ve
and

R{1+ 1[(1—,1) W, A((F 7 (w)) "+ tw( f 1(W)))"—lﬂ >p, zeU

V4 W
Corollary 2.2 1f T eWs (¥, 4,t, B), then

2| <] |2 F)
2 |7 (L+22(1+3Y))|

and

2
|33|< 2|7|(1_ﬂ) 4 4|7| (1_ﬂ)2
T142A(1+3t)  (L+A(1+2t))?
Remark 2.2. Taking A =,y =1and t =0in corollary 2.2, our results same as [5, Theorem 3.2, p.1572] ,

A =1, y=1and t =0 in corollary 2.2, as appaered in Srivatsava et al. [7 and 12, Theorem 2, p.1191]

1 n
Taking ¢(Z) = (ﬁ ,0 <77 <Linthe class [7, 14]Ws (7, 4,1, #(2)), we have WY (7, 4,t) and

-

e WS (7, 4,t) if the following conditions are satisfied:

ar <n, zeU

(=]

1+1{(1—/1)%+1(f @)+t "(2) —1}
V4

and
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arg 1+1{(1_z)f:v(w)+z«fl<w» + tw(fl(w)»"—l}
V4

<n, weU

Corollary 23[7]. If f eWJ(,4,x), then

2|y|n

a,| <
. J2r@ 2@ 30y + @ A+ 20 - 1)
and

2ly|n aly[ n*
a2, 4]

1+2A(1+3t)  (L+A(1+2t))?

Remark 2.3. Taking A =,y =1and t =0 in corollary 2.3, our results same as appeared in [5,Theorem 2.2,
p.1570], A =1, =1and t =0 in corollary 2.6, same as [11] and Srivatsava et al. [12, Theorem 1, p.1190]

Momenclature

SCF — Starike and convex function

E& — BC — Bistarlike — Bi Convex function

SCC — Starlike and convex function of complex order
ICE — Imitial coefficient bounds

BEUF — Bi univalent functions
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