Initial Coefficient Constraints For Certain Subclass Of Bi-Univalent Functions

[1] R. Ambrose Prabhu, [2] Thiagarajan Kittappa, [3] B. Mahalakshmi

[1] Department of Mathematics
Rajalakshmi Institute of Technology
Chennai 600124, India
[2] Department of Mathematics
Rajalakshmi Institute of Technology
Chennai 600124, India
[3] Department of Mathematics
K.Ramakrishnan College of Technology
Trichy, India

E-mail: [1] Bennyamb0457@gmail.com, [2] vidhyamannan@yahoo.com [3] Mahasjc06@gmail.com

Abstract— In this paper, we propose to investigate the coefficient bounds for certain subclasses of biunivalent functions. Some interesting applications of the results are also obtained.

Keywords— Bi-univalent functions, Starlike functions, Convex functions, bi-starlike functions and bi-convex functions.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic in the open unit disc $U = \{z : z \in C \text{ and } |z| < 1 \}$ and satisfy the conditions specified by R.M.Ali, S.Devi and W.C.Ma in the references [1,2,4,713,14,15]

and
$$f(f^{-1}(w)) = w$$
 $\left(|w| < r_0(f); r_0(f) \ge \frac{1}{4} \right)$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - \dots$$
 (1.2)

A function $f \in A$ satisfies bi-univalent definition in U if both f(z) and $f^{-1}(z)$ are univalent in U. It can be found in recent [1,3,5,6,8] and [11,12,13,14,15,16].

With the reference of [7], f(z) be an analytic and univalent function with positive real part one, and symmetric with respect to the real axis. Expansion in Taylor's series

$$\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$$
 (1.3)

with $B_i > 0$

By $S^*(\phi(z))$ and $k(\phi(z))$ derived as [13,14],

The classes $S^*(\phi(z))$ and $k(\phi(z))$ are the delays of a classical sets of a SCF by [7]. Also f and f^{-1} are respectively SCF. These classes are denoted respectively by $S^*_{\Sigma}(\phi(z))$ and $k_{\Sigma}(\phi(z))$ (see [1]).

Vol. 44 No. 5 (2023)

Similarly, $S^*(\gamma, \phi(z))$ and $k(\gamma, \phi(z))$ of SCC order $\gamma(\gamma \in C \setminus \{0\})$, [7,10]

and

$$k(\gamma, \phi(z)) := \left\{ f : f \in S \text{ and } 1 + \frac{1}{\gamma} \left(\frac{zf''(z)}{f'(z)} - 1 \right) < \phi(z); z \in U \right\}$$
 (1.4)

Also a function f is BS-BC of complex order $\gamma(\gamma \in C \setminus \{0\})$ if both f and f^{-1} are respectively SCC order and derived as $\gamma(\gamma \in C \setminus \{0\})$. $S^*_{\Sigma}(\gamma, \phi(z))$ and $k_{\Sigma}(\gamma, \phi(z))$.[17]

Here, ICB for certain subclass of BUF are obtained. Several related classes are derived, and a connected [10]. As per definition f(z) class, then

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f(z)}{z} + \lambda (f'(z) + tzf''(z)) - 1 \right] \prec \phi(z)$$
 (1.5)

and

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f^{-1}(w)}{w} + \lambda ((f^{-1}(w))' + tw(f^{-1}(w)))'' - 1 \right] \prec \phi(w)$$
 (1.6), [2 & 4].

Note that the special values of t, γ, λ and $\phi(z)$ leads to the class [3,14]. $W_{\Sigma}(\gamma, \lambda, t, \phi(z))$ leads as follows. [11]

For $\lambda = 1$ the class

$$W_{\Sigma}(\gamma, 1, t, \phi(z)) \equiv R_{\Sigma}(\gamma, \lambda, \phi(z))$$
 is

$$1 + \frac{1}{\gamma} [(f'(z) + tzf''(z)) - 1] < \phi(z)$$

and

$$1 + \frac{1}{\gamma} [(f^{-1}(w))' + tw(f^{-1}(w))'' - 1] \prec \phi(w)$$

The class $R_{\Sigma}(\gamma,\lambda,\phi(z))$, [14, 3].

For $\lambda = \alpha, t = 0$ the class

$$W_{\Sigma}(\gamma, \alpha, 0, \phi(z)) \equiv B_{\Sigma}(\gamma, \alpha, \phi(z))$$
 is

$$1 + \frac{1}{\gamma} \left[(1 - \alpha) \frac{f(z)}{z} + \alpha f'(z) - 1 \right] \prec \phi(z)$$

and

$$1 + \frac{1}{\gamma} \left[(1 - \alpha) \frac{f^{-1}(w)}{w} + \alpha (f^{-1}(w))' - 1 \right] < \phi(w)$$

Remark 1.1. By [11], [16]). for $\gamma = 1$

$$\phi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}, 0 \le \beta < 1$$

and
$$\phi(z) = \left(\frac{1+z}{1-z}\right)^{\eta}, 0 < \eta \le 1,$$

the classes
$$B_{\Sigma}\left(\alpha, \frac{1+(1-2\beta)z}{1-z}\right) \equiv B_{\Sigma}(\alpha, \beta)$$
 and

VOI. 44 1(0. 3 (2023)

$$B_{\Sigma}\left(\alpha, \left(\frac{1+z}{1-z}\right)^{\eta}\right) \equiv B_{\Sigma}^{\eta}(\alpha)$$
 were introduced and studied by Frasin and Aouf [5,7].

(1) For $\lambda = 1$ and t = 0 the classes

$$W_{\Sigma}(\gamma, 1, 0, \phi(z)) \equiv P_{\Sigma}(\gamma, \phi(z))$$
 is

$$1 + \frac{1}{\gamma} [f'(z) - 1] \prec \phi(z)$$

and

$$1 + \frac{1}{\gamma} \Big[(f^{-1}(w))' - 1 \Big] \prec \phi(w)$$

Remark 1.2. For $\gamma = 1$, [15],

$$\phi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}, 0 \le \beta < 1$$

and
$$\phi(z) = \left(\frac{1+z}{1-z}\right)^{\eta}, 0 < \eta \le 1,$$

the classes

$$P_{\Sigma}\left(\alpha, \frac{1+(1-2\beta)z}{1-z}\right) \equiv P_{\Sigma}(\beta)$$

and

$$P_{\Sigma}\left(\left(\frac{1+z}{1-z}\right)^{\eta}\right) \equiv P_{\Sigma}^{\eta}$$
, introduced in [12], [6].

For , the following coefficient estimation holds.

In order to derive our results, we shall need the following lemma.[7]

With the reference of Lemmma 1.1. in [7, 9] is consider to find P, where P is the family of all functions p, analytic in U, for which $R\{p(z)\} > 0$ where

2. COEFFICIENT BOUNDS

Theorem 2.1. If $f \in W_{\Sigma}(\gamma, \lambda, t, \phi(z))$, then

$$|a_2| \le \frac{|\gamma| B_1 \sqrt{B_1}}{\sqrt{|\gamma[1+2\lambda(1+3t)]B_1^2 + [1+\lambda(1+2t)]^2 (B_1 - B_2)|}}$$
(2.1)

and

$$|a_3| \le \frac{|\gamma|B_1}{1 + 2\lambda(1 + 3t)} + \frac{|\gamma|^2 B_1^2}{[1 + \lambda(1 + 2t)]^2}$$
 (2.2)

Proof. Two analytic functions, will be existe namely, $r,s:U\to U$, with r(0)=0=s(0), [7], from $f\in W_{\Sigma}(\gamma,\lambda,t,\phi(z))$ such that

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) - 1 \right] = \phi(r(z))$$
 (2.3)

and

VOI. 44 110. 3 (2023)

$$1 + \frac{1}{\gamma} \left((1 - \lambda) \frac{f^{-1}(w)}{w} + \lambda (f^{-1}(w))' - 1 \right) = \phi(s(z))$$
 (2.4)

We observed that p(z), q(z) are analytic and they are constant at z = 0. r(z) and s(z) in terms of p(z) and q(z) from [9].

Or equivalently,

$$r(z) = \frac{p(z)-1}{p(z)+1} \qquad(2.5)$$

$$s(z) = \frac{q(z)-1}{q(z)+1} \qquad(2.6)$$

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) - 1 \right] = \phi \left(\frac{p(z) - 1}{p(z) + 1} \right)$$
 (2.7)

and

$$1 + \frac{1}{\gamma} \left((1 - \lambda) \frac{f^{-1}(w)}{w} + \lambda (f^{-1}(w))' - 1 \right) = \phi \left(\frac{q(w) - 1}{q(w) + 1} \right)$$
 (2.8)

Using (2.5) and (2.6) together with (1.3), it is evident that

$$\phi\left(\frac{p(z)-1}{p(z)+1}\right) = 1 + \frac{1}{2}B_1p_1z + \left(\frac{1}{2}B_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}B_2p_1^2\right)z^2 + \dots \quad (2.9)$$

$$\phi \left(\frac{q(w) - 1}{q(w) + 1} \right) = 1 + \frac{1}{2} B_1 q_1 w + \left(\frac{1}{2} B_1 \left(q_2 - \frac{1}{2} q_1^2 \right) + \frac{1}{4} B_2 q_1^2 \right) w^2 + \dots$$
 (2.10)

Since is of the form (1.1), a computation shows that its inverse has the expression given by (1.2). It follows from (2.7), (2.8), (2.9) and (2.11) that

$$\frac{1}{\gamma}(1+\lambda(1+2t))a_2 = \frac{1}{2}B_1p_1 \tag{2.11}$$

$$\frac{a_3}{\gamma}(1+2\lambda(1+3t)) = \frac{1}{2}B_1\left(p_2 - \frac{1}{2}p_1^2\right) + \frac{1}{4}B_2p_1^2 \quad (2.12)$$

$$-\frac{1}{\nu}(1+\lambda(1+2t))a_2 = \frac{1}{2}B_1q_1 \tag{2.13}$$

and

$$\frac{1+2\lambda(1+3t)}{\gamma}(2a_2^2-a_3) = \frac{1}{2}B_1\left(q_2 - \frac{1}{2}q_1^2\right) + \frac{1}{4}B_2q_1^2 \qquad (2.14)$$

From (2.11) and (2.13), it follows that

$$p_1 = -q_1 (2.15)$$

and

$$\frac{4}{v^2} [1 + \lambda (1 + 2t)]^2 a_2^2 = B_1^2 (p_1^2 + q_1^2)$$
 (2.16)

From (2.1) and Lemma 1.1, derived $|p_2| \le 2$ & $|q_2| \le 2$.

Using (2.24) and (2.14), resultant of (2.11) is

$$4a_3 = \frac{\gamma B_1(p_2 - q_2)}{1 + 2\lambda(1 + 3t)} + \frac{\lambda^2 B_1^2 p_1^2}{\left(1 + \lambda(1 + 2t)\right)^2}$$
(2.17)

With once again, we readily get the bound given in (2.2)

Remark 2.1[7]. Taking $\lambda = 1$ in Theorem 2.1, we obtain the for $\lambda = 1$ and $\gamma = 1$ in Theorem 2.1

If we set $\phi(z) = \frac{1+Az}{1-Bz}$, $-1 \le B < A \le 1$, in the class $W_{\Sigma}(\gamma, \lambda, t, \phi(z))$, we have $W_{\Sigma}(\gamma, \lambda, t, (A, B))$ and

defined as

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f(z)}{z} + \lambda (f'(z) + tzf''(z)) - 1 \right] \prec \frac{1 + Az}{1 + Bz}, \quad z \in U \text{ and}$$

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f^{-1}(w)}{w} + \lambda ((f^{-1}(w))' + tw(f^{-1}(w)))'' - 1 \right] \prec \frac{1 + Aw}{1 + Bw}, \quad w \in U$$

Corollary 2.1. If $W_{\Sigma}(\gamma,\lambda,t,(A,B))$, then

$$\left|a_{2}\right| \leq \frac{\left|\gamma\right|(A-B)}{\sqrt{\left|\gamma[1+2\lambda(1+3t)](A-B)+[1+\lambda(1+2t)]^{2}(A+B)\right|}}$$

and

$$|a_3| \le \frac{|\gamma|(A-B)}{1+2\lambda(1+3t)} + \frac{|\gamma|^2(A-B)^2}{[1+\lambda(1+2t)]^2}$$

[7], Taking $\phi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$, $0 \le \beta < 1$ in the class $W_{\Sigma}(\gamma, \lambda, \phi(z))$, we have $W_{\Sigma}(\gamma, \lambda, t, B)$ and if

$$f \in W_{\Sigma}(\gamma, \lambda, t, B)$$
 then the following conditions are

satisfied:

$$R\left[1 + \frac{1}{\gamma}\left((1 - \lambda)\frac{f(z)}{z} + \lambda(f'(z) + tzf''(z)) - 1\right)\right] > \beta, \quad z \in U$$

and

$$R\left[1+\frac{1}{\gamma}\left((1-\lambda)\frac{f^{-1}(w)}{w}+\lambda((f^{-1}(w))'+tw(f^{-1}(w)))''-1\right)\right]>\beta,\quad z\in U$$

Corollary 2.2. If $f \in W_{\Sigma}(\gamma, \lambda, t, \beta)$, then

$$|a_2| \le |\gamma| \sqrt{\frac{2(1-\beta)}{|\gamma(1+2\lambda(1+3t))|}}$$

and

$$|a_3| \le \frac{2|\gamma|(1-\beta)}{1+2\lambda(1+3t)} + \frac{4|\gamma|^2(1-\beta)^2}{(1+\lambda(1+2t))^2}$$

Remark 2.2. Taking $\lambda = \alpha, \gamma = 1$ and t = 0 in corollary 2.2, our results same as [5, Theorem 3.2, p.1572], $\lambda = 1$, $\gamma = 1$ and t = 0 in corollary 2.2, as appaered in Srivatsava et al. [7 and 12, Theorem 2, p.1191]

Taking
$$\phi(z) = \left(\frac{1+z}{1-z}\right)^n$$
, $0 < \eta \le 1$ in the class [7, 14] $W_{\Sigma}(\gamma, \lambda, t, \phi(z))$, we have $W_{\Sigma}^{\eta}(\gamma, \lambda, t)$ and

 $f \in W^{\eta}_{\Sigma}(\gamma,\lambda,t)$ if the following conditions are satisfied:

$$\arg \left| 1 + \frac{1}{\nu} \left[(1 - \lambda) \frac{f(z)}{z} + \lambda (f'(z) + tzf''(z)) - 1 \right] \right| < \eta, \quad z \in U$$

and

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

$$\arg \left| 1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{f^{-1}(w)}{w} + \lambda ((f^{-1}(w))' + tw(f^{-1}(w)))'' - 1 \right] \right| < \eta, \ \ w \in U$$

Corollary 2.3[7]. If $f \in W^\eta_\Sigma(\gamma,\lambda,lpha)$, then

$$|a_2| \le \frac{2|\gamma|\eta}{\sqrt{|2\gamma(1+2\lambda(1+3t))\eta + (1+\lambda(1+2t))^2(1-\eta)|}}$$

and

$$|a_3| \le \frac{2|\gamma|\eta}{1+2\lambda(1+3t)} + \frac{4|\gamma|^2\eta^2}{(1+\lambda(1+2t))^2}$$

Remark 2.3. Taking $\lambda = \alpha$, $\gamma = 1$ and t = 0 in corollary 2.3, our results same as appeared in [5,Theorem 2.2, p.1570], $\lambda = 1$, $\gamma = 1$ and t = 0 in corollary 2.6, same as [11] and Srivatsava et al. [12, Theorem 1, p.1190]

Nomenclature

SCF - Starlike and convex function

BS - BC - Bistarlike - Bi Convex function

SCC - Starlike and convex function of complex order

ICB - Initial coefficient bounds

BUF - Bi univalent functions

REFERENCES

- [1] R.M.Ali. S.K.Lee, V.Ravichandran, S.Supramanain, Coefficient estimates for Bi-univalent Ma-Minda star like and convex functions, Appl. Math. Lett. Vol.25, p.p 344-351, 2012.
- [2] R.M.Ali,A.O.Badghaish,V.Ravichandran A.Swaminathan, Starlikeness of integral transforms and duality,J.Math.Anal.Appl.Vol.385, p.p 808-822, 2012.
- [3] E.deniz, Certain subclasses of biunivalent function satisfying subordinate conditions, J.Classical Ana, Vol 2(1), 2013.
- [4] S.Devi and A.Swaminathan, Integral transforms of functions to be in the pascu class using duality techniques, arXiv:1304.0696v1, (preprint).
- [5] B.A.Frasin and M.K.Aouf, New subclass of bi-univalent functions, Appl.Math.Lett. Vol 24, p.p 1569-1573, 2011.
- [6] T.Hayami and S.Owa, Coefficient bounds for bi-
- univalent functions, Pan Amer. Math. J.Vol 22, p.p 15-26, 2012.
- [7] Juan Manuel Delgado, C'andido Pi⁻neiro, 'On p-Compact Sets in Classical Banach Spaces', International Mathematical Forum, Vol. 9, 2014, no. 2, 51 63.
- [8] W.C.Ma, D.Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157169, Conf.Proc.Lecture Notes Anal. I, Int.Press, Cambridge, MA, 1994.
- [9] G.Murrugusundaramoorthy, N.Magesh and V.Prameela, Coefficient bounds for certain subclass of biunivalent functions, Abstract and Applied Analysis, Vol. 2013, Article ID 573017, 3 pages.
- [10] C.Pommerenke, Univalent Function, Vandehnhoeck & Ruprecht, Gottingen, 1975.
- [11] C.Ramachandran, R.Ambrose Prabhu, N. Magesh, Initial Coefficient Bounds for Certain Sub classes of Bi Univalent functions of Ma Minda type, Applied Mathematical Sciences, Vol 9, p.p 2299 2308.
- [12] V.Ravichandran, Y.Polatoglu, M.Bolcal and A.Sen, Certain subclass of starlike and convex functions of complex order, Hacettepe J.Math.Stat. Vol 34, 915, 2005.
- [13] S.Sivaprasad Kumar, V.Kumar and V.Ravichandran, Estimates for the initial coefficients of biunivalent functions, Preprint.
- [14] H.M. Srivatsava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Mathematika. Vol 23(10), p.p 1188-1192, 2016.

- [15] H.M. Srivatsava, G.Murrugusundaramoorthy and N.Magesh, on certain subclass of bi-univalent functions associated with hohlov operator, Global Journal of Mathematical Analysis, Vol 1 (2), p.p 67-73, 2013.
- [16] A.E Tudor, Bi-univalent functions connected with arithmetic and geometric means, J.Global Res.Math.Archives, Vol 1 (3), p.p 78-83, 2013.
- [17]Q.H.Xiu, Y.C.Gui and H.M. Srivatsava, Coefficient estimates for a certain subclass of analytic and biunivalent functions, Appl.Math.Lett. Vol 25 (6), p.p 990-994, 2012.
- [18]Q.H.Xiu, H.G. Xiao and H.M. Srivatsava, A certain general subclass of analytic and bi-univalent functions amd associated coefficient estimate problems, Appl. Math. Comput. Vol 218 (23), p.p 11461-11465, 2012.