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Abstract: A proposal is made in this paper regarding the deep feed-forward neural network for the
microarray binary dataset’s classification. We have used eight binary class standard datasets of
microarray cancer used the purpose of validating the suggested approach, specifically cancers of the
brain, colon, prostate, leukemia, ovary, lung-Harvard2, lung-Michigan, and breast. In addition, six
multiclass microarray datasets namely 3-class Leukemia, 4-class Leukemia, 4-class SRBCT, 3-class MLL, 5-
class Lung cancer and 11-class Tumor are also considered. To come out with curse of dimensionality, the
method for reducing dimensionality is PCA in binary class dataset’s case. We have crafted architecture of
neural network which is fully connected, configuring its parameters with sigmoid initialization for
network's input and hidden layer. This includes specifying the number of epochs, batch sizes, and
selecting appropriate activation functions. The suggested method's multiclass behavior is made possible
by initializing the activation function SoftMax to the output layer. The min-max approach is used for
feature scaling. To compute the magnitude of error of the method, binary cross-entropy, and categorical
cross-entropy are used on the binary and multi- class datasets and the ADAM optimizer is for
optimization. A study is conducted to compare the suggested approach with the most advanced
techniques available. According to experimental findings on these common microarray datasets and
comparisons with the most advanced technique, the suggested method's performance is quite respectable.

1. Introduction

A class of diseases known as cancer is defined by aberrant cell growth that leads to the
development of cancerous cells. It is normal for a healthy body to control the growth of cells, and for those
cells to die gradually over time. Damage in the genetic make-up of cells by internal and environ- mental
factors result in cells that do not die and continue to grow to form tumors [58]. Some of the main internal
factors that cause cancer are incorrect cell division and damage to DNA, while significant external variables
include experiencing chemical exposure found in Smoke from tobacco, radiation, and Sunlight's UV rays. [1,
29, 58]. According to molecular biologists, different cancer types have different expression profiles of genes
used in the diagnosis of cancer and differentiate cancers. Classification of microarray medical data
contributes in identifying such genes that influence a particular biological consequence and predicts
outcomes in the event of a new observation. By building a model to predict the category of an object based
on the input pattern representing the object, a classification problem can be solved. With the help of the
provided test data, a prediction model will be developed to make accurate predictions. [11, 12, 59].

Analyzing micro array gene expression data remains the most challenging research areas in some
sectors like statistics, machine learning, bioinformatics, genomics, computational biology, and pattern
classification. The tiny sample size and high curse of dimensionality resulting from the existence of
irrelevant genes provide the main challenges in microarray cancer investigation [2, 31, 32]. Medical
databases frequently contain noise, feature value fluctuations, and class imbalances, which lead to
overfitting and decreased classification accuracy [11, 60]. As a means to recognize and understand what
factors lead to cancer, microarray data analysis should be investigated, particularly cancer classification.
This promotes early-stage cancer identification, which helps doctors create treatment programmes targeted
at raising cancer patients' chances of survival. [2, 4, 32].

Labeled microarray cancer data classification is regarded as a problem that involves several key
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tasks, including data collection, feature scaling, selection, and classification, and analysis of post-
classification. From tens of thousands of highly correlated and informative genes, it is the task of feature
selection to select the genes that are most important. These elements of filtered data are then fed into a
classifier to improve classification accuracy. [20, 61]. Identifying the ideal and appropriate feature subset
will increase computational stability and classification accuracy, feature selection is essential to the
classification of cancer data [6, 17, 19, 56].

A deep learning algorithm is employed to classify the data of microarray cancer. To understand
the behavior of features, deep learning requires a lot of data. Eight common datasets are— Central Nervous
System, Prostate, Breast, Leukemia, Colon, Ovarian, Lung-Michigan, and Lung-Harvard cancer—are used
to validate the suggested methodology. The Min-Max approach is utilized to scale feature values in order to
mitigate decision bias towards high-value features. The proposed model shows its capability of an accurate
prediction when compared withthe latest related works.

2. Related Works

Researchers in a variety of fields, including computational biology, bioinformatics, genomic
studies, pattern recognition, machine learning and statistics are becoming interested in microarray data
analysis. The following discussion includes the most recent microarray data analyses in certain fields like
pattern recognition, artificial intelligence and machine learning. Applying deep learning methods in
analyzing bioinformatics data such as microarray cancer datasets is a challenging task as such data has
limited size of sample and unequal classes [62]. Zeebaree et al. [63] utilized a convolutional neural network
for the selection of gene and the categorization of microarray cancer data. This work's creators don't
disclose how they have got these dimensions of the features. With the noteworthy exception that the
weights were chosen at random, Mohapatra et al. [2] recommended utilizing one Hidden Layer Feed-
Forward Network (SLFN) in combination with Ridge Regression (RR). The breast, leukaemia, prostate,
and colon tumour binary microarray datasets were utilized to validate the methodology. Our observation is
that they should have been applied the training and test samples similar to the standard train/test as in the
dataset of Breast cancer case. A Genetic Programming oriented classifier combined with Information Gain
for feature selection was suggested by Salem et al. [1]. In the paper Lin et al. [59] reported [59] on feature
selection and classification based on silhouette statistics, a genetic algorithm with silhouette statistics has
been designed. They did note, however, that the feature selection strategy was not ideal because it produced
a high amount of features, which would cause the model to over fit. The K-Nearest Neighbours (KNN)
classifier was used by Kumar et al. [17] in combination with a choice of features and the algorithm
categorization centered upon the concept of MapReduce. The DLBCL, colon datasets, leukaemia, and
prostate are four common datasets that Nguyen et al. [38] assessed their model and recommended a
combined gene selection approach for microarray data classification. Although the proposed is stable
among classifiers, they were unable to verify the stability claim for over 5 classifiers. The existing 5
classifiers which includes MLP (Multilayer Perceptron), Linear Discriminant Analysis, Support Vector
Machine, K-Nearest Neighbour, and PNN (Probabilistic Neural Network) were used to validate the
technique. Brain Emotional Learning and principal Component Analysis and were combined by Lofti and
Azita [64] to classify microarray cancer data. Three datasets were used to evaluate their approach, however
this was insufficient to verify the method's generalizability. Sharbaf et al. [6] put forward an approach of
hybrid for the selection of gene and the microarray datasets' classifications, employing ant colony
optimization techniques as well as cellular learning automata. They explored the influence of different
methods of feature selection that utilize ranking techniques to identify the most effective features. To
validate their approach, they employed 3 classifiers: SVM, NB and KNN. Ravi et al. [57] conducted a
comprehensive review aimed at unveiling the models of deep learning potential in medical data sectors.
Various deep learning designs, including recurrent networks, convolutional networks, and deep feed-
forward have been demonstrated and are useful for addressing various problem domains. Kar et al. [25]
presented a technique of feature selection for classifying microarray cancer data, as per Particle Swarm
Optimization (PSO). They validated their method using the Leukemia ALL-AML as well as SRBCT
datasets. For every dataset, they execute the experiment ten times, and these ten runs' average is given as
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the final outcome. Microarray classification was put forward in two stages by Garcia and Salvador [51]. A
relief ranking algorithm was then used to identify features, and a classifier was trained using the feature
space of lower-dimensional to categorize every sample. The Relief algorithm has been employed for
feature selection, and the outcomes of the experiments are reported on 8 distinct cancer datasets. They
utilized 3 models of linear classification models: the Fisher linear discriminant, Multilayer Perceptron
neural network, and Support vector machine classifiers. Chen et al. [14] presented a particle swarm
optimization-based feature selection technique, and the C4.5 decision tree is utilised for classification.
Have reported the outcomes of an experimental study using an approach called 5-fold cross-validation on
several datasets related to tumor cancer. For large biological datasets, Farid et al. [52] considered the K-nearest
neighbours and decision trees and suggested an adaptive rule classifier. Lyu et al. [65] suggested a feature selection
technique that uses filters and relies on the Gram-Schmidt orthogonalization approach and the maximum
information coefficient. Li et al. [66] created data-driven weights for lung cancer classification according to
information theory and an overlapping grouping technique. An ensemble strategy based on feature subsets
and learning from several projections of the original feature space was presented by Piao et al. [22] to identify
multi-class microarray cancer data. To address the increased computational complexity stemming from
redundant features in feature selection, Wang et al. [67] ingeniously combined Markov blanket techniques
with Wrapper-based feature selection methods. As a result, there are a lot of studies being conducted in
feature selection sectors, dimensionality reduction, and microarray data classification. We attempted to
investigate the Principal Component Analysis usage as a preliminary stage in our study prior to
implementing deep learning, a popular machine learning technique to increase the classification's accuracy.
The following sections go into more detail about the details.

3. Proposed Methodology to Classify Binary Class Datasets

The proposed work, within this section, an elaborate framework unfolds, encompassing multiple
stages such as reduction of dimensionality, feature scaling, and the employment of a sophisticated deep
feed-forward classification technique, incorporating finely-tuned parameter configurations via neural
networks. The proposed approach's primary responsibilities include loading the raw microarray cancer data,
normalizing it with the Min-Max approach, reducing its dimensionality, and classifying it with deep
learning, as illustrated in Figure 2.1.

3.1 Feature Scaling

The practice of exploring feature scaling techniques is widely acknowledged within the domains
of machine learning and pattern recognition, primarily aimed at standardizing the data. In scaling down all
data elements, this process helps to improve prediction quality by preventing outliers. Given the high
variance of characteristics in cancer microarray datasets, we suggest investigating feature scaling for data
normalization as a potential pre-processing approach. To accommodate the sigmoid activation function, the
Min-Max approach is used to scaling features, which normalizes values to a range of 0 to 1 and during the
model training procedure includes a 0.5 threshold for the classification of binary. We have taken into
account the Min-Max feature scaling technique (See Equation 2.1) in our work.

X’i — Xm’.-:'n
Xma:c _ Xm'z,n,

Here, "X" represents the normalized data, "Xi" corresponds to the original feature value,
"Xmin" denotes the minimum value, and "Xmax" symbolises the highest value obtained from the
original dataset prior to scaling.

X:

3.2 Dimensionality Reduction-based Feature Selection

Within the context of this study, we recommend to apply Principal Component Analysis, a
methodology named dimensionality reduction, as a prerequisite preliminary processing phase in order to
establish a data representation that exhibits improved discriminative properties and superior
conciseness. Microarray cancer data of high-dimensional is linearly transformed into a new reduced-
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dimensional space by PCA in order to maximize the data's variance under a low dimensional space [51]. It
is widely recognized that dimensionality reduction enhances accuracy, mitigates overfitting, and simplifies
the model, collectively leading to improved classification performance. Equation 2.2, which considers X
as any sample within the dataset having d dimensions, is employed to represent each individual
sample in the original dataset.
X =[X, Xo X, XeR" (2.2)

Equation (2.2) serves to articulate an input dataset dimension, which is defined as Xi = x1, x2, * ¢
-, xd, where Xi stands for any of the samples found in dataset (input). Principal Component Analysis
(PCA) adeptly preserves the highest variance inherent among the features within the novel dataset,
harnessing this variance as a potent lever to engender a trimmed feature set denoted as "Z," characterized
by a reduced dimensionality of "k." This meticulous curation of "Z" maintains the utmost salient
information, ensuring the retention of paramount value. Here, noticeably smaller than the original dataset's
dimension, d, is the new matrix's dimension, k. To construct the new dataset, the PCA model's
eigenvectors, denoted as W, are each sample vector multiplied.

Z=XW =[z1,22, -, 2], ZeR"  WeR¥ k << d (2.3)

Hence, the new matrix's dimension is significantly greater than the original dataset's size (d), with
the new matrix's dimension Z is presented as ZeRn'k.

The new matrix produces a vector zn within a reduced-dimensional feature subspace of dimension
k, which is lower in dimension compared to the original d-dimensional feature space, as illustrated in
Equations 2.3. In this context, the original dataset's dimension, d, significantly surpasses the dimension of
the new matrix, k. The 2.1 figure outlines the steps involved in dimensionality reduction employing PCA.

In the course of dimensionality reduction, given that pre-processing is conducted independently
for both the training and test data, we've noted variations between the training as well as test datasets'
dimensions. However, in order to train a classifier, it is imperative that both the training and test data share
the same dimension. Hence to alleviate this problem, we have considered the selected features' of only
minimal count. from either the training or test samples by defining Equation 2.4. Moreover, not only the
dimension but the name of features also partially varies. To alleviate this, we have considered the common
features and those features that are not common in both training and testing sets are not considered.

P71, T,) = argmin(1,.,T.), 1T, % T,

where T, and Ts stands for the dimension of training and test data and P is the dimension of the
dataset after dimensionality reduction which takes either of the minimum numberof features Tr or Ts.

3.3 Deep Learning-based Classification

This section presents the proposed approach, which encompasses multiple stages such as feature
scaling, dimensionality reduction, and a classification method based on deep feed-forward neural networks,
along with parameter configurations. As depicted in Figure 2.1, the primary objectives of the recommended
approach encompass loading the raw microarray cancer data, normalizing it via Min-Max approach,
performing dimension reduction, and for classification, deep learning is utilized.
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FIGURE 2.1: Structure of the Deep Learning Approach Proposal.

An experiment using deep feedforward neural networks to classify microarray data is proposed in
our proposal. One essential deep learning model is the deep feedforward network. Because information
moves from x, the input feature vector, through intermediary calculations that define f, and finally to Y
output, whereas yi is predicted class lambda, the nomenclature assigned to the model is denoted as a
"feedforward neural network”. The model does not have any feedback between its outputs. If
feedback connections from the same nodes are added to a feed-forward neural network, it no longer
qualifies as a feed-forward model; instead, it transforms into a recurrent neural network model. A directed
graph that explains how these functions are connected to one another is formed by a collection of
interconnected directed functions that define a feed-forward neural network. The model represents the
relationship between the functions as a directed graph. To define f (x) = (f1, f2, f3, (X)), for example, let us
take three functions, f1, 2, and f3, that together form the network by being linked in a chain. These
sequential structures are the prevalent configurations in neural networks. Here, the neural network's first
layer is represented by f1, the second by f2, and the third by f3 and so forth [68].

We establish a fully connected neural network approach, where the input layers are initialized with
the attributes of input. Moreover, the layers which are hidden is explicitly delineated, encompassing their
respective parameters, which encompass log-loss function and activation functions. Each hidden layer’s
output is fired with the sigmoid function's output, transforming it into the hidden layer’s output. The
classifier can make predictions and estimate each sample's class label once the model converges into a
single output layer. A single neuron that produces a class label makes up the output layer, which can be
either class one or class two. The detailed workflow that shows feature scaling,dimensionality reduction and
classification is shown in Figure 2.1. The outlined procedure is illustrated in Figure 2.2, commencing with
the features (input), weight, activation function, and progressing through output computation, error
assessment, and error back-propagation. To produce a single output, every feature of the input is multiplied
by its weight separately, which serves as input for the subsequent layer, ultimately culminating in the
prediction. In the assessment phase, the expected class label is subtracted from the actual class label to
produce a discrepancy. This disparity is then used as the back propagation process' error term. This
minimal error is noted since the objective of error back propagation is to adjust the weights, ultimately
striving for the highest achievable prediction accuracy.
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FIGURE 2.2: The Deep Learning Model.

The dot product outcome involving data z1, z2, and so on up to zn, along with their respective
weights wl, w2, and so forth up to wn in the hl (initial hidden layer), is determined by the activation
function 'a," as depicted in Figure 2.3. An activation's output moves on to the following hidden layer node
before being triggered at output layer node. Backpropagating weights to preceding nodes is used to
continually update them until an optimal prediction is achieved.

Z=171,72,73, - - -, zn, where ZeRn-k, is the input data format used by the suggested deep learning
technique. The relevant weight of each input vector is multiplied, with w denoting wl, w2, w3, and so
forth, representing the input data’s weight vector. Additionally, within the weighted input vectors lies the
bias, b. Equation 2.5 delineates the application of the sigmoid activation function to the weighted input
vectors within each layer of the model. This process results in the generation of intermediate probabilistic
outcomes within the hidden layers.

a=f(w:*z, + woy*z, +...+ w,*z,)

FIGURE 2.3: Activation Function.
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Up = f ani " ks +b
=1

The target variable, yp, is the one we aim to forecast. The weight matrices, wn, and feature
vectors, zk, are present. The sigmoid activation function, or f, is introduced in equation 2.6. In order to
predict the class membership of a new data point, we recommend using the sigmoidal activation function
for training the deep feed-forward neural network model. Our model's activation function is the sigmoid
function, which produces limited output values between 0 and 1, facilitating the interpretation of class
labels as probabilities. The sigmoid function is as follows:

1

JE) = e
Equation 2.7 addresses the accommodation of multiple features across the hidden layers, as it
captures the data's intriguing characteristics as it progresses toward the output layer.

1, if w(]+u11-z1+w2-22—|—,---,—|—wn-zn>=0.5
Yp = 1

0, otherwise
\ 2.7)

Where yp represents the anticipated class label, zn stands for the feature vector, wn corresponds to
the weight vector, and wO signifies a bias value initialized to 1.

One useful method for determining the relationship between multiple independent features or
target-dependent variables is Equation 2.7. Random and uniform weight initialization is followed by
uniform weight updates during training. Equation 2.7 computes a class value by comparing the actual and
predicted probabilities and assigns the prediction to either the actual or predicted class based on a threshold
value. In a deep learning-based classification, The cross-entropy objective function, which is preset, is used
for calculating the ultimate forecast error according to the difference between the predicted class label (yp)
and class label (yi). Subsequently, the weights are fine-tuned to minimize the error, which is achieved by
propagating errors throughout the entire network. [69].

Figure 2.2 illustrates the computational elements and the method of deep feed-forward to classify data.
It comprises the error calculation, input features, activation function, weights, output, and error back-
propagation. Each input feature's weight is multiplied to generate a single output, which, in turn, serves as input
for the subsequent layer to make predictions. The assessment is carried out by deducting the estimated the label
of class from the actual label of the class. The resulting difference is then employed as an error of back-
propagation. The minimum error is logged, as the error back-propagation mechanism is engineered to adjust the
weights, ultimately striving for the highest attainable prediction accuracy. The input characteristics [z1, z2, and
so on, up to zn] and their accompanying weights [wl, w2, w3, and so on] are dot products in the first hidden
layer, or "h1," which produces the output. Figure 2.3 provides an example of this approach. Activation function’s
output proceeds to the subsequent hidden layer node before eventually being activated at the output layer node.
By propagating the updated weights backward to the nodes that came before it, the process of updating weights
never ends until the model achieves the most accurate forecast.

3.4 Parameters settings
For 7 of the datasets, we've used a model of deep feed-forward of 7 layer, as shown in Table 2.1.
Equation 2.8 is used to calculate the number of parameters in each of the layers, where Ci at layer ‘I is the
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number of neurons, Pi in the preceding layer is the number of neurons, and 1 is the bias. Every layer in the
methodology of deep feed-forward has a different batch size, as denoted by the "None" parameter. The
quantity of neurons in the input layer determines the input shape for the subsequent layer. An epoch size of
1000 is consistent across all datasets. Summing all of the parameters for each layer yields the total number
of parameters, or "Tparameters” fOr @ particular model. As a result, after adding up all parameters from all
layers, our study has 33,661 trainable parameters.

7
T-pa-ramcters — Z C@(Pz + 1)
1=1

TABLE 2.1: Proposed seven-layer deep feed-forward model

Type of Layers Output Shape # Parameters
Dense Layer 1_ (None, 200) 4600
Dropout 1 (None, 200) 0
Dense Layer 2 (None, 100) 20100
Dropout 2 (None, 100) 0
Dense Layer 3 (None, 50) 5050
Dense Layer 4 (None, 40) 2040
Dense Layer 5 (None, 30) 1230
Dense Layer 6 _ (None, 20) 620
Dense Layer 7 _ (None, 1) 21
Total number of trainable parameters 33,661

The selected parameters include the binary cross-entropy for loss computation as well as sigmoid
activation function on test data and training, and the utilization of the Adaptive Moment Estimation
(ADAM) optimizer [70]. Each parameter's learning rate is adjusted by the ADAM optimizer by figuring out
and keeping up a preceding gradient momentum decaying average and an exponentially declining average
of previous squared gradient variances. We refer to the ADAM optimizer using its name in our
investigation, with the factors assuming their default values. These default ADAM optimizer parameter
values are as follows:

optimizer parameters are f; =0.9, A, =0.99, ¢ = 1078
where i and p, are decay rates [70].

As this model generates predictions through a probabilistic framework, by applying a binarization
process to the class level, producing Boolean outcomes for each class when the threshold value is set at 0.5.
In this model, the cost function is defined using binary cross-entropy, as outlined in Equation 2.9, where a
feature is represented by ‘zk’, target is ‘yi’, and the class (whether it's zero or one) is ‘c’. In the output
layer, zk is used as an input vector to determine the class membership of a given class c. The proposed
model estimates a probabilistic target value yi given an input vector zk.

f(z:) = p(y; = clz,)

@
.9)
In the case of binary classification problems, it is necessary to determine whether the predicted
and actual probability vectors differ significantly from one another, by employing a distance function, as
depicted in Equation 2.10.
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D(f(zisYp, i) = % Z((‘wn-zn +b), Yp, Yi)

D represents the distance function between the actual class labels, denoted as yi, and the predicted
class labels, denoted as Yp. The vector distance that was previously indicated is averaged over all the
values of input (zn) in the training dataset, represented by the letter N. In this context, b refers to the bias,
and wn is the weight matrix. Equation 2.11, which aims to enhance the estimation of a particular sample
zn's association with a class label yi, exemplifies the application of the negative log-likelihood
minimization function to maximize the correct target yi probability, with regard to the ‘zi’ input features.

L(f(2:),v:) = — Z 1(y,=c) log f(zn)e = —log f(2n) - ¥

In this case, yi is labeled as dependent class that corresponds to all features, ¢ represents class,
feature vector ‘zn’, and L represents loss.

4. Experimental Setup and Results Analysis

The context here, includes an explanation of the datasets we used for our experiments,
performance metrics we employed to evaluate the performance of the suggested model, and the analysis
and results of our experiments. We developed our model using Anaconda Python 3.5 as a development
tool, the backend is powered by the open-source Tensor Flow deep learning library, and the frontend is
driven by the Keras Deep Learning Library. [71].

4.1 Dataset Description

In order to evaluate the proposed model of multidimensional microarrays, eight different standard
microarray  datasets were taken from the ELVIRA Biomedical Dataset Repository
(http://leo.ugr.es/elvira/ DBCRepository/index.html) sourced from the BIO ELVIRA Biomedical Data
Repository for assessing high-dimensional biomedical data sets. The dataset related to Central Nervous
System cancer comprises 7129 features and includes samples of 60, among which 39 deal with failures and
21 with survivors. There are 2000 genes and 62 samples in the colon cancer dataset. Of these samples, 22
are considered normal cases and 40 are classified as positive tumours. The Ovarian cancer dataset, on the
other hand, features 15153 genes and consists of 253 samples, with 162 samples corresponding to cancer
cases and 91 to normal cases. Additionally, the Leukaemia dataset, which includes 72 samples and 7129
characteristics, is related to bone marrow malignancy.

There are two different groups in the Leukaemia dataset: 25 samples indicate Acute Myeloid
Leukaemia (AML) and 47 samples indicate Acute Lymphoblastic Leukaemia (ALL). In the case of the
Prostate cancer dataset, it involves 12600 features and a total of 102 samples, out of which 52 correspond
to tumor observations, and a further 50 cases are considered normal. 24481 genes and 97 samples make up
the Breast Cancer dataset; 46 cases are classified as relapses and 51 samples are classified as non-relapses.
The lung-Michigan cancer contains 96 samples that contains 86 adenocarcinomas and 10 non-neoplastic. It
is significant to observe that the class distributions in the Lung-Harvard2 and Lung-Michigan cancer
datasets are incredibly unbalanced. Adenocarcinoma (ADCA) cases (150) and malignant pleural
mesothelioma (MPM) cases (32), together making up the Lung-Harvard2 dataset, total 181 samples. On the
other hand, of the 96 samples in the Lung-Michigan dataset, 86 are categorized as Adenocarcinomas, and
the other 10 are classed as non-neoplastic.

Table 2.2 provides an overview of these datasets, offering details on their initial feature count,
PCA-selected features, and percentage of discarded features, number of classes, training and test data sizes,
sample sizes. Through PCA-based dimensionality reduction, irrelevant features were eliminated, enhancing
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classifier performance with the most informative features. It was observed that a substantial portion of the
original features in these datasets lacked significance in predicting class labels.

TABLE 2.2: Dataset Description

0
Datasets # Selected /OdiOS]c Sample Training Test #Class
# Features car size size size es
Eeatures featyfes

CNS 7129 108 9849 60 36 24 2
Colon 2000 104 94.80 62 37 25 2
Leukemia 7129 53 99.26 72 39 33 2
Prostate 12600 76 99.40 102 61 41 2
Ovarian 15154 24 99.84 253 202 51 2
Breast 24481 60 99.75 97 78 19 2
Lung-Michigan 7129 45 99.37 96 57 39 2
Lung-Harvard2 12533 77 99.39 181 32 149 2

4.2 Performance Measures

Several recognized performance metrics were employed to verify the efficacy of our suggested model.
These metrics included f-score, classification accuracy, recall, precision, the region under the curve (AUC) as
represented by the confusion matrix, ROC curve, and log-loss. Equation 2.12 illustrates the use of accuracy as a
measure to assess the overall predictive performance of the model. This metric considers four crucial parameters:
False Negatives, False Positive, True Positive and true negative. This involves determining the ratio between the
total number of test samples and the number of samples that have been accurately classified.

TP+TN 2.12)

Accur = —
COUTACY = TP TN+FP+FN

Equation 2.13 shows that true positive rate is represented by recall, which is sometimes referred to as
sensitivity. According to the equation, it measures the proportion of true positives to the total of TP and false

negatives (FN).
TP
TP+FN

Recall = (2.13)
Another performance metric employed in this study is precision, sometimes referred to as positive
predictive value (PPV), as outlined in Equation 2.14.

e (2.14)

TP+FP

Precision =

Equation 2.15 illustrates how the F-Measure, which considers the harmonic mean of both precision and

recall metrics, is used to balance their respective effects.
PrecisionxRecall

Fscore =2 X o————— (2.15)

Precision+Recall
The proposed model's error score is determined through the utilization of the log-loss function, as depicted in Equation
2.16. In this equation, N stands for the samples' quantity, Actual class label is represented by v;, and the likelihood that the i sample
is a member of one of the classes is represented by pi. Log-loss evaluates a model's performance by measuring predictions as

probability values within the range of zero to one. A reduced log-loss error value is the goal of an improved classifier, with the ideal
scenario being zero, indicative of a perfect classifier.
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N
—1
LogLOSSz:jE;EE:in (log(p:) + (1 —y) x log(1 — p;))

z2=1
(2.16)

5. Experimental Results and Analysis
A detailed examination of the findings from experiments is presented in this subsection that were
attained using the suggested methodology across a range of datasets and performance metrics.

TABLE 2.3: Experimental Results on all datasets
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cancer 8 9 . 4
0 9 9 9 9 9 1
0 5 5 5 5 6 0
CNS 3 2 0 0 0 0 0 0 0.
6 4 . 2
9 9 9 9 9 9 1
6 6 6 6 6 7 9
Colon 3 2 1 0 0 0 0 0 0.
7 5 . 1
0 9 9 9 9 9 8
0 6 7 6 6 7 9
Leuke 3 3 1 1 1 1 1 1 0.
mia 9 3 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Ovari 2 5 1 1 1 1 1 1 0.
an 0 1 . 0
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0
Prosta 6 4 1 1 1 1 1 1 0.
te 1 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 3
Lung- 3 1 1 0 0 0 0 1 0.
Harva 2 4 . . . . . . 0
rd2 9 0 9 9 9 9 0 3
0 9 9 9 9 0 2
Lung- 5 3 1 1 1 1 1 1 0.
Michi 7 9 . . . . . . 0
gan 0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Figures present the experimental outcomes showing the confusion matrix, training and test samples'
classification accuracy, loss, ROC curves, and loss. Moreover, the results are also presented in Tables and
comparison analysis using novel methods.

In the proposed microarray cancer classification model which is based of deep feed-forward neural
network, each input layer collects information and transmits them for further processing in the next layer. The
model's neurons are densely coupled. A single neuron in the fully connected neural network model generates a
probabilistic outcome with a range of 0 to 1, inclusive. Upon binarization of this magnitude, it begets the
prognosticated outcome contingent upon the designated threshold of 0.5, an oft-adopted default value for
quandaries pertaining to binary classification. To predict a class on the output layer, the model takes the chosen
features as input and processes them via its hierarchical hidden layers.

In order to perform pre-processing, such as dimensionality reduction, feature scaling, and classification,
we used separate test samples and training. Since certain data sets, such as Lung-Harvard2, Leukemia and Breast
Cancer have established criteria of test and training, that throughout our work, we apply these criteria. The
utilization of a ratio of 60:40 for training and testing cases, prior to commencing the pre-processing phase, is
employed for the purpose of segregating the datasets into training and test samples. This approach is especially
pertinent when dealing with datasets, namely CNS, Colon, and prostate that do not possess discrete sets of test
samples and training. Furthermore, in the specific case of data related to ovarian cancer, a ratio of 80:20 is
employed for the same purpose of partitioning the dataset. Many machine learning algorithms use this as the
benchmark, which is why the datasets were divided into the designated ratios for testing as well as training.

Table 2.3 displays the experimental outcome of the suggested approach along with the sample sizes for
each dataset's training and testing stages. Additionally provided are the log-loss error, f-score, AUC, recall,
precision, and accuracy of the classification. The suggested approach demonstrates flawless classification
performance, obtaining a 1.00 rating across 4 datasets: the Prostate, Lung-Michigan cancer, Leukemia and
Ovarian. The proposed methodology has yielded noteworthy classification accuracies, with an impressive score
of 0.99 achieved on the Lung-Harvard dataset, a commendable 0.95 on the Breast cancer dataset, and a
substantial 0.96 on colon and CNS cancer datasets. These results were obtained when applied to the remaining
four datasets, underscoring the effectiveness of the approach.

To confirm the proposed method’s efficacy, a confusion matrix is utilized that shows test samples that
have been identified properly or erroneously. Along the diagonals, Accurately categorised samples are displayed
in the confusion matrix; test samples that are off-diagonal are misclassified. It has been shown that out of 19
samples for breast cancer, one case had an error in its classification, with the relapse category assigned to the
non-relapse category depicted Figure 2.5(a). In a similar vein, 1 test sample from the fails class out of 24 is
incorrectly categorised as a member of the surviving class in the dataset of CNS which can be seen in Figure
2.5(b).

Furthermore, as demonstrated in Figure 2.5(c) 1 negative case out of 25 test cases in the Colon dataset
is incorrectly identified as a positive case. Among the 149 test cases meticulously evaluated within the Lung-
Harvard dataset, a singular instance belonging to the ADCA class was observed to be erroneously misclassified
as a member of the MPM class, as vividly demonstrated in Figure 2.5(e). As demonstrated in Figures 2.5 (d, f, g,
h) for the Leukemia, Lung-Michigan, Ovarian, and Prostate cancer datasets, accordingly, the model exhibits
flawless classification accuracy in the other datasets.

To evaluate the efficacy of the proposed methodology, we've calculated the accuracy of the
categorization. The training and test cases' accuracy for the suggested method using data on breast cancer is
displayed in Figure. Comparably, the suggested method's classification accuracy on the Lung-Harvard2, CNS
and Colon datasets—which display the smallest gap between the lines of training and test cases—is displayed in
Figures 2.7(b), 2.7(c), and 2.7(e). Figures 2.7(d), 2.7(f), 2.7(g) and 2.7(h) exhibit the suggested technique's
classification accuracy on the datasets such as Leukemia, Lung-Michigan, Ovarian, Prostate, respectively.
There is no appreciable difference between the test samples and lines of training since these datasets have 100%
classification accuracy.

The log-loss error function is another metric used to assess the suggested approach. Evidently, as
discerned from Figure 2.9(a), the loss function associated with the training set approaches near-zero values.
Nonetheless, It is noteworthy that the test cases' stated loss, quantified at 0.410 (as detailed in Table 2.3),
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underscores the necessity for additional comprehensive investigations pertaining to this specific dataset. Such
further studies are warranted in order to mitigate and minimize the prevailing errors and enhance the overall
performance. As seen in Figures 2.9(b), 2.9(c), and 2.9(e), where the suggested technique scores 0.219, 0.189,
and 0.032 (Check out the final column of Table 2.3), it performs the best in datasets like Lung Harvard, CNS,
and Colon. Additionally, it is crucial to highlight that there is no obvious loss on the datasets related to prostate
cancer, lung-michigan, and leukemia, as clearly seen in Figures 2.9(h), 2.9(f), and 2.9(d), respectively.
Alternatively, as Figure 2.9(g) clearly illustrates, a small and essentially insignificant error of 0.003 is observed
within the framework of the ovarian cancer dataset. It is worth highlighting that the disparity or divergence
observed between the trajectories of the training and test cases is an indicative measure of whether the model
may be suffering from overfitting, as it reflects the extent to which the model may have specialized excessively

on the training data.
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FIGURE 2.5: The confusion matrix due to the proposed Deep Learning method on
(a) Breast cancer; (b) CNS Cancer; (c) Colon Cancer; (d) Leukemia Cancer; (¢) Lung Cancer; (f)
Lung-Michigan; (g) Ovarian cancer; and (h) Prostate cancer datasets.
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Generally, for classification problems, the curve ROC is often utilized to evaluate the model’s
performance. The AUC is calculated using this method at various threshold values. It has a high tolerance level
and is one of the measures employed to evaluate a classifier's performance when it comes to classifying data with
less class imbalance. ROC curve compares area coverage to accuracy and other performance indicators and
shows the area coverage in terms of AUC. By shifting the curve to the left upper corner, ROCs and AUCs
improve the classification accuracy. Applying the recommended approaches to the Breast Cancer dataset yields
results from ROC analysis as shown in Figure 2.11(a) based on acceptability ratings found in the literature. The
ROC curve scores an AUC of 0.96. The ROC curves corresponding to colon cancer and CNS datasets are
displayed in Figures 2.11(b) and 2.11(c), with an AUC of 0.97 for each. This level of area coverage is regarded
as highly commendable, aligning with the prevailing standards of result evaluation within the pertinent academic
literature [75, 76]. In a similar vein, the curve of ROC engendered by the implemented methodology on the
dataset Lung-Harvard? attains a notably elevated value of 0.99, as vividly portrayed in Figure 2.11(e). Based on
the AUC score of 1.00 for each of the datasets in Figures 2.11(d), 2.11(f), 2.11(g), and 2.11(h), It seems that the
suggested approach is working exactly as expected on the Leukemia, Lung-Michigan, Ovarian, and Prostate
datasets.

5.1 Discussion and Comparative Analysis

A thorough analysis of the suggested method's performance and comparisons with cutting-edge
techniques are given in this section. The suggested deep learning-based classifier performs best when
informative features are obtained using a PCA-based dimension reduction technique.
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FIGURE 2.11: The ROC curve due to the proposed Deep Learning method on (a)Breast cancer; (b) CNS
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TABLE 2.4: Comparison of classification accuracy of the proposed method with
someof the latest related research works on CNS, Colon, Ovarian, Prostate, Leukaemia,
Lung-Harvard2, Lung-Michigan, and Breast cancer datasets

References Datasets
= 8 &
g B 20
c 9 7] g < -
c 2 8 S s S @
2 S & 2 3 £ 2 9
© 8 3 g =4 & P o
=]
3 =
Salem et al. [1] 0.87 0.85 - 1.00 097 - 1.00 -
Mohapatra et al. [2] - 093 - 099 099 - - 0.76
Medjahed et al. [3] - 097 0.98 - 09 099 - 0.86
Chen et al. [14] - - - 094 - - - -
Kar et al. [25] - - - - 097 - - -
Moayedikia et al. [32] 0.79 0.72 - - 100 100 - -
Nguyen et al. [38] 0.88 091 0.94

Garcia et al. [51] 0.73 0.84 0.99 090 - 098 0.98 0.65
Zeebaree et al. [63] - 0.65 - 092 100 - 0.72 -
Proposed Method 0.96 0.96 1.00 1.00 1.00 0.99 1.00 0.95

TABLE 2.5: Comparison of Recall of the proposed method with IG/SGA [1]

Ref. CNS Colon Ovar. Prost. Leuk. Lung-Har. Lung-Mich. Breast
Salem et al. [1]. - 0.83 - 1.00 0.97 - 1.00 -
096 096 1.00 1.00 1.00 0.99 1.00 0.95
Our Method
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The suggested approach achieves flawless classification with 1.00 accuracy on 4 datasets: the
Prostate, Leukemia, Ovarian, and Lung-Michigan. Additionally, the accuracy of the dataset Lung-Harvard is
0.99. In two dataset’s case, namely CNS and colon, along with the breast cancer dataset, we have ascertained
classification accuracies of 0.96 and 0.95, respectively. This demonstrates that the suggested approach
outperforms numerous cutting-edge techniques.

This section of the work compares the suggested approach's classification accuracy to a few recent,
carefully chosen works. The proposed method's accuracy in classification is compared with nine of the most
recent approaches in Table 2.4. The hyphen (-) in those specific table cells indicates that the authors' work did
not take the dataset into account.

TABLE 2.6: Comparison of the proposed method with Mohapatra et al. [2] on datadimensionality, Training
size, Test Size, Classification Accuracy (CA) and AUC pa-rameters.

Method
Authors and Dataset Dimension  Train.size Testsize Acc. AUC
Mohapatraetal. [2] = " 97 * 24481 70 27 0.81 0.89
(WKRR) S 62*2000 40 22 095 0.79
Leukemia 76*7129 50 26 0.95 0.87
Breast 97*24481 78 19 0.95 0.96
CNS 60*7129 36 24 0.96 0.97
Proposed method Colon Tumor 62*2000 37 25 0.96 0.97
(Deep learning) Leukemia 72*7129 39 33 1.00 1.00
Ovarian 253*15154 202 51 1.00 1.00
Prostate 102*12600 61 41 1.00 1.00
Lun-Michigan  96*7129 57 39 1.00 1.00
Lung Harvard 181*12533 32 149 0.99 1.00

Table 2.4 illustrates that the suggested approach attains superior classification accuracy of 1.00 across
four datasets: the Prostate, Leukemia, Ovarian and Lung-Michigan. When compared to previous works, our
results for the CNS and Colon datasets are 0.96, which is better. Accuracy values of 0.95 and 0.99 are obtained
for Lung-Harvard2 and Breast Cancer, respectively. In comparison to other methods, the suggested method
generally performs better. The suggested approach and the IG/SGA method are contrasted in Table 2.5 [1]. The
evidence presented establishes that the proposed model exhibits superior recall performance when compared to
the IG/SGA method, specifically in the context of the Colon and Leukemia datasets. This favorable outcome is
replicated with parity on the Prostate and Lung-Michigan datasets. As indicated in the table, the hyphen (-)
indicates that no datasets along that column are considered by the authors.

5. Conclusion

Within the framework of this study, we introduce a sophisticated approach called deep feed-forward
neural network designed for the purpose of binary classification of microarray datasets. We validate the
proposed method using a standard microarray cancer dataset comprising 8 binary classes: the Lung-Michigan,
CNS, Leukaemia, Colon, Breast cancers, Prostate, and Ovarian, Lung-Harvard2. In addition, six multiclass
microarray datasets namely 3-class Leukemia, 4-class Leukemia, 4-class SRBCT, 3-class MLL, 5-class Lung cancer
and 11-class Tumor datasets are also considered. In the context of datasets characterized by binary class
distributions, Principal Component Analysis (PCA) is harnessed as a dimensionality reduction technique,
strategically employed to mitigate the challenges posed by the curse of dimensionality. Parameters like batch size
and epoch count are created along with an architecture of fully connected neural network. And the networks
hidden and input layers' activation function, which is initially set to sigmoid. In the output layer, the softmax
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activation function is carefully used and initialized to account for the multiclass behaviour that is inherent in
the proposed technique. The min-max technique is used to scale features. To calculate the method's error
magnitude, binary cross-entropy, and categorical cross-entropy are used on the binary and multi- class datasets
and the ADAM optimizer is for optimization. A study is conducted to compare the suggested approach with
the most advanced techniques available. The suggested approach performs well when compared to state-of-
the-art techniques, according to experimental results on several common microarray datasets.
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