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Abstract: A proposal is made in this paper regarding the deep feed-forward neural network for the 

microarray binary dataset’s classification. We have used eight binary class standard datasets of 

microarray cancer used the purpose of validating the suggested approach, specifically cancers of the 

brain, colon, prostate, leukemia, ovary, lung-Harvard2, lung-Michigan, and breast. In addition, six 

multiclass microarray datasets namely 3-class Leukemia, 4-class Leukemia, 4-class SRBCT, 3-class MLL, 5-

class Lung cancer and 11-class Tumor are also considered. To come out with curse of dimensionality, the 

method for reducing dimensionality is PCA in binary class dataset’s case. We have crafted architecture of 

neural network which is fully connected, configuring its parameters with sigmoid initialization for 

network's input and hidden layer. This includes specifying the number of epochs, batch sizes, and 

selecting appropriate activation functions. The suggested method's multiclass behavior is made possible 

by initializing the activation function SoftMax to the output layer. The min-max approach is used for 

feature scaling. To compute the magnitude of error of the method, binary cross-entropy, and categorical 

cross-entropy are used on the binary and multi- class datasets and the ADAM optimizer is for 

optimization. A study is conducted to compare the suggested approach with the most advanced 

techniques available. According to experimental findings on these common microarray datasets and 

comparisons with the most advanced technique, the suggested method's performance is quite respectable. 

 

 

1. Introduction  

A class of diseases known as cancer is defined by aberrant cell growth that leads to the 

development of cancerous cells. It is normal for a healthy body to control the growth of cells, and for those 

cells to die gradually over time. Damage in the genetic make-up of cells by internal and environ- mental 

factors result in cells that do not die and continue to grow to form tumors [58]. Some of the main internal 

factors that cause cancer are incorrect cell division and damage to DNA, while significant external variables 

include experiencing chemical exposure found in Smoke from tobacco, radiation, and Sunlight's UV rays. [1, 

29, 58]. According to molecular biologists, different cancer types have different expression profiles of genes 

used in the diagnosis of cancer and differentiate cancers. Classification of microarray medical data 

contributes in identifying such genes that influence a particular biological consequence and predicts 

outcomes in the event of a new observation. By building a model to predict the category of an object based 

on the input pattern representing the object, a classification problem can be solved. With the help of the 

provided test data, a prediction model will be developed to make accurate predictions. [11, 12, 59]. 

Analyzing micro array gene expression data remains the most challenging research areas in some 

sectors like statistics, machine learning, bioinformatics, genomics, computational biology, and pattern 

classification. The tiny sample size and high curse of dimensionality resulting from the existence of 

irrelevant genes provide the main challenges in microarray cancer investigation [2, 31, 32]. Medical 

databases frequently contain noise, feature value fluctuations, and class imbalances, which lead to 

overfitting and decreased classification accuracy [11, 60]. As a means to recognize and understand what 

factors lead to cancer, microarray data analysis should be investigated, particularly cancer classification. 

This promotes early-stage cancer identification, which helps doctors create treatment programmes targeted 

at raising cancer patients' chances of survival. [2, 4, 32]. 

Labeled microarray cancer data classification is regarded as a problem that involves several key 
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tasks, including data collection, feature scaling, selection, and classification, and analysis of post-

classification. From tens of thousands of highly correlated and informative genes, it is the task of feature 

selection to select the genes that are most important. These elements of filtered data are then fed into a 

classifier to improve classification accuracy. [20, 61]. Identifying the ideal and appropriate feature subset 

will increase computational stability and classification accuracy, feature selection is essential to the 

classification of cancer data [6, 17, 19, 56].  

 A deep learning algorithm is employed to classify the data of microarray cancer. To understand 

the behavior of features, deep learning requires a lot of data. Eight common datasets are— Central Nervous 

System, Prostate, Breast, Leukemia, Colon, Ovarian, Lung-Michigan, and Lung-Harvard cancer—are used 

to validate the suggested methodology. The Min-Max approach is utilized to scale feature values in order to 

mitigate decision bias towards high-value features. The proposed model shows its capability of an accurate 

prediction when compared with the latest related works. 

 

2. Related Works  

Researchers in a variety of fields, including computational biology, bioinformatics, genomic 

studies, pattern recognition, machine learning and statistics are becoming interested in microarray data 

analysis. The following discussion includes the most recent microarray data analyses in certain fields like 

pattern recognition, artificial intelligence and machine learning. Applying deep learning methods in 

analyzing bioinformatics data such as microarray cancer datasets is a challenging task as such data has 

limited size of sample and unequal classes [62]. Zeebaree et al. [63] utilized a convolutional neural network 

for the selection of gene and the categorization of microarray cancer data. This work's creators don't 

disclose how they have got these dimensions of the features. With the noteworthy exception that the 

weights were chosen at random, Mohapatra et al. [2] recommended utilizing one Hidden Layer Feed-

Forward Network (SLFN) in combination with Ridge Regression (RR). The breast, leukaemia, prostate, 

and colon tumour binary microarray datasets were utilized to validate the methodology. Our observation is 

that they should have been applied         the training and test samples similar to the standard train/test as in the 

dataset of Breast cancer case. A Genetic Programming oriented classifier combined with Information Gain 

for feature selection was suggested by Salem et al. [1]. In the paper Lin et al. [59] reported [59] on feature 

selection and classification based on silhouette statistics, a genetic algorithm with silhouette statistics has 

been designed. They did note, however, that the feature selection strategy was not ideal because it produced 

a high amount of features, which would cause the model to over fit. The K-Nearest Neighbours (KNN) 

classifier was used by Kumar et al. [17] in combination with a choice of features and the algorithm 

categorization centered upon the concept of MapReduce. The DLBCL, colon datasets, leukaemia, and 

prostate are four common datasets that Nguyen et al. [38] assessed their model and recommended a 

combined gene selection approach for microarray data classification. Although the proposed is stable 

among classifiers, they were unable to verify the stability claim for over 5 classifiers. The existing 5 

classifiers which includes MLP (Multilayer Perceptron), Linear Discriminant Analysis, Support Vector 

Machine, K-Nearest Neighbour, and PNN (Probabilistic Neural Network) were used to validate the 

technique. Brain Emotional Learning and principal Component Analysis and were combined by Lofti and 

Azita [64] to classify microarray cancer data. Three datasets were used to evaluate their approach, however 

this was insufficient to verify the method's generalizability. Sharbaf et al. [6] put forward an approach of 

hybrid for the selection of gene and the microarray datasets' classifications, employing ant colony 

optimization techniques as well as cellular learning automata. They explored the influence of different 

methods of feature selection that utilize ranking techniques to identify the most effective features. To 

validate their approach, they employed 3 classifiers:  SVM, NB and KNN. Ravi et al. [57] conducted a 

comprehensive review aimed at unveiling the models of deep learning potential in medical data sectors. 

Various deep learning designs, including recurrent networks, convolutional networks, and deep feed-

forward have been demonstrated and are useful for addressing various problem domains. Kar et al. [25] 

presented a technique of feature selection for classifying microarray cancer data, as per Particle Swarm 

Optimization (PSO). They validated their method using the Leukemia ALL-AML as well as SRBCT 

datasets. For every dataset, they execute the experiment ten times, and these ten runs' average is given as 
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the final outcome. Microarray classification was put forward in two stages by Garcia and Salvador [51]. A 

relief ranking algorithm was then used to identify features, and a classifier was trained using the feature 

space of lower-dimensional to categorize every sample. The Relief algorithm has been employed for 

feature selection, and the outcomes of the experiments are reported on 8 distinct cancer datasets. They 

utilized 3 models of linear classification models: the Fisher linear discriminant, Multilayer Perceptron 

neural network, and Support vector machine classifiers. Chen et al. [14] presented a particle swarm 

optimization-based feature selection technique, and the C4.5 decision tree is utilised for classification. 

Have reported the outcomes of an experimental study using an approach called 5-fold cross-validation on 

several datasets related to tumor cancer. For large biological datasets, Farid et al. [52] considered the K-nearest 

neighbours and decision trees and suggested an adaptive rule classifier. Lyu et al. [65] suggested a feature selection 

technique that uses filters and relies on the Gram-Schmidt orthogonalization approach and the maximum 

information coefficient. Li et al. [66] created data-driven weights for lung cancer classification according to 

information theory and an overlapping grouping technique. An ensemble strategy based on feature subsets 

and learning from several projections of the original feature space was presented by Piao et al. [22] to identify 

multi-class microarray cancer data. To address the increased computational complexity stemming from 

redundant features in feature selection, Wang et al. [67] ingeniously combined Markov blanket techniques 

with Wrapper-based feature selection methods. As a result, there are a lot of studies being conducted in 

feature selection sectors, dimensionality reduction, and microarray data classification. We attempted to 

investigate the Principal Component Analysis usage as a preliminary stage in our study prior to 

implementing deep learning, a popular machine learning technique to increase the classification's accuracy. 

The following sections go into more detail about the details. 

 

3. Proposed Methodology to Classify Binary Class Datasets 

The proposed work, within this section, an elaborate framework unfolds, encompassing multiple 

stages such as reduction of dimensionality, feature scaling, and the employment of a sophisticated deep 

feed-forward classification technique, incorporating finely-tuned parameter configurations via neural 

networks. The proposed approach's primary responsibilities include loading the raw microarray cancer data, 

normalizing it with the Min-Max approach, reducing its dimensionality, and classifying it with deep 

learning, as illustrated in Figure 2.1. 

 

3.1 Feature Scaling 

The practice of exploring feature scaling techniques is widely acknowledged within the domains 

of machine learning and pattern recognition, primarily aimed at standardizing the data. In scaling down all 

data elements, this process helps to improve prediction quality by preventing outliers. Given the high 

variance of characteristics in cancer microarray datasets, we suggest investigating feature scaling for data 

normalization as a potential pre-processing approach. To accommodate the sigmoid activation function, the 

Min-Max approach is used to scaling features, which normalizes values to a range of 0 to 1 and during the 

model training procedure includes a 0.5 threshold for the classification of binary. We have taken into 

account the Min-Max feature scaling technique (See Equation 2.1) in our work. 

 
Here, "X" represents the normalized data, "Xi" corresponds to the original feature value, 

"Xmin" denotes the minimum value, and "Xmax" symbolises the highest value obtained from the 

original dataset prior to scaling. 

 

3.2 Dimensionality Reduction-based Feature Selection 

Within the context of this study, we recommend to apply Principal Component Analysis, a 

methodology named dimensionality reduction, as a prerequisite preliminary processing phase in order to 

establish a data representation that exhibits improved discriminative properties and superior 

conciseness.  Microarray cancer data of high-dimensional is linearly transformed into a new reduced-
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dimensional space by PCA in order to maximize the data's variance under a low dimensional space [51]. It 

is widely recognized that dimensionality reduction enhances accuracy, mitigates overfitting, and simplifies 

the model, collectively leading to improved classification performance. Equation 2.2, which considers X 

as any sample within the dataset having d dimensions, is employed to represent each individual 

sample in the original dataset.  

X = [X1, X2, · · · , Xn], XϵRn·d (2.2) 

Equation (2.2) serves to articulate an input dataset dimension, which is defined as Xi = x1, x2, • • 

•, xd, where Xi stands for any of the samples found in dataset (input). Principal Component Analysis 

(PCA) adeptly preserves the highest variance inherent among the features within the novel dataset, 

harnessing this variance as a potent lever to engender a trimmed feature set denoted as "Z," characterized 

by a reduced dimensionality of "k." This meticulous curation of "Z" maintains the utmost salient 

information, ensuring the retention of paramount value. Here, noticeably smaller than the original dataset's 

dimension, d, is the new matrix's dimension, k. To construct the new dataset, the PCA model's 

eigenvectors, denoted as W, are each sample vector multiplied. 

                           Z = XW = [z1, z2, · · · , zk], ZϵRn·k,WϵRd·k,k << d (2.3) 

 

Hence, the new matrix's dimension is significantly greater than the original dataset's size (d), with 

the new matrix's dimension Z is presented as ZϵR
n·k

. 

The new matrix produces a vector zn within a reduced-dimensional feature subspace of dimension 

k, which is lower in dimension compared to the original d-dimensional feature space, as illustrated in 

Equations 2.3. In this context, the original dataset's dimension, d, significantly surpasses the dimension of 

the new matrix, k. The 2.1 figure outlines the steps involved in dimensionality reduction employing PCA. 

In the course of dimensionality reduction, given that pre-processing is conducted independently 

for both the training and test data, we've noted variations between the training as well as test datasets' 

dimensions. However, in order to train a classifier, it is imperative that both the training and test data share 

the same dimension. Hence to alleviate this problem, we have considered the selected features' of only 

minimal count. from either the training or test samples by defining Equation 2.4. Moreover, not only the 

dimension but the name of features also partially varies. To alleviate this, we have considered the common 

features and those features that are not common in both training and testing sets are not considered. 

 
 

where Tr and Ts stands for the dimension of training and test data and P is the dimension of the 

dataset after dimensionality reduction which takes either of the minimum number of features Tr or Ts. 

 

3.3 Deep Learning-based Classification 

This section presents the proposed approach, which encompasses multiple stages such as feature 

scaling, dimensionality reduction, and a classification method based on deep feed-forward neural networks, 

along with parameter configurations. As depicted in Figure 2.1, the primary objectives of the recommended 

approach encompass loading the raw microarray cancer data, normalizing it via Min-Max approach, 

performing dimension reduction, and for classification, deep learning is utilized.  
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FIGURE 2.1: Structure of the Deep Learning Approach Proposal. 

 

An experiment using deep feedforward neural networks to classify microarray data is proposed in 

our proposal. One essential deep learning model is the deep feedforward network. Because information 

moves from x, the input feature vector, through intermediary calculations that define f, and finally to Y 

output, whereas yi is predicted class lambda, the nomenclature assigned to the model is denoted as a 

"feedforward neural network". The model does not have any feedback between its outputs. If 

feedback connections from the same nodes are added to a feed-forward neural network, it no longer 

qualifies as a feed-forward model; instead, it transforms into a recurrent neural network model. A directed 

graph that explains how these functions are connected to one another is formed by a collection of 

interconnected directed functions that define a feed-forward neural network. The model represents the 

relationship between the functions as a directed graph. To define f (x) = (f1, f2, f3, (x)), for example, let us 

take three functions, f1, f2, and f3, that together form the network by being linked in a chain. These 

sequential structures are the prevalent configurations in neural networks. Here, the neural network's first 

layer is represented by f1, the second by f2, and the third by f3 and so forth [68]. 

We establish a fully connected neural network approach, where the input layers are initialized with 

the attributes of input. Moreover, the layers which are hidden is explicitly delineated, encompassing their 

respective parameters, which encompass log-loss function and activation functions. Each hidden layer’s 

output is fired with the sigmoid function's output, transforming it into the hidden layer’s output. The 

classifier can make predictions and estimate each sample's class label once the model converges into a 

single output layer. A single neuron that produces a class label makes up the output layer, which can be 

either class one or class two. The detailed workflow that shows feature scaling, dimensionality reduction and 

classification is shown in Figure 2.1. The outlined procedure is illustrated in Figure 2.2, commencing with 

the features (input), weight, activation function, and progressing through output computation, error 

assessment, and error back-propagation. To produce a single output, every feature of the input is multiplied 

by its weight separately, which serves as input for the subsequent layer, ultimately culminating in the 

prediction. In the assessment phase, the expected class label is subtracted from the actual class label to 

produce a discrepancy. This disparity is then used as the back propagation process' error term. This 

minimal error is noted since the objective of error back propagation is to adjust the weights, ultimately 

striving for the highest achievable prediction accuracy.  
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FIGURE 2.2: The Deep Learning Model. 

 

The dot product outcome involving data z1, z2, and so on up to zn, along with their respective 

weights w1, w2, and so forth up to wn in the h1 (initial hidden layer), is determined by the activation 

function 'a,' as depicted in Figure 2.3. An activation's output moves on to the following hidden layer node 

before being triggered at output layer node. Backpropagating weights to preceding nodes is used to 

continually update them until an optimal prediction is achieved. 

Z = z1, z2, z3, · · ·, zn, where ZϵRn·k, is the input data format used by the suggested deep learning 

technique. The relevant weight of each input vector is multiplied, with w denoting w1, w2, w3, and so 

forth, representing the input data’s weight vector. Additionally, within the weighted input vectors lies the 

bias, b. Equation 2.5 delineates the application of the sigmoid activation function to the weighted input 

vectors within each layer of the model. This process results in the generation of intermediate probabilistic 

outcomes within the hidden layers. 

 

 
 

FIGURE 2.3: Activation Function. 
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The target variable, yp, is the one we aim to forecast. The weight matrices, wn, and feature 

vectors, zk, are present. The sigmoid activation function, or f, is introduced in equation 2.6. In order to 

predict the class membership of a new data point, we recommend using the sigmoidal activation function 

for training the deep feed-forward neural network model. Our model's activation function is the sigmoid 

function, which produces limited output values between 0 and 1, facilitating the interpretation of class 

labels as probabilities. The sigmoid function is as follows: 

1 

f (zi) = 
1 + e−(zk·wk ) 

 

Equation 2.7 addresses the accommodation of multiple features across the hidden layers, as it 

captures the data's intriguing characteristics as it progresses toward the output layer. 

 

     (2.7) 

Where yp represents the anticipated class label, zn stands for the feature vector, wn corresponds to 

the weight vector, and w0 signifies a bias value initialized to 1. 

One useful method for determining the relationship between multiple independent features or 

target-dependent variables is Equation 2.7. Random and uniform weight initialization is followed by 

uniform weight updates during training. Equation 2.7 computes a class value by comparing the actual and 

predicted probabilities and assigns the prediction to either the actual or predicted class based on a threshold 

value. In a deep learning-based classification, The cross-entropy objective function, which is preset, is used 

for calculating the ultimate forecast error according to the difference between the predicted class label (yp) 

and class label (yi). Subsequently, the weights are fine-tuned to minimize the error, which is achieved by 

propagating errors throughout the entire network. [69].  

Figure 2.2 illustrates the computational elements and the method of deep feed-forward to classify data. 

It comprises the error calculation, input features, activation function, weights, output, and error back-

propagation. Each input feature's weight is multiplied to generate a single output, which, in turn, serves as input 

for the subsequent layer to make predictions. The assessment is carried out by deducting the estimated the label 

of class from the actual label of the class. The resulting difference is then employed as an error of back-

propagation. The minimum error is logged, as the error back-propagation mechanism is engineered to adjust the 

weights, ultimately striving for the highest attainable prediction accuracy. The input characteristics [z1, z2, and 

so on, up to zn] and their accompanying weights [w1, w2, w3, and so on] are dot products in the first hidden 

layer, or "h1," which produces the output. Figure 2.3 provides an example of this approach. Activation function’s 

output proceeds to the subsequent hidden layer node before eventually being activated at the output layer node. 

By propagating the updated weights backward to the nodes that came before it, the process of updating weights 

never ends until the model achieves the most accurate forecast. 

 

3.4 Parameters settings 

For 7 of the datasets, we've used a model of deep feed-forward of 7 layer, as shown in Table 2.1. 

Equation 2.8 is used to calculate the number of parameters in each of the layers, where Ci at layer ‘I’ is the 
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number of neurons, Pi in the preceding layer is the number of neurons, and 1 is the bias. Every layer in the 

methodology of deep feed-forward has a different batch size, as denoted by the "None" parameter. The 

quantity of neurons in the input layer determines the input shape for the subsequent layer. An epoch size of 

1000 is consistent across all datasets. Summing all of the parameters for each layer yields the total number 

of parameters, or "Tparameters" for a particular model. As a result, after adding up all parameters from all 

layers, our study has 33,661 trainable parameters. 

 
 

TABLE 2.1: Proposed seven-layer deep feed-forward model 

 

Type of Layers Output Shape # Parameters 

 Dense Layer 1 (None, 200) 4600 

 Dropout 1    (None, 200) 0 

      Dense Layer 2    (None, 100)    20100 

 Dropout 2    (None, 100) 0 

    Dense Layer 3    (None, 50) 5050 

    Dense Layer 4    (None, 40) 2040 

    Dense Layer 5    (None, 30) 1230 

Dense Layer 6  (None, 20)                 620 

Dense Layer 7 (None, 1)                     21 

Total number of trainable parameters 33,661 

 

The selected parameters include the binary cross-entropy for loss computation as well as sigmoid 

activation function on test data and training, and the utilization of the Adaptive Moment Estimation 

(ADAM) optimizer [70]. Each parameter's learning rate is adjusted by the ADAM optimizer by figuring out 

and keeping up a preceding gradient momentum decaying average and an exponentially declining average 

of previous squared gradient variances. We refer to the ADAM optimizer using its name in our 

investigation, with the factors assuming their default values. These default ADAM optimizer parameter 

values are as follows:               

                             optimizer parameters are β1 =0.9, β2 =0.99, ϵ = 10−8 

                                 where β1 and β2 are decay rates [70]. 

 

As this model generates predictions through a probabilistic framework, by applying a binarization 

process to the class level, producing Boolean outcomes for each class when the threshold value is set at 0.5. 

In this model, the cost function is defined using binary cross-entropy, as outlined in Equation 2.9, where a 

feature is represented by ‘zk’, target is ‘yi’, and the class (whether it's zero or one) is ‘c’. In the output 

layer, zk is used as an input vector to determine the class membership of a given class c. The proposed 

model estimates a probabilistic target value yi given an input vector zk. 

 
 (2

.9) 

In the case of binary classification problems, it is necessary to determine whether the predicted 

and actual probability vectors differ significantly from one another, by employing a distance function, as 

depicted in Equation 2.10. 
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D represents the distance function between the actual class labels, denoted as yi, and the predicted 

class labels, denoted as Yp. The vector distance that was previously indicated is averaged over all the 

values of input (zn) in the training dataset, represented by the letter N. In this context, b refers to the bias, 

and wn is the weight matrix. Equation 2.11, which aims to enhance the estimation of a particular sample 

zn's association with a class label yi, exemplifies the application of the negative log-likelihood 

minimization function to maximize the correct target yi probability, with regard to the ‘zi’ input features. 

 

 
 

In this case, yi is labeled as dependent class that corresponds to all features, c represents class, 

feature vector ‘zn’, and L represents loss. 

 

4. Experimental Setup and Results Analysis  

The context here, includes an explanation of the datasets we used for our experiments, 

performance metrics we employed to evaluate the performance of the suggested model, and the analysis 

and results of our experiments. We developed our model using Anaconda Python 3.5 as a development 

tool, the backend is powered by the open-source Tensor Flow deep learning library, and the frontend is 

driven by the Keras Deep Learning Library. [71]. 

 

4.1 Dataset Description 

In order to evaluate the proposed model of multidimensional microarrays, eight different standard 

microarray datasets were taken from the ELVIRA Biomedical Dataset Repository 

(http://leo.ugr.es/elvira/DBCRepository/index.html) sourced from the BIO ELVIRA Biomedical Data 

Repository for assessing high-dimensional biomedical data sets. The dataset related to Central Nervous 

System cancer comprises 7129 features and includes samples of 60, among which 39 deal with failures and 

21 with survivors. There are 2000 genes and 62 samples in the colon cancer dataset. Of these samples, 22 

are considered normal cases and 40 are classified as positive tumours. The Ovarian cancer dataset, on the 

other hand, features 15153 genes and consists of 253 samples, with 162 samples corresponding to cancer 

cases and 91 to normal cases. Additionally, the Leukaemia dataset, which includes 72 samples and 7129 

characteristics, is related to bone marrow malignancy. 

There are two different groups in the Leukaemia dataset: 25 samples indicate Acute Myeloid 

Leukaemia (AML) and 47 samples indicate Acute Lymphoblastic Leukaemia (ALL). In the case of the 

Prostate cancer dataset, it involves 12600 features and a total of 102 samples, out of which 52 correspond 

to tumor observations, and a further 50 cases are considered normal. 24481 genes and 97 samples make up 

the Breast Cancer dataset; 46 cases are classified as relapses and 51 samples are classified as non-relapses. 

The lung-Michigan cancer contains 96 samples that contains 86 adenocarcinomas and 10 non-neoplastic. It 

is significant to observe that the class distributions in the Lung-Harvard2 and Lung-Michigan cancer 

datasets are incredibly unbalanced. Adenocarcinoma (ADCA) cases (150) and malignant pleural 

mesothelioma (MPM) cases (32), together making up the Lung-Harvard2 dataset, total 181 samples. On the 

other hand, of the 96 samples in the Lung-Michigan dataset, 86 are categorized as Adenocarcinomas, and 

the other 10 are classed as non-neoplastic. 

Table 2.2 provides an overview of these datasets, offering details on their initial feature count, 

PCA-selected features, and percentage of discarded features, number of classes, training and test data sizes, 

sample sizes. Through PCA-based dimensionality reduction, irrelevant features were eliminated, enhancing 
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classifier performance with the most informative features. It was observed that a substantial portion of the 

original features in these datasets lacked significance in predicting class labels. 

  

TABLE 2.2: Dataset Description 

 

Datasets

 #

Features 

dis

car

de

d 

#Class

es 

 

 

 

 

 

 

 

 

 

4.2 Performance Measures 

Several recognized performance metrics were employed to verify the efficacy of our suggested model. 

These metrics included f-score, classification accuracy, recall, precision, the region under the curve (AUC) as 

represented by the confusion matrix, ROC curve, and log-loss. Equation 2.12 illustrates the use of accuracy as a 

measure to assess the overall predictive performance of the model. This metric considers four crucial parameters: 

False Negatives, False Positive, True Positive and true negative. This involves determining the ratio between the 

total number of test samples and the number of samples that have been accurately classified. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (2.12) 

 

Equation 2.13 shows that true positive rate is represented by recall, which is sometimes referred to as 

sensitivity. According to the equation, it measures the proportion of true positives to the total of TP and false 

negatives (FN).   

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       (2.13) 

 

Another performance metric employed in this study is precision, sometimes referred to as positive 

predictive value (PPV), as outlined in Equation 2.14.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (2.14) 

 

Equation 2.15 illustrates how the F-Measure, which considers the harmonic mean of both precision and 

recall metrics, is used to balance their respective effects. 

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (2.15)  

 

The proposed model's error score is determined through the utilization of the log-loss function, as depicted in Equation 

2.16. In this equation, N stands for the samples' quantity, Actual class label is represented by yi, and the likelihood that the ith sample 

is a member of one of the classes is represented by pi. Log-loss evaluates a model's performance by measuring predictions as 

probability values within the range of zero to one. A reduced log-loss error value is the goal of an improved classifier, with the ideal 

scenario being zero, indicative of a perfect classifier. 

# Selected 
% of 

Sample Training Test 

  Features 
features 

size size size  

CNS 7129 108 98.49 60 36 24 2 

Colon 2000 104 94.80 62 37 25 2 

Leukemia 7129 53 99.26 72 39 33 2 

Prostate 12600 76 99.40 102 61 41 2 

Ovarian 15154 24 99.84 253 202 51 2 

Breast 24481 60 99.75 97 78 19 2 

Lung-Michigan 7129 45 99.37 96 57 39 2 

Lung-Harvard2 12533 77 99.39 181 32 149 2 
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      (2.16)                                                                                       

5. Experimental Results and Analysis 

A detailed examination of the findings from experiments is presented in this subsection that were 

attained using the suggested methodology across a range of datasets and performance metrics.  

 

TABLE 2.3: Experimental Results on all datasets 
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Figures present the experimental outcomes showing the confusion matrix, training and test samples' 

classification accuracy, loss, ROC curves, and loss. Moreover, the results are also presented in Tables and 

comparison analysis using novel methods. 

In the proposed microarray cancer classification model which is based of deep feed-forward neural 

network, each input layer collects information and transmits them for further processing in the next layer. The 

model's neurons are densely coupled. A single neuron in the fully connected neural network model generates a 

probabilistic outcome with a range of 0 to 1, inclusive. Upon binarization of this magnitude, it begets the 

prognosticated outcome contingent upon the designated threshold of 0.5, an oft-adopted default value for 

quandaries pertaining to binary classification. To predict a class on the output layer, the model takes the chosen 

features as input and processes them via its hierarchical hidden layers. 

In order to perform pre-processing, such as dimensionality reduction, feature scaling, and classification, 

we used separate test samples and training. Since certain data sets, such as Lung-Harvard2, Leukemia and Breast 

Cancer have established criteria of test and training, that throughout our work, we apply these criteria. The 

utilization of a ratio of 60:40 for training and testing cases, prior to commencing the pre-processing phase, is 

employed for the purpose of segregating the datasets into training and test samples. This approach is especially 

pertinent when dealing with datasets, namely CNS, Colon, and prostate that do not possess discrete sets of test 

samples and training. Furthermore, in the specific case of data related to ovarian cancer, a ratio of 80:20 is 

employed for the same purpose of partitioning the dataset. Many machine learning algorithms use this as the 

benchmark, which is why the datasets were divided into the designated ratios for testing as well as training. 

Table 2.3 displays the experimental outcome of the suggested approach along with the sample sizes for 

each dataset's training and testing stages. Additionally provided are the log-loss error, f-score, AUC, recall, 

precision, and accuracy of the classification. The suggested approach demonstrates flawless classification 

performance, obtaining a 1.00 rating across 4 datasets: the Prostate, Lung-Michigan cancer, Leukemia and 

Ovarian. The proposed methodology has yielded noteworthy classification accuracies, with an impressive score 

of 0.99 achieved on the Lung-Harvard dataset, a commendable 0.95 on the Breast cancer dataset, and a 

substantial 0.96 on colon and CNS cancer datasets. These results were obtained when applied to the remaining 

four datasets, underscoring the effectiveness of the approach. 

To confirm the proposed method’s efficacy, a confusion matrix is utilized that shows test samples that 

have been identified properly or erroneously. Along the diagonals, Accurately categorised samples are displayed 

in the confusion matrix; test samples that are off-diagonal are misclassified. It has been shown that out of 19 

samples for breast cancer, one case had an error in its classification, with the relapse category assigned to the 

non-relapse category depicted Figure 2.5(a). In a similar vein, 1 test sample from the fails class out of 24 is 

incorrectly categorised as a member of the surviving class in the dataset of CNS which can be seen in Figure 

2.5(b). 

Furthermore, as demonstrated in Figure 2.5(c) 1 negative case out of 25 test cases in the Colon dataset 

is incorrectly identified as a positive case. Among the 149 test cases meticulously evaluated within the Lung-

Harvard dataset, a singular instance belonging to the ADCA class was observed to be erroneously misclassified 

as a member of the MPM class, as vividly demonstrated in Figure 2.5(e). As demonstrated in Figures 2.5 (d, f, g, 

h) for the Leukemia, Lung-Michigan, Ovarian, and Prostate cancer datasets, accordingly, the model exhibits 

flawless classification accuracy in the other datasets.  

To evaluate the efficacy of the proposed methodology, we've calculated the accuracy of the 

categorization. The training and test cases' accuracy for the suggested method using data on breast cancer is 

displayed in Figure.  Comparably, the suggested method's classification accuracy on the Lung-Harvard2, CNS 

and Colon datasets—which display the smallest gap between the lines of training and test cases—is displayed in 

Figures 2.7(b), 2.7(c), and 2.7(e).  Figures 2.7(d), 2.7(f), 2.7(g) and 2.7(h) exhibit the suggested technique's 

classification accuracy on the datasets such as Leukemia, Lung-Michigan, Ovarian, Prostate, respectively.   

There is no appreciable difference between the test samples and lines of training since these datasets have 100% 

classification accuracy. 

The log-loss error function is another metric used to assess the suggested approach. Evidently, as 

discerned from Figure 2.9(a), the loss function associated with the training set approaches near-zero values. 

Nonetheless, It is noteworthy that the test cases' stated loss, quantified at 0.410 (as detailed in Table 2.3), 
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underscores the necessity for additional comprehensive investigations pertaining to this specific dataset. Such 

further studies are warranted in order to mitigate and minimize the prevailing errors and enhance the overall 

performance. As seen in Figures 2.9(b), 2.9(c), and 2.9(e), where the suggested technique scores 0.219, 0.189, 

and 0.032 (Check out the final column of Table 2.3), it performs the best in datasets like Lung Harvard, CNS, 

and Colon. Additionally, it is crucial to highlight that there is no obvious loss on the datasets related to prostate 

cancer, lung-michigan, and leukemia, as clearly seen in Figures 2.9(h), 2.9(f), and 2.9(d), respectively. 

Alternatively, as Figure 2.9(g) clearly illustrates, a small and essentially insignificant error of 0.003 is observed 

within the framework of the ovarian cancer dataset. It is worth highlighting that the disparity or divergence 

observed between the trajectories of the training and test cases is an indicative measure of whether the model 

may be suffering from overfitting, as it reflects the extent to which the model may have specialized excessively 

on the training data. 

 

  
(a) CM for Breast cancer (b) CM for CNS 

 

(c) CM for Colon cancer (d) CM for Leukemia 

 

(e) CM for Lung cancer (f) CM for Lung-Michigan 
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(g) CM for Ovarian cancer (h) CM for Prostate cancer 

FIGURE 2.5: The confusion matrix due to the proposed Deep Learning method on 

(a) Breast cancer; (b) CNS Cancer; (c) Colon Cancer; (d) Leukemia Cancer; (e) Lung Cancer; (f) 

Lung-Michigan; (g) Ovarian cancer; and (h) Prostate cancer datasets. 
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(a) Accuracy: Breast-Cancer (b) Accuracy: CNS-Cancer 

 

(c) Accuracy: Colon-Cancer (d) Accuracy: Leukemia-Cancer 

 

(e) Accuracy: Lung-Cancer (f) Accuracy: Lung-Michigan 

 

(g) Accuracy: Ovarian-Cancer (h) Accuracy: Prostate-Cancer 

FIGURE 2.7: The classification accuracy due to the proposed Deep Learning method on (a) Breast cancer; 

(b)CNS Cancer; (c) Colon Cancer; (d) Leukemia Cancer; (e) Lung Cancer; (f) Lung-Michigan; (g) Ovarian 

cancer; and (h) Prostate cancer datasets. 
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(a) Loss: Breast-Cancer (b) Loss: CNS-Cancer 

 

(c) Loss: Colon-Cancer (d) Loss: Leukemia-Cancer 

 

(e) Loss: Lung-Cancer (f) Loss: Lung-Michigan 

 

(g) Loss: Ovarian (h) Loss: Prostate-Cancer 

FIGURE 2.9: The loss due to the proposed Deep Learning method on (a) Breast cancer; 

(b) CNS Cancer; (c) Colon Cancer; (d) Leukemia Cancer; (e) Lung Cancer; (f) Lung- Michigan; (g) 

Ovarian cancer; and (h) Prostate cancer datasets. 
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Generally, for classification problems, the curve ROC is often utilized to evaluate the model’s 

performance. The AUC is calculated using this method at various threshold values. It has a high tolerance level 

and is one of the measures employed to evaluate a classifier's performance when it comes to classifying data with 

less class imbalance. ROC curve compares area coverage to accuracy and other performance indicators and 

shows the area coverage in terms of AUC. By shifting the curve to the left upper corner, ROCs and AUCs 

improve the classification accuracy. Applying the recommended approaches to the Breast Cancer dataset yields 

results from ROC analysis as shown in Figure 2.11(a) based on acceptability ratings found in the literature. The 

ROC curve scores an AUC of 0.96. The ROC curves corresponding to colon cancer and CNS datasets are 

displayed in Figures 2.11(b) and 2.11(c), with an AUC of 0.97 for each. This level of area coverage is regarded 

as highly commendable, aligning with the prevailing standards of result evaluation within the pertinent academic 

literature [75, 76]. In a similar vein, the curve of ROC engendered by the implemented methodology on the 

dataset Lung-Harvard2 attains a notably elevated value of 0.99, as vividly portrayed in Figure 2.11(e). Based on 

the AUC score of 1.00 for each of the datasets in Figures 2.11(d), 2.11(f), 2.11(g), and 2.11(h), It seems that the 

suggested approach is working exactly as expected on the Leukemia, Lung-Michigan, Ovarian, and Prostate 

datasets. 

 

5.1 Discussion and Comparative Analysis 

A thorough analysis of the suggested method's performance and comparisons with cutting-edge 

techniques are given in this section. The suggested deep learning-based classifier performs best when 

informative features are obtained using a PCA-based dimension reduction technique.  

 

  
(a) ROC: Breast-Cancer (b) ROC: CNS-Cancer 

 

(c) ROC: Colon-Cancer (d) ROC: Leukemia-Cancer 
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(e) ROC: Lung-Cancer (f) ROC: Lung-Michigan-Cancer 

 

(g) ROC: Ovarian-Cancer (h) ROC: Prostate-Cancer 

 

FIGURE 2.11: The ROC curve due to the proposed Deep Learning method on (a) Breast cancer; (b) CNS 

Cancer; (c) Colon Cancer; (d) Leukemia Cancer; (e) Lung Cancer; (f) Lung-Michigan; (g) Ovarian cancer; and 

(h) Prostate cancer datasets. 
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TABLE 2.4: Comparison of classification accuracy of the proposed method with 

some of the latest related research works on CNS, Colon, Ovarian, Prostate, Leukaemia, 

Lung- Harvard2, Lung-Michigan, and Breast cancer datasets 

 

References Datasets 
 

 

 

 

 

 

 
Salem et al. [1] 0.87 0.85 - 1.00 0.97 - 1.00 - 

Mohapatra et al. [2] - 0.93 - 0.99 0.99 - - 0. 76 

Medjahed et al. [3] - 0.97 0.98 - 0.96 0.99 - 0.86 

Chen et al. [14] - - - 0.94 - - - - 

Kar et al. [25] - - - - 0.97 - - - 

Moayedikia et al. [32] 0.79 0.72 - - 1.00 1.00 - - 

Nguyen et al. [38] - 0.88 - 0.91 0.94 - - - 

Garcia et al. [51] 0.73 0.84 0.99 0.90 - 0.98 0.98 0.65 

Zeebaree et al. [63] - 0.65 - 0.92 1.00 - 0.72 - 

Proposed Method 0.96 0.96 1.00 1.00 1.00 0.99 1.00 0.95 
 

TABLE 2.5: Comparison of Recall of the proposed method with IG/SGA [1] 

 

Ref. CNS Colon Ovar. Prost. Leuk. Lung-Har. Lung-Mich. Breast 

Salem et al. [1]. - 0.83 - 1.00 0.97 - 1.00 - 

      

     Our Method   

0.96 0.96 1.00 1.00 1.00 0.99 1.00 0.95 
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The suggested approach achieves flawless classification with 1.00 accuracy on 4 datasets: the 

Prostate, Leukemia, Ovarian, and Lung-Michigan. Additionally, the accuracy of the dataset Lung-Harvard is 

0.99. In two dataset’s case, namely CNS and colon, along with the breast cancer dataset, we have ascertained 

classification accuracies of 0.96 and 0.95, respectively. This demonstrates that the suggested approach 

outperforms numerous cutting-edge techniques. 

This section of the work compares the suggested approach's classification accuracy to a few recent, 

carefully chosen works. The proposed method's accuracy in classification is compared with nine of the most 

recent approaches in Table 2.4. The hyphen (-) in those specific table cells indicates that the authors' work did 

not take the dataset into account. 

  

TABLE 2.6: Comparison of the proposed method with Mohapatra et al. [2] on data dimensionality, Training 

size, Test Size, Classification Accuracy (CA) and AUC pa- rameters. 

 

Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4 illustrates that the suggested approach attains superior classification accuracy of 1.00 across 

four datasets: the Prostate, Leukemia, Ovarian and Lung-Michigan. When compared to previous works, our 

results for the CNS and Colon datasets are 0.96, which is better. Accuracy values of 0.95 and 0.99 are obtained 

for Lung-Harvard2 and Breast Cancer, respectively. In comparison to other methods, the suggested method 

generally performs better.   The suggested approach and the IG/SGA method are contrasted in Table 2.5 [1]. The 

evidence presented establishes that the proposed model exhibits superior recall performance when compared to 

the IG/SGA method, specifically in the context of the Colon and Leukemia datasets. This favorable outcome is 

replicated with parity on the Prostate and Lung-Michigan datasets. As indicated in the table, the hyphen (-) 

indicates that no datasets along that column are considered by the authors. 

 

5. Conclusion  

Within the framework of this study, we introduce a sophisticated approach called deep feed-forward 

neural network designed for the purpose of binary classification of microarray datasets. We validate the 

proposed method using a standard microarray cancer dataset comprising 8 binary classes: the Lung-Michigan, 

CNS, Leukaemia, Colon, Breast cancers, Prostate, and Ovarian, Lung-Harvard2. In addition, six multiclass 

microarray datasets namely 3-class Leukemia, 4-class Leukemia, 4-class SRBCT, 3-class MLL, 5-class Lung cancer 

and 11-class Tumor datasets are also considered. In the context of datasets characterized by binary class 

distributions, Principal Component Analysis (PCA) is harnessed as a dimensionality reduction technique, 

strategically employed to mitigate the challenges posed by the curse of dimensionality. Parameters like batch size 

and epoch count are created along with an architecture of fully connected neural network. And the networks 

hidden and input layers' activation function, which is initially set to sigmoid. In the output layer, the softmax 

Authors and 
Dataset

 
Dimension Train. size Test size Acc. AUC 

Mohapatra et al. [2] 
Breast

 97 * 24481 70 27 0.81 0.89 

(WKRR) 
Colon

 62*2000 40 22 0.95 0.79 

Leukemia 76*7129 50 26 0.95 0.87 

Breast 97*24481 78 19 0.95 0.96 

CNS 60*7129 36 24 0.96 0.97 

Proposed method Colon Tumor 62*2000 37 25 0.96 0.97 

(Deep learning) Leukemia 72*7129 39 33 1.00 1.00 

Ovarian 253*15154 202 51 1.00 1.00 

Prostate 102*12600 61 41 1.00 1.00 

Lun-Michigan 96*7129 57 39 1.00 1.00 

Lung Harvard 181*12533 32 149 0.99 1.00 
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activation function is carefully used and initialized to account for the multiclass behaviour that is inherent in 

the proposed technique. The min-max technique is used to scale features. To calculate the method's error 

magnitude, binary cross-entropy, and categorical cross-entropy are used on the binary and multi- class datasets 

and the ADAM optimizer is for optimization. A study is conducted to compare the suggested approach with 

the most advanced techniques available. The suggested approach performs well when compared to state-of-

the-art techniques, according to experimental results on several common microarray datasets. 
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