Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

Applying Particle Swarm Optimization to
Refine PID Controllers for Second-Order
Linear Systems

Nulaksala vamsi Krishna , Dr. K. Rajasekhar
Department of ECE,UCEK,JNTUK,Kakinada,India,
Department of ECE,UCEK,JNTUK,Kakinada,India,

Abstract—This research proposes a novel approach for designing a proportional-integral-derivative (PID)
controller for a class of second-order linear systems. The method employs particle swarm optimization
implemented in MATLAB to optimize the PID controller parameters based on time domain specifications.
Particle Swarm Optimization (PSO) has emerged as a valuable tool for the fine-tuning of PID controllers,
complemented by the formulation of appropriate fitness and constraint functions. This methodology facilitates
the automatic and efficient adjustment of PID controller parameters, a crucial factor in achieving optimal control
performance across diverse systems. In our study, we showcase the implementation of PSO and its profound
impact on enhancing controller performance. This enhancement is characterized by improved system stability,
minimized overshoot, and swifter response times. Emphasizing the pivotal role of the fitness function, we
demonstrate its significance in steering the optimization process by quantifying system performance, ensuring
the alignment of controller parameters with predefined control objectives.

Keywords: PID controller,Particle swarm optimizatio, fitness function, optimization

1. Introduction

The classical Proportional-Integral-Derivative (PID) controller is widely recognized for its essential role in
controlling diverse engineering systems [1]. Particle Swarm Optimization (PSO) has emerged as a valuable
technique for fine-tuning PID controllers, offering an automated and efficient means to optimize the critical
parameters governing control performance across diverse systems represent the most widely used technology for
industrial process control[8] .By defining a well-suited fitness function and constraint functions, PSO empowers
us to automatically adjust PID controller parameters to attain optimal control performance, In this paper, we will
delve into the implementation of PSO and its profound impact on improving controller performance, ultimately
leading to heightened system stability, diminished overshoot, and faster response times. This expansion of
traditional PID controllers adds robustness and flexibility to the system [2].we further believe that control
engineering may very well break the hold of classical PID and enter a new era, an era that brings back the spirit
of innovation[10]. Our investigation will underline the significance of the fitness function in guiding the
optimization process by quantifying system performance and ensuring that controller parameters align with
predefined control objectives These parameters are used here proportional gain constant (KP), the integral gain
constant (Kl), the derivative gain constant (KD) [2].

2. Objectives

Designing A Pid Controller Under Time Domain Specificcations

347

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

When it comes to creating a PID controller while adhering to time domain requirements, the process entails the
careful selection of controller parameters to attain the desired control performance, focusing on factors like
settling time, rise time, overshoot, and steady-state error. Below is a summarized method for crafting a PID
controller in accordance with time domain specifications. The PID controller operates by effectively modulating
the variable to be controlled using a balanced combination of three distinct control actions: the Proportional (P)
control action, the Integral (I) control action, and the Derivative (D) control action. Each of these actions serves
a specific purpose in ensuring precise control.

Firstly, the Proportional (P) action responds to the actuating error signal, which is essentially the difference
between the desired input and the feedback signal from the system. The P action is directly proportional to this
error, which means it provides an immediate response based on the magnitude of the error. This helps in
reducing deviations from the desired setpoint [13].

Secondly, the Integral (I) action focuses on the integral or accumulation of the actuating error signal over time.
It is proportionate to the integral of the error and is particularly useful in addressing steady-state errors that may
persist even after the P action has been applied. The I action helps in eliminating long-term deviations from the
setpoint.

Lastly, the Derivative (D) action is proportional to the rate of change or derivative of the actuating error signal.
It responds to how quickly the error is changing, which can be essential in preventing overshoot and oscillations.
The D action adds damping to the control system and helps stabilize it.

By combining these three control actions — P, I, and D — the PID controller can effectively regulate the
controlled variable. The P action provides immediate response to current errors, the | action eliminates
accumulated errors over time, and the D action contributes to system stability by counteracting rapid changes in
the error. This amalgamation of control actions results in a continuous and effective PID control mechanism,
widely used in various industrial and engineering applications to maintain desired system behavior and
performance [13]. PID yields good control performance and is not complicated to configure [14].

1. Understand the System:

Begin by comprehensively grasping the dynamic characteristics of the system under control. This involves
determining its order (e.g., 2nd order) and acquiring either its transfer function or state-space representation.

2. Define Desired Specifications:

Specify the time domain requirements that best align with your control objectives and the system's nature. Key
time domain criteria include settling time (ts), rise time (tr), overshoot (OS), and steady-state error (e). Establish
appropriate values or ranges for these criteria based on your control needs.

3. Configure Proportional Gain (Kp):

Initiate the tuning process by setting the derivative and integral gains (Kd and Ki) to zero, focusing initially on
adjusting the proportional gain (Kp). Gradually increase kp until you achieve the desired rise time and
overshoot, thus molding the transient response as needed.

4. Incorporate Derivative Gain (Kd):

Introduce derivative action by incrementally enhancing the derivative gain (Kd). This step contributes to better
damping and reduced overshoot. Adjust Kd to meet your settling time and overshoot specifications, but exercise
caution as excessively high Kd values can introduce instability or amplify noise.

5. Apply Integral Gain (Ki):

Now, introduce integral action by progressively raising the integral gain (Ki). This helps eliminate steady-state
error and enhance system stability. Adjust Ki to meet your steady-state error specifications while ensuring
system stability. Exercise prudence with high Ki values, as they can lead to oscillations or instability.

348

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

6. Refine and lterate:

Continuously iterate and fine-tune the PID controller parameters (Kp, Ki and Kd) based on your desired time
domain criteria. Adjust each parameter incrementally while closely observing the system response, striking a
balance between response speed (rise time, settling time) and stability (overshoot) to meet control requirements.

7. Simulate and Validate:

Validate your designed PID controller by simulating it alongside the system model. Employ suitable simulation
tools or software to assess the response, verifying if it aligns with the specified time domain criteria. If
necessary, make further adjustments and repeat the simulation until satisfactory results are attained.

8. Implement and Experiment:

Proceed to implement the PID controller the actual system and conduct experimental testing. Monitor the
system's response and compare it to the desired time domain specifications. Fine-tune the controller parameters
as required, based on the observed performance, to ensure they align with your control objectives

3. Methods
METHODOLOGY

Particle Swarm Optimization (PSO) is a population-based optimization algorithm inspired by the social behavior
of birds and fish. It's used to find solutions to various optimization and search problems. Here are the key
components and principles of PSO:

1.Population of Particles: PSO maintains a group of particles, each representing a potential solution to the
problem.

2. Position and Velocity: Each particle has a position and a velocity vector. The position represents a potential
solution, and the velocity determines its movement direction and speed.

3. Fitness Function: A fitness function evaluates how good a solution is based on the optimization objectives.
4. Personal Best (p Best): Each particle remembers the best solution it has encountered so far (its personal best).
5. Global Best (g Best): The best solution found by any particle in the entire group is considered the global best.

6. Movement Update: Particles update their velocities and positions based on their own best solution and the
global best solution found so far.

7. Balancing Exploration and Exploitation: PSO balances exploration (searching a wide area of the solution
space) and exploitation (refining solutions in promising areas) through velocity updates.

In Particle Swarm Optimization (PSO), the initial stage involves populating the "swarm" with a set of random
solutions. Within this swarm, each individual particle represents a distinct configuration of unknown parameters
that are subject to optimization. These particles essentially serve as points within the solution space. As the
optimization process unfolds, each particle endeavors to adapt its trajectory, moving towards areas in the
solution space that hold the promise of better outcomes. This adjustment is guided by the particle's own past
experiences and is complemented by the sharing of information among particles within the swarm, fostering a
collaborative approach to optimization [13]. The PSO algorithm is often used to optimize various functions or
parameters. In your context, it's applied to the design of a PID (Proportional-Integral-Derivative) controller.
MATLAB is a popular programming tool for implementing and visualizing PSO-based algorithms due to its
efficiency and capabilities for numerical computing and plotting. MATLAB can assist in coding, optimizing,
and graphically representing the steps of the PSO-based PID controller design algorithm. The primary goal in
Particle Swarm Optimization (PSO) is to conduct an effective exploration of the solution space. This is achieved
by orchestrating the collective movement of particles towards the most promising solutions discovered in prior
iterations. The ultimate aim is to continually encounter improved solutions as the optimization process unfolds,
ultimately guiding the swarm towards the convergence upon a single solution with the minimum error [13].

349

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

The Particle Swarm Optimization (PSO) algorithm finds valuable application in the optimization process,
particularly in tasks like tuning a PID (Proportional-Integral-Derivative) controller for optimal system
performance. To achieve this, a fitness function is employed, critically evaluating how effectively the PID
controller regulates the system, taking into account essential criteria such as settling time, overshoot, or error
reduction. The process initiates with the setup of initial positions and velocities for the particles, representing
candidate PID controller parameters. Subsequently, the algorithm determines both the global best (g Best)
position, denoting the best overall solution across all particles, and the personal best (p Best)

positions for each particle. This information guides the PSO optimization loop, where particles iteratively adjust
their positions and velocities to converge towards the optimal PID controller parameters. Upon loop termination,
the optimized PID controller parameters are extracted. Finally, a closed-loop control system simulation is
conducted, utilizing the optimized PID controller, to validate and assess its performance in regulating the system
according to the specified criteria.

THE FITNESS FUNCTION
The fitness function is 61 (t) — Oss

where t = ts,d + 0.05 x ts,d = 1.05. A 5% of ts,d is chosen for the tolerance p here. Fitness function evaluates the
deviation of system’s output thetal at a specific time ‘t’ from the steady state value theta SS.

Particle Swarm Optimization (PSO):
Obijective of the Fitness Function:

In PSO-based PID tuning, the fitness function evaluates how well a given set of PID parameters satisfies the
control system's performance specifications.

Performance Metrics:
performance metrics such as settling time (ts), overshoot (Mp), and steady-state error (ess) are often used.
Fitness Calculation:

The fitness function calculates a fitness score based on the control system's response to the PID controller with
the given parameters.

The fitness function quantifies how closely the system's response matches the desired response, similar to GA.
Multi-Objective Optimization (Optional):

In complex control problems, a multi-objective fitness function may be used to balance multiple control
objectives.

Constraints (Optional):

If constraints on PID parameters exist, the fitness function should ensure that parameter sets violating these
constraints receive a high fitness score.

Fitness Function Output:

The fitness function returns a fitness score, where lower values indicate better solutions.PSO aims to minimize
this fitness score during the optimization process

350

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

Initial Population of the particle witlh
random velocity and position

+

I Imnmitialize the dimension of particles as I

(K p. Ki and K.d)
W09, C1—0.12, C2—2, n—S0

+

Evaluate the fitmess function (i.e..,
ISE) for each particle

evoluton with the current particle to obtain

Compare each particles fitmess function
Pbest

Compare the fitness function evolution
with the population's over all the previous
best to obtain gbest

i 8

Calculate thhe velocity and
current position of ceach particle

Is
the stopping
Ccriteria met

I Toermination I
4. Results
Genetic algorithm outputs
18 =
14 1 |
12 I S 4 1 T— ~
‘j
n):u.af 4 ‘w“
2| 0.6 |
g josl- |
g 3 [
o 2 oa
e : !
E.u.zf] = |
S S S S T S N A N N Y SN (N (NS (N (N ||
Self mning of PID Hinelt) Time(s)
Numerical simulation applying GA
Figurel self tunning of PID Figure2 Numerical simulation applying GA

Genetic Algorithm (GA):

PID Controller Parameters:

Kp = 9.999
Ki = 0.0096
Kd = 1.122

Performance Specifications:
Settling Time (ts) = 1.0 seconds
Overshoot (Mp) = 0.12 (12%)

351

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

PSO outputs
Step R before O 12 Step Response after Particle Swarm Optimization
1.2 T T —_ T T T T T
1 ,/’ 1
o L oal
2 / s |
..l S oa
/.
0.2 / 2
_/" | . !
“0 5 p e = B 5 3 7 s o 0.5 1 1.5 2 Tz 5 3 3.5 4 a5 5
Time me
FIGURE3: Numerical simulation applying FIGURE4: Numerical simulation applying MATLAB before
optimization after optimization

Particle Swarm Optimization (PSO):

PID Controller Parameters:

Kp=12.2164
Ki=15.8188
Kd =5.3541

Performance Specifications:
Settling Time (ts) = 0.5 seconds
Overshoot (Mp) = 0.12 (12%)

For both PSO and GA, the step response before optimization shows the system's response to a step input. It can
be seen in the FIGUREL and FIGURE3 overshoot is high for both the responses.

After optimization process, the PID controller parameters were tuned to optimal values. The step response graph
which is in FIGURE?2 after optimization using GA demonstrated the system's improved response to a step input.
The step response graph which is in FIGURE4 after optimization using PSO also exhibited an enhanced system
response to a step input.

The step response is settled smoothly after optimization process with less overshoots

Both GA and PSO-based tuning methods have been able to achieve the desired overshoot of 12%. However,
there is a difference in the settling time.

GA: Settling time achieved is 1.0 seconds.
PSO: Settling time achieved is 0.5 seconds.

PSO has achieved a lower settling time (0.5 seconds) compared to GA (1.0 seconds). This means that the PSO-
tuned controller responds faster to reach its desired state. Both methods have achieved the same overshoot value
of 12%, indicating that they satisfy this control objective equally well, both GA and PSO have successfully
tuned the PID controller to meet the desired overshoot specification. PSO has achieved a faster settling time,
which can be beneficial in some applications.

5. Discussion

In summary, Particle Swarm Optimization (PSO) has proven to be a valuable tool for fine-tuning PID
controllers. By defining a suitable fitness function and constraint functions, we enable an automated and
efficient adjustment of PID controller parameters, a critical aspect of achieving optimal control performance
across different systems. Our implementation of PSO has shown significant improvements in controller

352

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. X No. Y (20--)

performance, resulting in enhanced system stability, reduced overshoot, and quicker response times. The fitness
function's role in quantifying system performance has been pivotal, ensuring that controller parameters are
precisely adjusted to meet specific control objectives, making PSO an effective and versatile approach for PID
controller tuning.

Refrences

[1] J. Zhang and L. Guo, ‘“Theory and design of PID controller for nonlinear uncertain systems,”” IEEE
Control Syst. Lett., vol. 3, no. 3, pp. 643-648, Jul. 2019.

[2] B. Hekimoglu, ‘‘Optimal Tuning of fractional order PID controller for DC motor speed control Via
chaotic atom search optimization algorithm,”’ IEEE Access, vol. 7, pp. 38100-38114, 2019.

[3] Z. Gao, "Scaling, Multistep Design Method for PID Controllers," ISA Transactions, vol. 33, no. 4, pp.
325-336, 1994.

[4] X. Liand D. Atherton, "An Improved Relay Auto tuner Based on the Proportional-Integral-Derivative
Controller," IEEE Transactions on Industrial Electronics, vol. 39, no. 5, pp. 414-418, 1992.

[5] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley
Professional, 1989.

[6] J. H.Holland, "Adaptation in Natural and Artificial Systems," University of Michigan Press, 1975.

[71 S. K. Dash and S. R. Mishra, "A Comparative Study of Various Types of Genetic Algorithms,"
International Journal of Computer Applications, vol. 32, no. 3, pp. 1-5, 2011.

[8] M. Huba, D. Vrancic, and P. Bistak, ‘‘PID control with higher order derivative degrees for IPDT plant
models,”” IEEE Access, vol. 9, pp. 2478—-2495, 2021.

[91 R. Stornand K. Price, "Differential Evolution - A Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.

[10] J. Han, “‘From PID to active disturbance rejection control,”” IEEE Trans. Ind. Electron., vol. 56, no. 3,
pp. 900-906, Mar. 2009.

[11] K. Astrom and T. Hagglund, "PID Controllers: Theory, Design, and Tuning,” Instrument Society of
America, 1995. [12] R. Eberhart and Y. Shi, "Particle Swarm Optimization: Developments, Applications,
and Resources," Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2001.

[12] A. Rastogi and P. Tiwari, ‘‘Optimal tuning of fractional order PID controller for DC motor speed control
using particle swarm optimization,’” Int. J. Soft Compute. Eng., vol. 3, no. 2, pp. 150-157, 2013.

[13] D. C. Meena and A. Devanshu, ‘‘Genetic algorithm tuned PID controller for process control,”” in Proc.
Int. Conf. Inventive Syst. Control (ICISC), Jan. 2017.

[14] A. A. M. Zahir, S. S. N. Alhady, W. A. F. W. Othman, and M. F. Ahmad, ‘‘Genetic algorithm

optimization of PID controller for brushed DC motor,”” in Intelligent Manufacturing & Mechatronics.
Singapore: Springer, 2018.

353

