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Abstract:

The purpose of this paper is to obtain common fixed point theorems for weakly compatible mappings
satisfying the Common Limit Range property using implicit relation in Fuzzy 2 — Banach Space. This Property
plays a major role in fixed point theorems and by using this property we can obtain fixed points in Fuzzy 2-
Banach Space.
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1. Introduction

The concept of Fuzzy Sets was introduced by Zadeh in 1965, which plays a major role in almost all
branches of Science and Engineering. Katsaras (1984) and Congxin and Ginxuan (1984) independently
introduced the definition of fuzzy norms. The concept of 2 — norm in linear spaces was initiated by Gahler
(1964) and white (1969) introduced the concept of Cauchy sequences and convergent sequences in a 2-normed
spaces and defined a 2- Banach Spaces as a 2-normed space in which every Cauchy sequence is convergent.
Sintunawarat and kumam introduced a new concept called as common limit range property.

2. Preliminaries
Definition 2.1. [4]
Let D be a vector space over a field K (where K is R or C) and * be a continuous t-norm. A fuzzy set
N in D2X]0, o] is called a fuzzy 2-norm on D if it satisfies the following conditions:
() N(p,q,.0)=0Vp,q€D
(if) N(p,q,t) = 1 ¥t > 0 and atleast two among the three points are equal
(i) N(p,q,t) = N(q,p, t)
(iV YN(p+q+rt,+t,+t;3) =N, q,t)* N, ty) * N(q,1,t3)Vp,q,r ESand ty,t,,t3 =0
(v) Forevery p,q,€ D,N(p, q,.) is left continuous and }Lr?o N(p,q,t) =1

The triple (D, N,*) will be called fuzzy 2-normed linear space (F2 — NLS)
Definition 2.2.[4]
A sequence {P,}ina F2 — NLS(D, N,*) is converge to p € D if and only if
lim N(B,p,t) =1vt > 0
n—-oo
Definition 2.3. [4]

Let (D,N,x) bea F2 — NLS. A sequence {B,} in D is called a fuzzy Cauchy sequence if and only if
lim N(PB,,P,t) =1Vt >0

mmn—oo
Definition 2.4. [4]
A linear fuzzy 2-normed space which is complete is called a fuzzy 2 — Banach Space.
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Definition 2.5.[4]

Self mappings A and S of a fuzzy 2- Banach Space (D, N,*) are said to be weakly commuting if
N(ASp,SAp,t) = N(Ap,Sp,t)Vp € Dand t > 0.
Definition 2.6.[4]

Self mapping A and S of a fuzzy 2 — Banach Space (D, N,*) are said to be compatible if and only if
rlllf& (ASpy, SAp,, t) = 1vt >0

. Whenever {P,} is a sequence in D such that Ap,, Sp,, = p forsomep € D asn — co.
Definition 2.7.[4]

Two Self maps A and S are said to be commuting if ASp = SAp forall p € D.
Definition 2.8.[4]

Let A and S be two self maps on a set D, if Ap = Sp for some p € D then p is called a coincidence
point of A and S.

Definition 2.9.[4]

Two Self maps A and S of a fuzzy 2 — Banach Space (D, N,*) are said to be weakly compatible if they
commute at their coincidence points. That is if Ap = Sp for some p € D then ASp = SAp.
Definition 2.10.[4]

Suppose A and S be two Self mappings of fuzzy 2-Banach Space (D, N *). A pointp € D is called a
coincidence point of A and S if and only if Ap = Sp, then w = Ap = Sp is called a point of Coincidence of A
and S.

Definition 2.11.[1]

A pair (4, S) of Self mapping of a fuzzy 2 — Banach Space (D, N,*) is said to satisfy property (E.A) if

there exists a sequence {P,} in D such that 111_1;1(‘)10 Ap, = 11152 Sp, =2z

forsome z € D.
Definition 2.12.[1]

Two pairs (4,5) and (B, T) of a self mappings of a fuzzy 2-Banach Space (D, N,*) are aid to satisfy
the common property (E. A) if there exist two sequence {p,.}, {q,.} in D. Such that lim Ap,, = 1111_>r2] Spn =

n—-oo

lim Bq, = lim Tq, =z
n—-oo

n-oo

for some z € D.

3. Implicit relations : [5]
Let {@} be the set of all real continuous function @: (R*)® — R* satisfying the following condition:
(i) @(w,v,u,v,v,u) = 0imply u = v forall u,v € [0,1]
(i) @(w,v,v,u,u,v) = 0imply u = v forall u,v € [0,1]
(i) @(u,w,v,v,u,u) =0 imply u = v forallu,v € [0,1]
Lemma 3.1.[6]
Let (D, N,*) be a fuzzy 2-Banach Space. If there exists k € (0,1) Such that N(p, q, kt) = N(p, q,t)
forallp,q € Dandt > 0 thenp = q.
Lemma 3.2.
Two Self mapping A and S of a fuzzy 2-Banach Space (D, N,*) are compatible then (4, S) is weakly
compatible
Lemma 3.3.
Two Self mapping A and S of a fuzzy 2-Banach Space (D, N,*). (4,S) is weakly compatible. w is a
point of coincidence of A and S then the pair (4, S) satisfies the property CLR.
Theorem 3.4.
Two Self mapping A and S of a fuzzy 2-Banach Space (D, N,*).
(i) Pair (4,S5) is weakly compatible.
(i) Pair (4,5) is compatible.
(iii) w is a point of coincidence of A and S.
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(iv) Pair (4, S) satisfies the property CLR then A and S have a fixed point.
Theorem 3.5
Let (D, N,*) be a fuzzy 2-Banach space and K,L,M,T,R,S : D — D be hexadic self-mappings satisfy
the following conditions:
(i) one of the pairs (K,TR) and (L, MS) satisfies the property CLR with respect to mapping TR and MS such
that K(D) € MS(D) and L(D) € TR(D).
(ii) For every p,q € D and for some ¢ € (¢) and every t > 0,
¢{N(Kp,Lq,t), N(TRp, MSq,t), N(Lqg, MSq,t), N(Kp, TRp,t), N(Kp,MSq,t), N(TRp,Lq,t)} = 0
(iii) If one of MS(D) and TR (D) are closed subset of D.
(iv) Pairs (K, TR) and (L, MS) are weakly compatible.
(v) Each pair of pairs (K, TR) and (L, MS) has a coincidence point in D.
(iv) If (K,S), (L,R),(MS,R) and (TR, S) are commuting pairs than K, L, M, T, R, S have a unique common fixed
pointin D.

Proof:
Let pairs (K,TR) satisfy CLR property, so there exists a sequence {p,} in D such that lim Kp,, =

n—-oo

lim TRp,, = z for some z belongs to TR( D).

n-oo

Since K(D) € MS(D), there exists {q,,} in D such that Kp,, = MSgq,, and we get
lim Kp, = lim TRp,, = lim MSq,, =TR(z) =z
n—oo n—oo n—oo

We claim that lim Lq, = z

n-ow
Putp =p, and g = q,.

H{N (Kpn, LGn, t), N(TRpy, MSqn, t), N(LGn, MSqn, t), N(Kpn, TRD, t), N(Kpp, MSqn, 1),
N(TRp,, Lq,,t)} =0

¢{N(z,Lq,,t),N(z,21t),N(Lq,,z1t),N(z,zt),N(z,zt),N(z, Lg,, t)} = 0

¢{N(Lq,, 2z t),N(z,z1t),N(Lq,,zt),N(z,zt),N(zzt), N(Lq,, zt)} =0

¢{N(Lqn, zt),1,N(Lqy,zt),1,1,N(Lq,, 2z, t)} = 0
iijgloan=z [¢ w,v,u,v,v,u) =20 = u=v

lim Kp,, = lim TRp, = lim MSq, = lim Lq,, =z
n—-oo n—oo n—-oo n—-oo

Since MS(D) is a closed subset of D, there exists u € D such that MSu = z and w get

lim Kp, = lim TRp, = lim MSq, = lim Lq, = MSu

n—oo n—oo n—-oo n—oo

We assert that Lu = z

Putp =p,andqg =u

¢{N(Lu, MSu, t), N(Kp,, TRp,, t), N(Kp,,, Lu,t), N(TRp,, MSu, t), N(Kp,, MSu,t), N(TRp,,, Lu,t)} = 0
¢{N(Lu,z,t),N(z,z1t),N(Lu, zt),N(z,zt),N(z zt), N(Lu,zt)} =0

~lu=z [vowv,uv,v,u)=20=u=>v

Thus Lu = zand MSu = z

~Lu=MSu=z

Since L(D) € TR(D), there exists v € D such that Lu = TRv and we get that Lu =
MSu=TRv =z

To Prove Kv = z

Putp =vand q = u ¢p{N(Kv, Lu,t), N(TRv, MSu, t), N(Lu, MSu, t), N(Kv, TRv, t), N(Kv, MSu, t),
N(TRv,Lu,t)} = 0

¢{N(Kv,z,t),N(z,z2t),N(zzt), N(Kv,zt), N(Kv,z,t),N(z,2t)} = 0

~“Kv=z
Thus Kv =zand TRv = z
~Kv=TRv=z

Weget Lu =MSu=TRv=Kv =z
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Let (K, TR) and (L, MS) be weakly compatible pairs.
We have, Kv = TRv = TRKv = LMSv
=> TRz =Kz
= Kz =TRz
Also, Lu = MSu = MSLu = LMSu
=> MSz =1z
=Lz =MSz
Hence z is the coincidence point of each pair (K, TR) and (L, MS).
Next we have to show that z is the common fixed point of K, L, M,T,R and S.
For this, we claim that Kz = z
Putp=2z,q=u
¢{N(Kz, Lu,t), N(TRz, MSu, t), N(Lu, MSu,t), N(Kz, TRz, t), N(Kz, MSu,t), N(TRz, Lu,t)} = 0
¢{N(Kz,z1t),N(Kz,z,t),N(z,zt), N(Kz,Kz,t),N(Kz,zt), N(Kz,z,t)} = 0
¢{N(Kz,zt),N(Kz,z1t),1,1,N(Kz,zt), N(Kz,z, t)} = 0
~Kz=z["d(uuv,v,u,u) =20 = u=>v
~ TRz =z [+ Kz = TRz]
~TRz=Kz=TRz
We claimthat Lz = z
Putp =v,q =z
¢{N(Kz,Lz,t), N(TRv,MSz,t),N(Lz, MSz,t), N(Kv,TRv,t), N(Kv,MSz,t), N(TRv,MSz,t)} = 0
¢{N(Lz,z,t),N(Lz,z,t),N(Lz,Lz,t),N(z,2,t),N(z Lz,t),N(z,Lz,t)} = 0
¢{N(Lz,zt),N(Lz,z2,t),1,1,N(z,Lz,t),N(z, Lz, t)} = 0
~Llz=z[Vwuv,v,uu) =0 2u=v]
Lz=MSz=z
“Kz=MSz=Lz=TRz=12z
Since (K, S) and (TR, S) are commuting pairs, we get K(5z) = S(Kz) = Sz.
Also TR(Sz) = S(TRz) = Sz.
From here it follows that , L(Rz) = TR(Sz) = Sz.
Since (L, R) and (MS, R) are commuting pairs we have,
L(Rz) = R(Lz) = Rzand MS(Rz) = R(MSz) = Rz
From here it follows that , L(Rz) = MS(Rz) = Rz
PutP=Szandq =z
¢{N(KSz,Lz,t), N(TRSz, MSz,t), N(Lz, MSz,t), N(KSz, TRSz,t), N(KSz, MSz,t), N(TRSz,Lz,t)} =0
¢{N(Sz,z,t),N(Sz,2,t),N(z2t),N(Sz,Sz,t),N(Szzt), N(Sz,z t)} =0
¢{N(Sz,2,t),N(Sz,z1t),1,1,N(Sz,z,t), N(Sz,2z,t)} = 0
~Sz=z[vdp(uu,v,v,u,u) =20 = u=v
Now MSz = z
>Mz=1z][5z=z]
>Kz=Lz=Mz=85Sz=TRz =1z
Putp =zand q = Rz
¢{N(Kz, LRz, t),N(TRz, MSRz,t), N(LRz, MSRz,t), N(Kz,TRz,t), N(Kz, MSRz,t), N(TRz, MSRz,t)} = 0
¢{N(z,Rz,t),N(z,Rz,t),N(Rz,Rz,t),N(z,2,t),N(z,Rz,t), N(z,Rz,t)} =0
¢{N(Rz,z,t),N(Rz,z1t),1,1, N(Rz, z,t), N(Rz,zt)} =0
~“Rz=12z
AlsoTz=zasTRz =z
~“Kz=Lz=Mz=Tz=Rz=Sz=2z
z is the common fixed point of K, L, M,T,R and S in D.
Similarly if (L, MS) satisfies property CLR and TR(D) is closed subset of D, then we prove that z is a common
fixed point of K, L, M, T, R and S in Din the same argument as above.
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Uniqueness:
w is also a common fixed point in D.
Putp=zandg=w
¢{N(Kz, Lw,t),N(TRz, MSw, t), N(Lw, MSw, t),N(Kz,TRz,t), N(Kz, MSw,t), N(TRz,Lw,t)} = 0
¢{N(z,w,t),N(z,w,t),N(w,w,t),N(z,zt),N(z,w,t), N(z,w,t)} =0
¢{N(z,w,t),N(z,w,t),1,1,N(z,w,t), N(z,w,t)} =0
cz=wvd(wuv,v,uu) =0 = u=v]
Hence z is the unique common fixed point of K, L, M, T, R and S in D respectively.
Theorem 3.6
Let (D, N,x) be a fuzzy 2-Banach space and K,L,M,T,R,S : D — D be six self-mappings satisfy the
following conditions:
(i) If (K, TR) satisfies the property CLR such that K(D) € MS(D) and L(D) < TR(D).
(ii) For some ¢ € (¢) and for every p,q € D and every t > 0,
¢{N(Kp,Lq,t), N(TRp, MSq,t),N(Lq, MSq,t), N(Kp, TRp, t), N(Kp, MSq,t), N(TRp,Lq,t)} = 0
(iii) If MS(D) is a closed subset of D.
(iv) Pairs (K, TR) and (L, MS) are weakly compatible.
(v) Each pair of pairs (K, TR) and (L, MS) has a coincidence point in D.
(iv) If (K,S),(L,R),(MS,R) and (TR, S) are commuting pairs than K, L, M, T, R, S have a unique common fixed
pointin D.
Theorem 3.7
Let (D, N,*) be a fuzzy 2-Banach space and K,L,M,T,R,S : D — D be six self-mappings satisfy the
following conditions:
(i) If (L, MS) satisfies the property CLR such that K(D) € MS(D) and L(D) < TR(D).
(i) For some ¢ € (¢) and every t > 0 and for every p,q € D.
¢{N(Kp, Lq,t), N(TRp, MSq,t),N(Lq, MSq,t), N(Kp, TRp, t), N(Kp, MSq,t), N(TRp,Lq,t)} = 0
(iii) If TR(D) is a closed subset of D.
(iv) Pairs (K, TR) and (L, MS) are weakly compatible.
(v) Each pair of pairs (K, TR) and (L, MS) has a coincidence point in D.
(iv) If (K,S),(L,R),(MS,R) and (TR, S) are commuting pairs than K, L, M, T, R, S have a unique common fixed
pointin D.
Example 3.8
Let D = [0, o) be the fuzzy 2- Banach space.
Define K,L,M,T,R,S,:D — D by

pifp=1 3_7”’1'1‘z9=1 4_7”l'fP=1
KD =1 1ifp>1; D=9 1ifp>1: RD=)1ifp>1

0ifp<1 Oifp<1 0Difp<1

P ifp=1 Plifp=1 22ifp=1
SD=4 1ifp>1: MD=y1ifp>1: TD=9 1ifp>1

Oifp<l1 Oifp<1 Oifp<1
Letp € D.

Consider the sequence {p,,} = {1 + %} and {g,} = {1 + %},

Here (K, TR) and (L, MS) satisfies the CLR property and are weakly compatible.
All the conditions of the above theorem are satisfied.

1 is the coincidence point in D.

Hence 1 is the unique common fixed point of K, L, M, T, R and S in D respectivly.
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4. Conclusion:

The target of this paper is to emphasize the role of CLR property in the existence of common fixed
points in fuzzy 2- Banach space and prove our main results for the pair of weak compatible mapping along with
CLR property.
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