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Abstract— Autonomous robots have become an inevitable necessity in many applications with defense and 

scientific interest. Unmanned rovers are currently playing a crucial role in the field of planetary exploration. 

Path planning is an essential part of any autonomous robot. This task must be executed in a manner that 

ensures the robot identifies a viable route without encountering any obstacles in its path. In order to address 

this challenge, various path planning algorithms, such as Dijkstra, A*, Dynamic A* (D*), Dynamic A* Lite 

(D* Lite), Rapidly exploring Random Tree (RRT), and Probabilistic Road Map (PRM), have been explored, 

implemented, and analyzed using Python Idle 3.11. Our research has demonstrated that, for heterogeneous 

robots, path planning involved the integration of the A* algorithm for global path planning and the Dynamic 

Window Approach (DWA) algorithm for local path planning. 

 

Index Terms— Autonomous robots, Rovers, Dijkstra, A*, D*, D* Lite, RRT, PRM, DWA.   

 

 

1. Introduction 

Navigation, a critical aspect of mobile robotics, refers to the precise determination of the robot's 

position, the formulation of a path plan, and the subsequent adherence to that planned path. The mobile-robots 

are capable of moving around in their environment and carrying out intelligent activities autonomously, thus 

having extensive realistic applications, including Locomotion & exploration, payload transportation, 

surveillance, cleaning services & rescue works. For a mobile robot to execute its functions effectively, it 

requires three essential components: localization, mapping, and path planning. Initially, the robot's position must 

be accurately determined in relation to its immediate environment. Subsequently, the robot relies on a map to 

recognize its surroundings and navigate accordingly. Thirdly, the robot must engage in path planning to 

determine the optimal route for accomplishing a specific task[1]. The primary task in navigation is either to 

reach a predetermined goal or to follow a predetermined path without any collisions. Autonomous navigation is 

subdivided into four main subtasks [2] (see Fig. 1) The sensory system captures the robot’s surrounding 

environment (Perception). 2) Determining the robot's position within the environment (localization). 3) The 

robot determines its maneuvering strategy to safely reach the destination without encountering any collisions 

(path-planning). 4) The robot’s motions are controlled to follow the desired path (motion control). Out of the 

four mentioned tasks, path planning stands out as a crucial area of focus in this research. This paper explores 

various contemporary methods for robot path planning in the context of guiding mobile robots within a 

warehouse environment. 

Path planning can be categorized into two main types: point-to-point and complete coverage. A 

complete coverage path planning is carried out when it is necessary to inspect all positions, as is the case for a 

cleaning robot, for example. Point-to-point path planning is executed when the objective is to move from the 

initial position to the goal position [3]. In the context of mobile robotics, path planning typically involves the 

discovery of a collision-free, shortest, and smooth route from a given starting point to a desired destination 

while minimizing the path cost.  The intricacy of the issue escalates as the system's degrees of freedom increase. 

The determination of the most suitable path is contingent upon various constraints and conditions, such as 

prioritizing the shortest route between endpoints or achieving the minimum travel time while avoiding 

collisions. In certain cases, constraints and objectives may be intertwined, as in the effort to minimize energy 

consumption without surpassing a predefined travel time threshold. Path planning can be applied in 

environments that are fully known, partially known, or completely unknown, where data is acquired from 

sensors mounted on the system and used to update environmental maps, thus guiding the motion of the robot or 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2651 

 

autonomous vehicle. 

The robot’s operational environment is rarely static, and it often has many moving obstacles. This 

environment is called dynamic environment and is representative of the real-world. The robot will need to 

decide how to proceed when one of these obstacles is obstructing its path without a collision probability. Path 

planning algorithms are it well- typically categorized into distinct groups, specifically global and local methods. 

Global path planning, also known as global navigation planning, relies on a priori knowledge, such as an 

environmental map, to formulate the path, making suited for planning within static environments. Local path 

planning, also known as obstacle avoidance planning, dynamic path planning, or real-time navigation planning, 

involves adjusting the path as the robot moves through the environment in response to any changes in the 

surroundings [4]. 

 

 
Fig 1: Basic steps involved in Robot Navigation 

 

The remainder of the paper is structured as follows: Section II discusses related research; Section III 

elucidates path planning principles; Section IV offers an overview of several path planning algorithms along 

with their pseudocode; Section V presents and evaluates the outcomes of experimental simulations and the 

implementation of path planning algorithms; Section VI outlines the conclusion and outlines potential future 

research directions. 

 

2. Related Works 

Numerous literature reviews have been undertaken in the early stages to explore motion planning for 

multiple robots. The widely focused are mobile robots, and then followed by UAVs and autonomous underwater 

vehicles (AUVs). All the papers have discussed path-planning strategies from classical to emerging AI 

techniques, such as reinforcement learning (RL) and machine learning (ML). Different motion planning 

techniques are analyzed with a prime focus on highway planning and UGVs [5]. Decision-making and path-

generation concepts are discussed to elaborate motion planning. Findings reveal that a huge number of 

algorithms are reviewed in this chapter. This study encompasses not only cutting-edge research but also 

suggests decomposition methods for highway motion planning and encourages autonomous driving. Various 

methods developed on motion planning policy are reviewed [6].  

This chapter is focused on mobile robots in an unstructured environment but has explored some studies 

on UAVs. The conventional and emerging deep reinforcement learning (DRL) methods that involve multi-robot 

systems, meta learning, and imitation learning are enlightened. The primary obstacles preventing real-time 

applications are believed to be limited theoretical progress and a lack of interpretability. Researchers survey 

studies that applied ML for control and motion planning in the navigation of mobile robots [7]. They conduct a 

comparative analysis between machine learning (ML) approaches and traditional methods within the framework 

of navigation. Findings reveal that classical navigation issues are required to be examined with an ML 

perspective. It further evaluates that despite advances, classical approaches are unable to solve navigation 
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problems. A comprehensive and clear understanding related to opportunities, limitations, relationships, and the 

future of different motion planning algorithms is presented [8].  

Traditional algorithms to policy gradient reinforcement learning algorithms are discussed for intelligent 

robots. This study paves the way for improved motion planning algorithms. Optimization techniques for motion 

planning of unmanned aerial vehicles (UAVs) are addressed in Reference [9]. Findings reveal that swarm-based 

optimization approaches are preferred by researchers due to their exceptional ability in complex scenarios. A 

survey is carried out to evaluate various methods of motion planning and task planning for the cooperative 

working of multiple mobile robots [10]. A taxonomy based on system capabilities is proposed in this study that 

applies to single-robot systems and multi-robot systems. Various motion planning methods, from classical to 

reinforcement learning (RL) approaches, are reviewed for single-robot and multirobots [11]. It covers different 

types of robots such as UAVs, wheeled mobile robots (WMRs), AUVs, etc. It concludes that motion planner 

based on RL is model-free and achieves integration of both the local and the global planner but shows various 

limitations that hinder its real-time applications. The conclusion drawn is that an RL-based motion planner is 

model-free, leading to the integration of both the local and global planners. However, it exhibits several 

limitations that impede its real-time application.  

 

3. Path Planning 

Path planning involves identifying a sequence of feasible robot configurations called trajectories that 

allow moving a robot from its initial stage to its final destination with collision avoidance and obstacle 

avoidance for completing a given task. It involves various variables such as robots’ dynamics, kinematics, 

environment, and task constraints. Path planning optimizes a robot’s motion by enhancing its throughput and 

minimizing its cycle time. It can be utilized to assess a process’s feasibility and to estimate potential problems 

before deploying robots. The primary challenge in the advancement of robots, particularly autonomous vehicles, 

lies in devising a mechanism by which they possess the capability to formulate plans in various situations. 

Therefore, plan planning is essential in the deployment of multiple robots in an environment consisting of 

obstacles. The degree of plan planning problem varies according to a couple of factors whether all the obstacles’ 

information regarding their locations, sizes, and motion, is known before the deployment of the robot or whether 

the obstacles are stated or dynamic in an environment [12]. 

Path planning algorithms include several classification methods, they are distinguished according to the 

available environmental knowledge. The main categories of path planning are classical algorithms and soft 

computing techniques. Classical algorithms are comprised of cell decomposition, road map, Voronoi-diagram, 

and potential field. Conversely, fuzzy logic, hybrid and evolutionary approaches, and artificial neural networks 

(ANN) are examples of soft computing techniques. As per a recent investigation of multi-robot systems, path-

planning methods are classified into four main groups: classical approaches, heuristic algorithms, artificial 

intelligence (AI) techniques, and bio-inspired algorithms [13]. Figure 2 shows classification of these path-

planning algorithms. 

Classical approaches usually involve a predefined graph that requires high computational space and 

time. These techniques do not ensure completeness and are not capable of re-plan the path in the application. 

These methods can be divided into three categories: sampling-based, graph-based, and artificial potential field 

(APF)[14]. The heuristic approaches solve the problems that cannot be addressed by other approaches and 

estimate an approximate solution rather than an exact solution. Hence, these algorithms are sometimes referred 

to as approximation algorithms. These methods produce cost functions to assess the path and are readily applied. 

It explores a subspace within the search space and generates results that are in the proximity of optimality. 

Moreover, they require lower space and runtime. A-star (A*) search algorithm and D* algorithm are extensively 

applied through heuristic algorithms [15]. Intelligent systems have garnered increased attention in recent 

times.AI techniques are developed to overcome the limitations of traditional reinforcement learning. AI-based 

algorithms and models possess self-learning abilities and have completed characteristics for the path planning of 

multiple robots with faster convergence. Researchers have focused more on machine learning (ML) algorithms, 

reinforcement learning (RL), neural networks (NN), fuzzy logic, etc [16]. Bio-inspired techniques are inspired 

by the behaviour of animals and use particles to generate paths. They are primary algorithms for the path 

planning of multiple robots because they show computational efficiency and have powerful implementations. 
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Bio-inspired methods encompass various approaches, such as particle swarm optimization (PSO), pigeon-

inspired optimization (PIO), ant colony optimization (ACO), genetic algorithm (GA), gray wolf optimizer 

(GWO), and various other bio-inspired techniques [17]. 

 
Fig 2: Classification of Path planning Approaches 

 

4. Path Planning Algorithms 

A.  Dijkstra Algorithm  

One of the earliest algorithms for path planning is the Dijkstra algorithm. Edsger Wybe Dijkstra 

introduced Dijkstra’s algorithm (DA), the Dutch scientist, in 1956 and published in 1959 [18]. This algorithm 

sequentially explores the most promising subnodes based on the greedy principle, and it utilizes the relaxation 

method to enhance the path selection. Ultimately, the optimal path is recorded in a readable list, thus addressing 

the optimal path planning challenge. The Dijkstra algorithm yields more favorable planning outcomes when 

dealing with smaller-scale map data, satisfying the specified requirements. Nevertheless, in cases where the map 

data volume is extensive, the planning results are suboptimal and fail to meet the planning requirements. 

In a weighted graph, the weight of a path corresponds to the cumulative sum of the weights of its 

constituent edges. This algorithm operates under the assumption that there are n vertices, and the distances 

between each pair of connected points are known, with at least one connection existing between any two 

vertices. The objective of this algorithm is to identify a path with the shortest overall length, starting from the 

initial point and concluding at the target point. At each step, the algorithm selects the shortest distance from the 

starting point, and then updates the distances of other vertices based on a distance variable x (equation 1). For 

each vertex v: 

 

Dist(v) = min(dist(v), dist(v) + w(x,v))……………………(1) 

                                               

          Where w(x,v) = Weights of the arc between x and v 

 

The global path planning for the robot utilizes the Dijkstra algorithm, with the algorithm outlined in 

Figure 3. Initially, the robot's navigation commences by establishing both the starting point and the destination 

point. Subsequently, two arrays are created to facilitate the storage of points for the path to be determined and 

the points for the path that has been ascertained. Following this, the algorithm calculates the distances between 

the central point and the eight adjacent points, utilizing the starting point as the reference center. Subsequently, 

the algorithm saves the point with the shortest distance, designates this point as the new center, and proceeds to 

calculate the distances between the starting point and the neighboring points based on this updated center point. 

for each of the calculated points, we selected the solution with the smallest distance. This process continues 

iteratively, calculating adjacent points until the target point is reached, ultimately yielding the shortest path 

planning route as the output. Broadly speaking, the algorithm assesses and contrasts the node weights within the 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2654 

 

graph from a global standpoint, thereby determining the global shortest path [19]. 

 

 
 

Fig 3: Pseudocode of the Dijkstra Algorithm 

 

B.  A Star (A*) Algorithm  

The A* Algorithm is a well-known and widely used path planning algorithm for graph traversal. A* 

functions in a manner akin to Dijkstra's algorithm, with the key distinction being that it directs its search toward 

the most promising states, which can potentially reduce the computational effort required, as noted in reference 

[20]. A* is commonly employed to seek a solution that is close to optimal [21] based on the available dataset or 

node. A* is predominantly utilized in static environments, but there are scenarios in which this algorithm finds 

application in dynamic environments as well [22]. Peter Hart, Nils Nilsson and Bertram Raphael of Stanford 

Research Institute first described A* algorithm in 1968. It is an enhanced version of Edsger Dijkstra’s 

algorithm. The A* algorithm [23] is an additional graph-based path planning technique employed to assist the 

robot in discovering the optimal path within grid-decomposed static grid maps. The environment, which 

includes both free spaces and obstacles, is represented using a collection of uniform, regular grids. A* employs 

a heuristic-based variation of the Dijkstra algorithm to achieve an optimal solution for the robot. One limitation 

of A* is its utilization of uniform grid representation, which necessitates allocating significant memory 

resources for areas that might not be traversed or lack obstacles. 

While Dijkstra's Algorithm is effective in finding the shortest path, it can be inefficient as it spends 

time exploring directions that do not hold promise. Greedy Best First Search is inclined to explore promising 

directions; however, it may not necessarily identify the shortest path. The A* algorithm combines the actual 

distance from the start with an estimated distance to the goal, enabling it to find paths to a specific location. A* 

prioritizes paths that appear to be progressing closer to the goal. It is a best-first search algorithm, it solves 

problems by searching among all the possible paths to the goal location and selects the one path that incurs the 

smallest cost i.e. least distance travelled or shortest time taken to reach the goal location. A* is represented using 

weighted graphs and initiates its journey from a designated node within the graph. It proceeds to build a tree of 

paths originating from this node, incrementally extending these paths until one of them reaches the goal node or 

target position. The pseudocode for the A* algorithm is depicted in Figure 4. A* extends paths that are already 

more cost-effective by employing the following function (equation 2): 
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f(n) = g(n) + h(n)…………..(2) 

where,  

n = the last node on the path  

f(n) = total projected cost of the path via node n 

g(n) = the current cost to reach node n 

h(n) = Projected cost from n to target.  

 

This is the heuristic part of the cost function. The heuristic is problem-specific. In order for the 

algorithm to determine the genuine shortest path, the heuristic function must be admissible, implying that it 

should never provide an overestimate of the actual cost to reach the nearest goal node. The heuristic function 

can be computed through a variety of methods: 

 

 
Fig 4: Pseudocode of the A-Star or A* Algorithm 

o Manhattan Distance:  

In this method h(n) is computed by (eqn. 3) calculating the total number of squares moved horizontally 

and vertically to reach the target square from the current square. Here any obstacles and diagonal movement are 

ignored. 

……………(3) 

 

o Euclidean Distance Heuristic:  

This heuristic is slightly more accurate than its Manhattan counterpart. If we try run both 

simultaneously on the same maze, the Euclidean path finder favors a path along a straight line. This is more 

accurate, but it is also slower because it has to explore a larger area to find the path (eqn. 4). 

…………..(4) 

 

C. Dynamic A Star (D*) Algorithm  

Building upon the A* algorithm, Anthony Stentz introduced the Dynamic A* algorithm, commonly 

known as the D* algorithm, in 1994. The D* algorithm is characterized as a reverse incremental search 

algorithm. It is also considered a graph search algorithm. It's named as such because it shares similarities with 

the A* algorithm, with the key distinction being its dynamic nature. This means that the cost functions can 

evolve and change over time, or during the problem-solving process. The pseudocode for the D* algorithm is 
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depicted in Figure 5. 

 

 
Fig 5: Pseudocode of the D-Star or D* Algorithm 

 

In simpler terms, it can be described as the process of path planning in an environment where 

comprehensive data about the terrain and obstacles may not be readily accessible, meaning that certain obstacles 

in the environment and the complete traversal cost information between each grid are not known in advance. 

The database containing costs and obstacle information should be continually updated whenever sensors 

onboard the robot detect a deviation from the previously recorded data. The D* algorithm manages a robot's 

state until it is eliminated from the open list. Concurrently, it computes a sequence of states along with back 

pointers, which are used either to guide the robot to the goal position or to adjust the cost in response to a 

detected obstacle, and subsequently, the affected states are added to the open list. States within the open list are 

handled until the path cost from the present state to the goal becomes lower than a designated minimum 

threshold. Any changes in cost are propagated to the subsequent state, enabling the robot to proceed by 

following back pointers within the updated sequence toward the goal, as detailed in reference [24]. D* has been 

shown to be more than 200 times faster than an optimal re-planner, as indicated in references [24][25]. The 

primary limitation of the D* algorithm is its considerable memory usage in comparison to other D* variants, as 

highlighted in reference [26]. The formula for distance measurement (equation 5), 
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H(x)=H(y)+C(y, x)………(5) 

Where, 

H(y) - The measurement of the separation between the target point and point x, and  

C (y, x) - The distance measurement between point y and point x can be substituted with the real, physical 

distance between these two points within the algorithm. 

 

Much like A*, D* also keeps an OPEN list of states. This list is utilized for disseminating information regarding 

modifications to the arc cost function and for computing path costs to states within the space. Each state S is 

linked with a corresponding tag t(S), with its value designated as "NEW" if it has never been part of the OPEN 

list, t(S)="OPEN" when S is currently included in the OPEN list, and t(S)="CLOSED" if it has been removed 

from the OPEN list. In contrast to the A* algorithm, which commences at the initial point and proceeds towards 

the goal by employing a heuristic function, D* initiates its journey from the target position T and works 

backward towards the initial position, without employing a heuristic similar to A*. Again, quoting Stentz, “For 

each state S, D* maintains an estimate of the sum of the arc costs from S to T given by the path cost function h 

(T, S). Given the proper conditions, this estimate is equivalent to the optimal (minimal) cost from state S to T, 

given by the implicit function O (T, S). For each state S on the OPEN list (i.e., t(S) =OPEN), the key function, k 

(T, S), is defined to be equal to the minimum of h(T,S) before modification and all values assumed by h(T,S) 

since S was placed on the OPEN list[27]. The key function classifies a state S on the OPEN list into one of two 

types: a RAISE state if k (T, S) be min (k(S)) for all S such that t(S) =OPEN. The parameter kmin represents an 

important threshold in D*: path costs less than or equal to kmin are optimal, and those greater than kmin may not 

be optimal. The parameter kold is defined to be equal to kmin prior to most recent removal of a state from the 

OPEN list. If no states have been removed, kold is undefined.” 

 

D. Dynamic A Star Lite (D* Lite) Algorithm  

The D* Lite algorithm is a path planning technique introduced by Koenig S and Likhachev M, building 

upon the Life Planning A* (LPA*) algorithm. The principal distinction between D* Lite and LPA* lies in the 

search direction, where D* Lite substitutes the target point goal in the Key definition with the relevant data for 

the starting point start [28]. The D*_lite algorithm initiates by conducting a backward search within a specified 

map set to determine an optimal path. While advancing towards the target point, the algorithm handles the 

appearance of dynamic obstacle points by conducting searches within the local scope. The incremental 

algorithm offers the benefit of having completed the path search for each point. In situations where an obstacle 

point prevents further progress along the original path, the data from the incremental search can be repurposed 

to promptly re-plan an optimal path from the current obstruction point, allowing the robot to resume forward 

movement. Figure 6 depicts the Pseudocode for the D* Lite algorithm. 

 

E. Rapidly Exploring Random Tree (RRT) Algorithm  

The Rapidly Exploring Random Tree (RRT) method was originally introduced by LaValle [29]. It is a 

randomized path planning approach that employs sampling algorithms. It begins with an initial point as the root 

node and incrementally constructs a roadmap tree from randomly drawn samples (leaf nodes). The primary goal 

of RRT is to efficiently explore a substantial portion of the configuration space [30]. When the leaf nodes within 

the random tree encompass the goal point or enter the goal region, it becomes feasible to identify a path from the 

initial point to the goal point [31]. The RRT algorithm is well-suited for addressing path planning challenges 

under both holonomic and non-holonomic constraints [32]. 

An advantage of the RRT method is that it does not necessitate the modeling of the entire planning 

space. This  
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Fig 6: Pseudocode of the D-Star Lite or D* Lite Algorithm 

 

Algorithm exhibits an extensive coverage of the search space and possesses a wide search range, 

enabling it to explore unknown regions to a significant extent. However, it also faces the challenge of having a 

notably high computational cost. Various adaptations and enhancements to the RRT have been put forward by 

researchers to address these issues. Some of these modifications include the Goal-Bias RRT algorithm, Bi-RRT 

algorithm, RRT-Connect algorithm, Extend RRT algorithm, Local-Tree-RRT algorithm, Dynamic RRT 

algorithm, among others. In the goal-bias algorithm, the sampling point is the target node, and it allows for 

control over the probability of selecting the target point within the algorithm. Before continuing the search, the 

Dynamic RRT algorithm suggests trimming and combining procedures to remove invalid nodes [33-35].  

RRT operates by constructing two trees: one originating from the starting position and the other with its 

root at the ending position. The two trees exchange roles, with one tree adding a node, and the other attempting 

to establish a connection to it, repeating this process until a path is discovered. While this may appear to be an 

inefficient and somewhat non-deterministic approach, it is, in fact, quite swift (capable of planning a new path 

without significant interruptions for recalculation) and typically manages to find a path on its initial attempt in 

nearly all cases where a viable path exists. Figure 7 depicts the RRT algorithm's pseudocode. 

 

F. Probabilistic Road Map (PRM) Algorithm  

The probabilistic roadmap (PRM) was initially introduced by Kavraki et al. in 1996 [36] with the 

primary aim of facilitating path planning for a robot within a static workspace. PRM has the ability for 

multiquery planning [37]. Road maps refer to the connectivity of the robot’s configuration free space plotted on 

a 1-dimension curve or lines. The roadmap has likewise been named highway strategy [38], withdrawal 

approach, and skeleton system [39]. The optimal path is determined by calculating the distances along the edges, 

which represent the connections between randomly generated nodes on the map. Nodes are generated by 

sampling from obstacle-free points on the map, after which these nodes are connected to each other, and the path 

cost is subsequently assessed. The rapid random cluster strategy delivers results more swiftly than other 

algorithms but does not guarantee the shortest path, as noted in reference [36]. Figure 8 depicts the PRM 
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algorithm's pseudocode. 

 

 

 
Fig 7: Pseudocode of the RRT Algorithm 

 

A. Dynamic Window Approach (DWA) Algorithm  

The DWA is a velocity-based local planner that calculates the optimal collision-free ('admissible') 

velocity for a robot required to reach its goal. It translates a Cartesian goal (x, y) into a velocity (v, w) command 

for a mobile robot. There are two primary objectives: the calculation of a valid velocity search space and the 

selection of the optimal velocity. The space to be searched, is constructed from the set of velocities which 

produce a safe trajectory i.e. allow the robot to stop before colliding, given the set of velocities the robot can 

achieve in the next time slice given its dynamics 'dynamic window'. The optimal velocity is selected to 

maximize the robots clearance, maximize the velocity and obtain the heading closest to the goal (See Figure 

9)[40]. 

In contemporary times, while numerous path planning methods for robots continue to emerge, many of 

these algorithms primarily operate in static environments and often overlook the intricacies of dynamic 

environments. Path planning algorithms designed for dynamic environments are still in a relatively early stage 

of development, and the research addressing these issues may exhibit certain limitations. Undoubtedly, research 

on real-time planning in dynamic environments holds a prominent place in the research agenda due to its 

challenging and practical applications in technology and everyday life. 

 

5.  Experimental Results And Discussion 

The cited algorithms in the previous section were implemented in simulation environment in this 
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section. This experiment was run in the Windows 10 Enterprise LTSC on a computer with an Intel Core i5-

6200U CPU and 4GB RAM. To illustrate the advantages of the algorithms in various aspects, such as search 

speed, the number of visited nodes, rotations, path selection, and path length, a dedicated experimental 

environment is established, and the fundamental algorithms are subjected to a comparative analysis. The 

experiments aim to establish a starting point and a target point environment. 

 

 
Fig 8: Pseudocode of the PRM Algorithm 
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Fig 9: Pseudocode of the DWA Algorithm 

 

A. Dijkstra Algorithm  

World: 100x100, Starting point = -20x-20, Target point = 50x60, No. of random Obstacles = 9, Grid 

size = 2.0, Robot radius = 1.0. Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, 

Red: Path. The Path planned by Dijkstra algorithm for randomly generated static world is as in fig. 10. 

 

 

 

Fig 10: Path planned by Dijkstra algorithm for randomly generated world 
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B. A Star (A*) Algorithm  

World: 100x100, Starting point = -20x-20, Target point = 50x60, No. of random Obstacles = 9, Grid 

size = 2.0, Robot radius = 1.0. Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, 

Red: Path. The Path planned by A* algorithm for randomly generated static world is as in fig. 11. 

 

 

 

Fig 11: Path planned by A* algorithm for randomly generated world 

 

C. Dynamic A Star (D*) Algorithm  

World: 100x100, Starting point = 5x5, Target point = 65x80, No. of random Obstacles = 9, Grid size = 

2.0, Robot radius = 1.0. Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, Red: 

Path. The Path planned by D* algorithm for randomly generated static world is as in fig. 12. 

 

 

 

Fig 12: Path planned by D* algorithm for randomly generated world 
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D. Dynamic A Star Lite (D* Lite) Algorithm  

World: 100x100, Starting point = -20x-20, Target point = 50x60, No. of random Obstacles = 9, Grid 

size = 2.0, Robot radius = 1.0. Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, 

Red: Path. The Path planned by D* Lite algorithm for randomly generated static world is as in fig. 13 &14. 

 

 

Fig 13: Path planned by D* Lite algorithm without obstacle for randomly generated world 

 

 

Fig 14: Path planned by D* Lite algorithm with obstacle for randomly generated world 

 

E. Rapidly Exploring Random Tree (RRT) Algorithm  

World: 16x16, Starting point = 0x0, Target point = 10x12, No. of random Obstacles = 8, Grid size = 

2.0, Robot radius = 0.8, Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, Red: 

Path. The Path planned by RRT algorithm for randomly generated static world is as in fig. 15. 

 

F. Probabilistic Road Map (PRM) Algorithm 

World: 100x100, Starting point = -20x-20, Target point = 50x60, No. of random Obstacles = 9, Grid 

size = 2.0, Robot size = 5.0. Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, Red: 

Path. The Path planned by PRM algorithm for randomly generated static world is as in fig. 16. 
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Fig 15: Path planned by RRT algorithm for randomly generated world 

 

 

Fig 16: Path planned by PRM algorithm for randomly generated world 

 

G. Dynamic Window Approach (DWA) Algorithm  

World: 16x16, Starting point = 0x0, Target point = 10x10, No. of random Obstacles = 26, Grid size = 

2.0, Robot radius = 0.8, Colour coding --> Black: Obstacle, Green: Starting point, Cyan: Target point, Red: 

Path. The Path planned by DWA algorithm for randomly generated dynamic world is as in fig. 17. 

 

 

Fig 17: Path planned by DWA algorithm for Dynamic environment 
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All of these results are one solution to the path planning algorithms. All the algorithms are producing 

different results in each operation. All the algorithms are 3 times and path distance and consumption time of 

them are saved. The table I presents the search speed in seconds for the aforementioned algorithms. 

 

Table I: Comparison of Search Speed (in seconds) for Path Planning Algorithms in a Static Environment 

 

Trial No 

 

 

Dijkstra 

  

A* 

 

D*  

D* Lite  

RRT 

 

PRM Without obstacle With obstacle 

1 31.73 5.70 14.01 17.51 25.10 9.03 13.07 

2 31.66 5.65 13.95 17.10 24.12 8.45 12.90 

3 31.95 5.64 13.94 16.80 24.20 6.09 13.85 

 

6. CONCLUSION 

Efficiently discovering the optimal path for heterogeneous robots, which minimizes both time and 

distance, is crucial for successfully accomplishing their designated tasks. Within this context, the efficiency of 

several heuristic approaches, including Dijkstra, A*, D*, Dynamic A* Lite, and sampling-based techniques such 

as RRT and PRM algorithms, is deliberated and assessed using Python. These methods are then compared. 

These algorithms have been subjected to testing for path planning under various start-goal point configurations 

and obstacle configurations. In almost all the cases, A* can be used if the environment has been completely 

mapped already, i.e. the entire topography of the environment is known, and will remain so during the course of 

the robot mission. Also, it doesn’t have huge computational requirements and can be implemented easily. The 

D*, on the other hand may be used in those environments which are dynamic and whose topography isn’t 

completely known. But in the comparative study, it shows that D* has a larger computational delay in cluttered 

environments. This happens because the D* keeps a record of the cost from each of the grids to its neighbouring 

grids, unlike the A*. The RRT and PRM algorithms are rather slow algorithms. Also it gives a non-optimal 

solution, doesn’t guarantee that the solution will be obtained even if it exists. But it comes in handy in highly 

cluttered environments. In fact this must be selected in such environments only if the planner can afford the high 

memory requirements. The path planning was executed by amalgamating the A* algorithm for global path 

planning with the Dynamic Window Approach (DWA) algorithm for local path planning. Simulation and 

emulation experiments were performed to compare and validate the outcomes related to map construction and 

path planningFuture work will encompass the development of algorithms that incorporate Artificial Intelligence, 

enhancing their responsiveness and features to align with the demands of modern technology. 

 

Data Availability Statement: Data sharing not applicable. 
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